Synthesis, Characterisation, and Photocatalytic Behaviour of Mesoporous ZnS Nanoparticles Prepared Using By-Product Templating
Hosein B. Motejadded Emrooz A C , Ali R. Rahmani A and Francisco J. Gotor BA School of New Technologies, Iran University of Science and Technology, Tehran 1684613114, Iran.
B Instituto de Ciencia de Materia les de Sevilla (CSIC-US), Americo Vespucio 49, Sevilla 41092, Spain.
C Corresponding author. Email: Banna@iust.ac.ir
Australian Journal of Chemistry 70(10) 1099-1105 https://doi.org/10.1071/CH17192
Submitted: 7 April 2017 Accepted: 9 May 2017 Published: 29 May 2017
Abstract
High surface area mesoporous ZnS nanoparticles (MZN) were obtained with the aid of the by-product of the synthesising reaction. This by-product, namely NaNO3, can be considered as a soft template responsible for the formation of pores. Ethanol and water were chosen as the synthesis media. Ultrasonic waves were used as an accelerator for the synthesis of MZNs. Photocatalytic activities of the synthesised samples for the degradation of methylene blue (MB) were investigated under ultraviolet irradiation. Synthesised specimens were characterised using field emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, diffuse reflectance spectroscopy, N2-physisorption, and FT-IR spectroscopy. Results indicated that the synthesis media has a pronounced effect on the surface properties of the final porous particles by several mechanisms. The specific surface area of the MZN samples synthesised in water and ethanol were determined to be 53 and 201 m2 g−1, respectively. The difference in the specific surface area was attributed to the weak solvation of S2− ions (Na2S·5H2O in ethanol) and also to the by-product of the synthesis reaction. The photocatalytic behaviour of the mesoporous ZnS nanoparticles synthesised in these two media were investigated and the results have been interpreted with the aid of effective surface area, pore volume, and bandgap energy of the specimens.
References
[1] H.-F. Shao, X.-F. Qian, Z.-K. Zhu, J. Solid State Chem. 2005, 178, 3522.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SgsbbM&md5=0cd6f0afdcb2fcf28380d901bf639756CAS |
[2] R. Yi, G. Qiu, X. Liu, J. Solid State Chem. 2009, 182, 2791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aqsb%2FP&md5=811c76ea6044452f8b10bff90f40b0a6CAS |
[3] M. Kaur, N. K. Gupta, C. M. Nagaraja, CrystEngComm 2015, 17, 2359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1aqsro%3D&md5=48d51a5bdc17b9f1a0e1c40228e4329eCAS |
[4] T. Charinpanitkul, A. Chanagul, J. Dutta, U. Rungsardthong, W. Tanthapanichakoon, Sci. Technol. Adv. Mater. 2005, 6, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1ehsrw%3D&md5=add40455673c3f9ea3b2e5c13d558b66CAS |
[5] Q. Zhao, Y. Xie, Z. Zhang, X. Bai, Cryst. Growth Des. 2007, 7, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ChsLbJ&md5=378e048aef77fc6988aa86f4b52ca27bCAS |
[6] A. L. Stroyuk, A. E. Raevskaya, A. V. Korzhak, S. Y. Kuchmii, J. Nanopart. Res. 2007, 9, 1027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSgt77J&md5=e51af02acc35710efcceda0bad20657dCAS |
[7] R. Chauhan, A. Kumar, R. P. Chaudhary, Spectrochim. Acta, Part A 2013, 113, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKnsL%2FF&md5=486287192b376e16f3178762a4f7c6afCAS |
[8] R. Chauhan, A. Kumar, R. Pal Chaudhary, J. Lumin. 2014, 145, 6.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKnu7fK&md5=94b37ecd0c822ab14a7f8dc3bcdf853eCAS |
[9] M. Kaur, C. M. Nagaraja, Mater. Lett. 2015, 154, 90.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFKgsLk%3D&md5=348f021fda4557afb5492688e42453c3CAS |
[10] N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, E. Gharibshahi, Sol. Energy 2013, 97, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Clsr7K&md5=40157a5bbee0db480d7f54a29b225a03CAS |
[11] N. Soltani, E. Saion, W. M. M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh, K. Rezaee, Appl. Surf. Sci. 2014, 290, 440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgtrfP&md5=4d93c593f7a7ac4eddaf6b5e3b72468eCAS |
[12] N. Soltani, E. Saion, M. Erfani, K. Rezaee, G. Bahmanrokh, G. P. C. Drummen, A. Bahrami, M. Z. Hussein, Int. J. Mol. Sci. 2012, 13, 12412.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSitb%2FK&md5=a61fffd84486dd5527979cb83828fcdfCAS |
[13] N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Int. J. Mol. Sci. 2012, 13, 12242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSitb7K&md5=265020b8079f6da02564626a577c0439CAS |
[14] Y. P. Xie, Z. B. Yu, G. Liu, X. L. Ma, H.-M. Cheng, Energy Environ. Sci. 2014, 7, 1895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFersrw%3D&md5=aa78addd37a9738ebc4d2a8ea909472eCAS |
[15] J. Dai, Z. Jiang, W. Li, G. Bian, Q. Zhu, Mater. Lett. 2002, 55, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGqt7Y%3D&md5=e2f1efbd313b4edbb903ab7593f10b86CAS |
[16] H. Yin, Y. Wada, T. Kitamura, S. Yanagida, Environ. Sci. Technol. 2001, 35, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Khuro%3D&md5=fc10fbfa9a1b80b4da93dee0cfb79f8fCAS |
[17] J. Li, H. Kessler, M. Soulard, L. Khouchaf, M.-H. Tuilier, Adv. Mater. 1998, 10, 946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Wlt74%3D&md5=68c6338e44838106ad1fc89d893be1b9CAS |
[18] J. Yang, J. J. Peng, R. Zou, F. Peng, H. Wang, H. Yu, J. Y. Lee, Nanotechnology 2008, 19, 255603.
| Crossref | GoogleScholarGoogle Scholar |
[19] H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, S. Z. Qiao, Adv. Energy Mater. 2012, 2, 970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1artLzN&md5=3ed32004977aa65cd4b46946ec714b72CAS |
[20] J. S. Jang, C.-J. Yu, S. H. Choi, S. M. Ji, E. S. Kim, J. S. Lee, J. Catal. 2008, 254, 144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamsb8%3D&md5=7360facd69f2b4dce11172f70372fc3dCAS |
[21] J. S. Jang, E. S. Kim, S. H. Choi, D. H. Kim, H. G. Kim, J. S. Lee, Appl. Catal. A 2012, 427–428, 106.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Tian, G.-F. Huang, L.-J. Tang, M.-G. Xia, W.-Q. Huang, Z.-L. Ma, Mater. Lett. 2012, 83, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOmt77E&md5=d53e8e5dcc2c1c46bbbb00aa0955378cCAS |
[23] A. A. Ismail, D. W. Bahnemann, J. Mater. Chem. 2011, 21, 11686.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslSjtb8%3D&md5=0fa2c388de06b19453caf9e565a5dc83CAS |
[24] R. K. Rana, L. Zhang, J. C. Yu, Y. Mastai, A. Gedanken, Langmuir 2003, 19, 5904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVCht7o%3D&md5=b2033f79dfeb7917e2934f37c4717e9fCAS |
[25] M. Muruganandham, R. Amutha, E. Repo, M. Sillanpää, Y. Kusumoto, M. D. Abdulla-Al-Mamun, J. Photochem. Photobiol. A 2010, 216, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmu7bI&md5=9b4592c37117481ca287796fd2126c6dCAS |
[26] Z.-X. Sun, Q. Zhang, Y.-H. Lu, Y.-L. Li, Microporous Mesoporous Mater. 2008, 109, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgtr3M&md5=a2043657c88a756e82d0f087219d2f84CAS |
[27] W.-M. Zhang, H.-M. Li, Z.-X. Sun, Q. Zhang, W. Forsling, Microporous Mesoporous Mater. 2012, 147, 222.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. K. Maji, N. Mukherjee, A. Mondal, B. Adhikary, B. Karmakar, J. Phys. Chem. Solids 2011, 72, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlGhsb0%3D&md5=7725f7668073ff4ff51a0851d997e4aeCAS |
[29] J. Li, X. Zhao, C. Yan, Mater. Lett. 2006, 60, 2896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyhsbg%3D&md5=abfad7f978b32f42589b3043bc86148dCAS |
[30] Y. Shi, Y. Wan, D. Zhao, Chem. Soc. Rev. 2011, 40, 3854.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12nurw%3D&md5=2cef162a4314c68cb53f28c5b7681e2eCAS |
[31] T. Charinpanitkul, A. Chanagul, J. Dutta, U. Rungsardthong, W. Tanthapanichakoon, Sci. Technol. Adv. Mater. 2005, 6, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1ehsrw%3D&md5=add40455673c3f9ea3b2e5c13d558b66CAS |
[32] Z. X. Sun, Q. Zhang, Y. H. Lu, Y. L. Li, Microporous Mesoporous Mater. 2008, 109, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgtr3M&md5=a2043657c88a756e82d0f087219d2f84CAS |
[33] R. Xing, Y. Xue, X. Liu, B. Liu, B. Miao, W. Kang, S. Liu, CrystEngComm 2012, 14, 8044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2rs7rE&md5=8b8d36dfa89cfbc94c95422c3d0bfc7eCAS |
[34] X. Liu, B. Tian, C. Yu, B. Tu, Z. Liu, O. Terasaki, D. Zhao, Chem. Lett. 2003, 32, 824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Wnsrc%3D&md5=1826ed21bfe33ee25df992243b2e8a03CAS |
[35] A. Fischereder, M. L. Martinez-Ricci, A. Wolosiuk, W. Haas, F. Hofer, G. Trimmel, G. J. A. A. Soler-Illia, Chem. Mater. 2012, 24, 1837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFWjsr4%3D&md5=754b471eee0a9adb075cc098ff98eedbCAS |
[36] M. S. Akhtar, S. Riaz, R. F. Mehmood, K. S. Ahmad, Y. Alghamdi, M. A. Malik, S. Naseem, Mater. Chem. Phys. 2017, 189, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhs1Wntr8%3D&md5=130009d786958a0657620e7351943260CAS |
[37] Y. Shi, Y. Wan, R. Liu, B. Tu, D. Zhao, J. Am. Chem. Soc. 2007, 129, 9522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Cgt78%3D&md5=a5bafc83c4daf70ab117f3b61c4564cbCAS |
[38] C. Yang, G. An, X. Zhao, J. Mater. Sci. Mater. Electron. 2015, 26, 3324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtVyqsrY%3D&md5=b85b205d7afdfa5c6670333f1af7205fCAS |
[39] B. S. Rema Devi, R. Raveendran, A. V. Vaidyan, Pramana – J. Phys. 2007, 68, 679.
| Crossref | GoogleScholarGoogle Scholar |
[40] M. Kuppayee, G. K. Vanathi Nachiyar, V. Ramasamy, Appl. Surf. Sci. 2011, 257, 6779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKjsrw%3D&md5=497ee38fb4b012ddb8a8779696d2ce56CAS |
[41] T. M. Hammad, Ann. Phys. 2002, 11, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslCkt7Y%3D&md5=fe361fcd95ec15c1d44cd285ed3fb302CAS |
[42] H. Wan, L. Xu, W.-Q. Huang, G.-F. Huang, C.-N. He, J.-H. Zhou, P. Peng, Appl. Phys. A: Mater. Sci. Process. 2014, 116, 741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKku73F&md5=4a80647cb13a5442dbf80deca0d5144aCAS |
[43] Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, Z. Han, Phys. Chem. Chem. Phys. 2015, 17, 1870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVSgtLfN&md5=259c0dcb02d04800ad1b715b42a719c6CAS |