Structure and Magnetic Studies on a Series of Two-Dimensional Iron(ii) Framework Materials with Varying Ligand Characteristics
Matthew A. D. Roxburgh A , Samantha Zaiter A , Xina I. B. Hudson A , Benjamin R. Mullaney A , John E. Clements A , Boujemaa Moubaraki B , Keith S. Murray B , Suzanne M. Neville A C and Cameron J. Kepert A CA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B School of Chemistry, Monash University, Melbourne, Vic. 3800, Australia.
C Corresponding authors. Email: suzanne.neville@sydney.edu.au; cameron.kepert@sydney.edu.au
Australian Journal of Chemistry 70(5) 623-631 https://doi.org/10.1071/CH16586
Submitted: 13 October 2016 Accepted: 25 February 2017 Published: 23 March 2017
Abstract
Targeting the general (4,4)-grid structural motif, we have prepared seven new coordination polymers in the general family [Fe(NCX)2(L)2]·(guest) (L = bis-pyridyl-type bridging ligands; X = S, Se) as an extension of the well-established spin crossover framework (SCOF) family. In all cases, the (4,4)-grid topology is formed by the bridging of octahedral iron(ii) sites in the equatorial plane by bis-pyridyl ligands of varying length, flexibility, and intermolecular interaction capacity. In particular, the six ligands n-(4-pyridyl)-isonicotinamide (pin), trans-1,2-bis(4′-pyridyl)ethane (tvp), 1,2-dibromo-1,2-bis(4′-pyridyl)ethane (dbbpe), bis(4-pyridyl)-1,2,4,5-tetrazine (bptz), 4,4′-bis(pyridyl)acetylene (bpac), and 1,4-bis(4-pyridylethynyl)benzene (bpeben) have been utilised. The seven new materials [Fe(NCS)2(pin)2]·2(MeCN) (pin-S), [Fe(tvp)2(NCS)2]·1/2(tvp)·(CH3CH2OH) (tvp-S), [Fe(dbbpe)2(NCS)2]·6(CH3CN) (dbbpe-S), [Fe(NCS)2(bptz)2]·2(CHCl3)·6(EtOH) (bptz-S), [Fe(NCSe)2(bptz)2]·4(CHCl3)·(EtOH)·(H2O) (bptz-Se), [Fe(NCS)2(bpac)2]·2(PrOH) (bpac-S), and [Fe(NCS)2(bpeben)2]·2(CHCl3) (bpeben-S) all form (4,4)-grids of varying size that are arranged in a parallel stacked topology. Despite being in the [FeN6] coordination environment known to be conducive to spin crossover, these materials all remain high-spin with thermal variation. These results are discussed in context with the large family of SCOFs that show varied spin crossover behaviours.
References
[1] P. Gütlich, H. A. Goodwin, Top. Curr. Chem. 2004, 233, 1.| Crossref | GoogleScholarGoogle Scholar |
[2] O. Kahn, Molecular Magnetism 1993 (Wiley VCH: New York, NY).
[3] O. Kahn, C. J. Martinez, Science 1998, 279, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1OjsQ%3D%3D&md5=55059b2befc99632762562f53fa7808dCAS |
[4] G. Molnár, L. Salmon, W. Nicolazzi, F. Terki, A. Bousseksou, J. Mater. Chem. C 2014, 2, 1360.
| Crossref | GoogleScholarGoogle Scholar |
[5] C. Lefter, R. Tan, S. Tricard, J. Dugay, G. Molnár, L. Salmon, J. Carrey, A. Rotaru, A. Bousseksou, Polyhedron 2015, 102, 434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs12jur%2FM&md5=9986ad81338b7677e95f14243535fff9CAS |
[6] O. Sato, Nat. Chem. 2016, 8, 644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVKisbnP&md5=e678a1448bd3c106dc88a14de63fb499CAS |
[7] J. F. Letard, P. Guionneau, L. Goux-Capes, Top. Curr. Chem. 2004, 235, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvF2rur0%3D&md5=6fc202e988a0cc3897b659a3ace3e535CAS |
[8] M. A. Halcrow, Spin-Crossover Materials: Properties and Applications 2013 (John Wiley & Sons: Oxford, UK).
[9] Y. Garcia, V. Niel, M. C. Muñoz, J. A. Real, Top. Curr. Chem. 2004, 233, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1yjt78%3D&md5=0dc17fa311ad9f3624f294a0a3e6aea7CAS |
[10] C. J. Kepert, in Metal–Organic Framework Materials, Inorganic Materials: Volume One, Porous Materials (Eds D. W. Bruce, D. O’Hare, R. I. Walton) 2011, pp. 1–68 (John Wiley & Sons: Chichester, UK).
[11] K. S. Murray, C. J. Kepert, Top. Curr. Chem. 2004, 233, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1yjt74%3D&md5=8b80e99342e1942f4f22ad99797f365dCAS |
[12] R. Ohtani, S. Hayami, Chem. – Eur. J. 2017, 23, 2236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFOitr7E&md5=a1ee0839b23b3a52ad15ef07eda07a04CAS |
[13] J. A. Real, A. B. Gaspar, M. C. Muñoz, Dalton Trans. 2005, 2062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWqsL4%3D&md5=8c22adbd252a3167c5c4e72f0cc03468CAS |
[14] M. C. Muñoz, J. A. Real, Coord. Chem. Rev. 2011, 255, 2068.
| Crossref | GoogleScholarGoogle Scholar |
[15] N. F. Sciortino, S. M. Neville, Aust. J. Chem. 2014, 67, 1553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyjtb%2FL&md5=790b36f5e15080ae35b10aa47b7f45b3CAS |
[16] W. A. Baker, H. M. Bobonich, Inorg. Chem. 1964, 3, 1184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktlOnsr0%3D&md5=18c6d1bdc1ceee7df5df9bbdfbfd6709CAS |
[17] K. Madeja, E. Konig, J. Inorg. Nucl. Chem. 1963, 25, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXmsVeitA%3D%3D&md5=626c7877a22b692574cc7b289c0d919fCAS |
[18] E. Koenig, K. Madeja, Inorg. Chem. 1967, 6, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXjtlSmug%3D%3D&md5=482db7d078f5825733e0fa8a64315415CAS |
[19] S. M. Neville, B. Moubaraki, K. S. Murray, C. J. Kepert, Angew. Chem. Int. Ed. 2007, 46, 2059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFKmsL4%3D&md5=61c7a91a524b8bbdb345ef873baaf7cbCAS |
[20] G. J. Halder, K. W. Chapman, S. M. Neville, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 17552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2jsLfE&md5=57a629b405e4862a9b52c74ae6e007caCAS |
[21] S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, P. D. Southon, J. D. Cashion, J.-F. Létard, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 2869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFehsL4%3D&md5=e36fea4043c8e787f71a5b0975691f4fCAS |
[22] S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 12106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ylu7s%3D&md5=7aea9784191a963c8634c42b552dd006CAS |
[23] G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKmsrs%3D&md5=866836951ad1119e180913e6164125f7CAS |
[24] J. A. Real, E. Andres, M. C. Muñoz, M. Julve, T. Granier, A. Bousseksou, F. Varret, Science 1995, 268, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVChs74%3D&md5=db2989c5c7915358faf97faee6e1482aCAS |
[25] T. Romero-Morcillo, N. De la Pinta, L. M. Callejo, L. Piñeiro-López, M. C. Muñoz, G. Madariaga, S. Ferrer, T. Breczewski, R. Cortés, J. A. Real, Chem. – Eur. J. 2015, 21, 12112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOrtbvP&md5=3c3a4452e5726653aeca4f24ca8ec820CAS |
[26] F.-L. Yang, M.-G. Chen, X.-L. Li, J. Tao, R.-B. Huang, L.-S. Zheng, Eur. J. Inorg. Chem. 2013, 4234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVKju7c%3D&md5=fafe9c0a4cd60b4d922f147e8edc00e7CAS |
[27] C. J. Adams, C. M. Muñoz, R. E. Waddington, J. A. Real, Inorg. Chem. 2011, 50, 10633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KksbnK&md5=184f2db7f22072f2f9d59376dc7ae8b6CAS |
[28] N. F. Sciortino, S. M. Neville, C. Desplanches, J. F. Létard, V. Martinez, J. A. Real, B. Moubaraki, K. S. Murray, C. J. Kepert, Chem. – Eur. J. 2014, 20, 7448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslWhtr8%3D&md5=6ea42d8bede0c59629aa3e156e4b6902CAS |
[29] G. J. Halder, C. J. Kepert, Aust. J. Chem. 2005, 58, 311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvV2ksbk%3D&md5=8e9c659766d95d42bf9c649579a95283CAS |
[30] T. S. Gardner, E. Wenis, J. Lee, J. Org. Chem. 1954, 19, 753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXmtVGgsw%3D%3D&md5=1ddf67fadf3dea25b7e4fa15070a3495CAS |
[31] P. H. Dinolfo, M. E. Williams, C. L. Stern, J. T. Hupp, J. Am. Chem. Soc. 2004, 126, 12989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Wisrg%3D&md5=da3260ad2809e032d491b641f085aabfCAS |
[32] M. Tanner, A. Ludi, Chimia 1980, 34, 23.
| 1:CAS:528:DyaL3cXhvFyhsLc%3D&md5=8e49f01a9567dd5bb4ec7e98179b19eaCAS |
[33] N. R. Champness, A. N. Khlobystov, A. G. Majuga, M. Schröder, N. V. Zyk, Tetrahedron Lett. 1999, 40, 5413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVyntbo%3D&md5=8d6c499f70fff0c88ef55dc90423b0a8CAS |
[34] G. M. Sheldrick, SADABS 1998 (University of Göttingen: Göttingen, Germany).
[35] G. M. Sheldrick, SHELXL-97: Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen, Germany).
[36] L. J. Barbour, X-SEED 1999 (University of Stellenbosch: Stellenbosch, South Africa).
[37] CrysAlisPro V1.171.36.28 2013 (Agilent Technologies: Santa Clara, CA).
[38] L. J. Farrugia, J. Appl. Cryst. 2012, 45, 849.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKltbzK&md5=4b3d869e655994706c63c7c42cc72f36CAS |
[39] W. Kabsch, Acta Crystallogr. Sect. D 2010, 66, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SisLc%3D&md5=7bae66ce10b6a77cc2684bc15139b7eeCAS |
[40] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=152b232aadeaa73225d2029119611dc4CAS |
[41] G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |