The Cooperative Effect in Dendronized Chitosan Microbeads
Ana Agustina Aldana A , Miriam C. Strumia A and Marisa Martinelli A BA Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina.
B Corresponding author. Email: mmartinelli@fcq.unc.edu.ar
Australian Journal of Chemistry 68(12) 1918-1925 https://doi.org/10.1071/CH15102
Submitted: 4 March 2015 Accepted: 14 May 2015 Published: 16 June 2015
Abstract
The present study evaluates the cooperative effects of dendronized chitosan microbeads with tris- and hexa-functionalized dendrons for capturing copper and for further use as catalysts. The dendronized microbeads were characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetry, swelling capacity analysis, and atomic absorption spectroscopy. A correlation between the number and type of functional groups at the dendritic surface of the dendronized microbeads and the retention of copper highlights structural features of the cooperative effect. It is demonstrated that covalently bound dendrons can modulate the properties of chitosan, which has shown potential as a catalyst for the development of a novel materials.
References
[1] O. G. da Silva, M. G. da Fonseca, L. N. H. Arakaki, Colloids Surf., A 2007, 301, 376.| Crossref | GoogleScholarGoogle Scholar |
[2] J. I. Paez, M. Martinelli, V. Brunetti, M. C. Strumia, Polymers (Basel, Switz.) 2012, 4, 355.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. S. Bagul, N. Jayaraman, J. Organomet. Chem. 2012, 701, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKktLc%3D&md5=32a5e37c14aa9f806e95f2a6557bce6eCAS |
[4] R. T. Lee, H.-J. Gabius, Y. C. Lee, Carbohydr. Res. 1994, 254, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFWlsLc%3D&md5=ce6958fc2bb412453ea4053e30f90594CAS | 8180989PubMed |
[5] M. Kröger, O. Peleg, A. Halperin, Macromolecules 2010, 43, 6213.
| Crossref | GoogleScholarGoogle Scholar |
[6] O. Iliashevsky, L. Amir, R. Glaser, R. S. Marks, N. G. Lemcoff, J. Mater. Chem. 2009, 19, 6616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOmsr7K&md5=a5514dd7a7f6aa8669618a253d311cafCAS |
[7] J. I. Paez, M. C. Strumia, M. C. G. Passeggi, J. Ferrón, A. M. Baruzzi, V. Brunetti, Electrochim. Acta 2009, 54, 4192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt12rsr0%3D&md5=4791ba7f28470739207ef8c3c9be577bCAS |
[8] M. Rinaudo, Prog. Polym. Sci. 2006, 31, 603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslCju7o%3D&md5=3ea3bcf2c2a5a59e9c6aa232d48b4c45CAS |
[9] M. Monier, A. El-Mekabaty, Int. J. Biol. Macromol. 2013, 55, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFWisr4%3D&md5=0cdb5fea537d8f6bd6b55540f4f0e4d2CAS | 23357795PubMed |
[10] M. Pau Balaguer, R. Gavara, P. Hernández-Muñoz, Food Chem. 2012, 130, 814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmu7zO&md5=33521d48dd66cb606f8e6eb48e9d26e1CAS |
[11] S.-L. Wang, T.-W. Liang, Y.-H. Yen, Carbohydr. Polym. 2011, 84, 732.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVSru7Y%3D&md5=978d208fdce88372caebef00be343f71CAS |
[12] V. K. Thakur, M. K. Thakur, P. Raghavan, M. R. Kessler, ACS Sustainable Chem. Eng. 2014, 2, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlSrtb0%3D&md5=cb6cdc77786ef2f71f821fd7fefd0809CAS |
[13] V. K. Thakur, M. K. Thakur, R. K. Gupta, Int. J. Poly. Anal. Charact. 2014, 19, 256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFWnurc%3D&md5=781eabc603cbfd6d5df943092c713fa4CAS |
[14] V. K. Thakur, M. K. Thakur, R. K. Gupta, Carbohydr. Polym. 2013, 98, 820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOisrrN&md5=5cd4377406809f1e121f478ba50c05f4CAS | 23987417PubMed |
[15] V. K. Thakur, M. K. Thakur, R. K. Gupta, Carbohydr. Polym. 2013, 97, 18.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsV2isb0%3D&md5=75f1b7231279b98d14a1e859483564fdCAS | 23769511PubMed |
[16] V. K. Thakur, M. K. Thakur, ACS Sustainable Chem. Eng. 2014, 2, 2637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGrsL7E&md5=e957b3357db6c5e443e2c985d8bed214CAS |
[17] V. K. Thakur, M. K. Thakur, Carbohydr. Polym. 2014, 109, 102.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotV2htrc%3D&md5=77af47e8d81f6b3b346ac396a79d4f0fCAS | 24815407PubMed |
[18] V. K. Thakur, M. K. Thakur, R. K. Gupta, Int. J. Biol. Macromol. 2013, 61, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFenur%2FP&md5=0a5a5d0408b2e2e7e8ba70742efa7ed4CAS | 23831536PubMed |
[19] V. K. Thakur, M. K. Thakur, R. K. Gupta, Int. J. Biol. Macromol. 2013, 62, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWlurbI&md5=2ef671bd93d6c782cd9ba4300281cbc8CAS | 23994197PubMed |
[20] A. A. Aldana, R. Toselli, M. C. Strumia, M. Martinelli, J. Mater. Chem. 2012, 22, 22670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOmsrbJ&md5=8ec4eb42abe548092cc46a22ac28f1a2CAS |
[21] G. L. Rorrer, T. Y. Hsien, J. D. Way, Ind. Eng. Chem. Res. 1993, 32, 2170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1Wksb8%3D&md5=08480ed3aa676397caebb04af3a4ee9dCAS |
[22] F.-L. Mi, H.-W. Sung, S.-S. Shyu, J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Wgtbo%3D&md5=b20514c2ad9994f8f43a887415e6a44dCAS |
[23] L. Fernandez, M. Calderón, M. Martinelli, M. Strumia, H. Cerecetto, M. González, J. J. Silber, M. Santo, J. Phys. Org. Chem. 2008, 21, 1079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGmtbnJ&md5=f9d377739cf4a9a9e2db387936213b6eCAS |
[24] L. G. Wade, in Organic Chemistry (Ed. A. Jaworski) 2013, Ch. 19, pp. 439–466 (Pearson: London).
[25] D. E. S. Santos, C. G. T. Neto, J. L. C. Fonseca, M. R. Pereira, J. Membr. Sci. 2008, 325, 362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CiurjK&md5=0bc3803a2e519a42938a263477bd9927CAS |
[26] A. A. Aldana, M. C. Strumia, M. Martinelli, J. Biomater. Tissue Eng. 2013, 3, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVGgsr0%3D&md5=122073b066795748d1b838bcdb80b511CAS |
[27] R. Laus, T. G. Costa, B. Szpoganicz, V. T. Fávere, J. Hazard. Mater. 2010, 183, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChtr%2FO&md5=dc40b2ef8431314fdc1c674104ce9702CAS | 20674156PubMed |
[28] C. K. S. Pillai, W. Paul, C. P. Sharma, Prog. Polym. Sci. 2009, 34, 641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWqtb4%3D&md5=ed7a468d31827de0792918e365ca6f56CAS |
[29] M. Eichler, V. Katzur, L. Scheideler, M. Haupt, J. Geis-Gerstorfer, G. Schmalz, S. Ruhl, R. Müller, F. Rupp, Biomaterials 2011, 32, 9168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OqurbK&md5=13c29e64fd65ca661cfb9cafdf625da3CAS | 21906807PubMed |
[30] F. Xi, J. Wu, J. Chromatogr. A 2004, 1057, 41.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFelurc%3D&md5=e1e683e339c7410c589fad56b6c35a0eCAS | 15584221PubMed |
[31] S. R. Popuri, Y. Vijaya, V. M. Boddu, K. Abburi, Bioresour. Technol. 2009, 100, 194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFemtLzK&md5=4e8e5b0719e545fb1778954a59226c5aCAS | 18614363PubMed |
[32] R. Šuláková, R. Hrdina, G. M. B. Soares, Dyes Pigm. 2007, 73, 19.
| Crossref | GoogleScholarGoogle Scholar |
[33] U. Boas, P. M. H. Heegaard, Chem. Soc. Rev. 2004, 33, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2ksb4%3D&md5=70ad9d986c826d61d6869c5d46d9b7ddCAS | 14737508PubMed |
[34] M. Rajiv Gandhi, G. N. Kousalya, N. Viswanathan, S. Meenakshi, Carbohydr. Polym. 2011, 83, 1082.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. M. Lázaro Martínez, E. Rodríguez-Castellón, R. M. T. Sánchez, L. R. Denaday, G. Y. Buldain, V. Campo Dall’ Orto, J. Mol. Catal. Chem. 2011, 339, 43.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, C. Gregor, J. Am. Chem. Soc. 2007, 129, 10929.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovF2mt74%3D&md5=e1cbac06c9c9010e14d71c67ed622512CAS | 17691785PubMed |
[37] A. A. Aldana, M. Martinelli, M. Strumia, Macromol. Symp. 2010, 298, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVSkuw%3D%3D&md5=7033fb6a5b384ef34e4c4aa4e01d3ba3CAS |
[38] H. Lee, K. Neville, Handbook of Epoxy Resins 1967 (McGraw-Hill: Michigan).