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Abstract.

Disturbance has been considered essential for maintaining biodiversity in temperate grassy ecosystems in

Australia. This has been particularly well demonstrated for inter-tussock plant species in C4 Themeda-dominated grasslands
in mesic environments. Disturbance is also thought crucial to maintain the structure of preferred habitat for some animals.
Relationships between disturbance and diversity may be contingent on ecosystem productivity, but little is known about the
generality of the disturbance-promoting-diversity paradigm across the range of temperate grasslands. To date, the
disturbance-promoting-diversity paradigm has taken a univariate approach to the drivers of biodiversity; rainfall is
seen as a key driver of productivity, which then drives diversity, mediated by disturbance. We argue that this framework is
too simplistic as biodiversity drivers are multivariate. We suggest that the accumulation of phytomass (live and dead plant
material) is an important determinant of diversity in grassy ecosystems and that phytomass accumulation is governed by
multiple drivers (of which disturbance is just one). For fauna, it is structure — not biomass — that determines habitat
suitability, and this can be moderated by both abiotic and biotic drivers. The assumption that there is a consistent effect of
disturbance on diversity through the range of temperate grassland settings in southern Australia ignores the likelihood that
biodiversity also responds to other factors such as spatial heterogeneity in the environment, resource availability and
climatic variation. We developed a conceptual model of the multivariate drivers of grassland diversity that explores
mechanisms underpinning patterns of species richness. Despite four decades of research, it is clear that our understanding of
the multivariate drivers of diversity across the range of temperate grasslands in Australia is still incomplete. Further research
into the conditions under which disturbance is required to maintain biodiversity in grasslands is integral to conservation
planning in these endangered systems.
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Introduction

Disturbance theory has served as the primary framework for
understanding species coexistence in temperate grasslands in
Australia (Lunt and Morgan 2002; Prober et al. 2013) and
elsewhere (e.g. Grime 1973; Huston 1979; Collins and
Steinauer 1998; Fynn er al. 2004). In highly productive
environments, large dominant species (usually grasses) can
monopolise resources (such as light) and competitively
exclude other species (Grime 1973; Grace 1999; Harpole
et al. 2016), as well as regulate many ecosystem functions
including nutrient cycling, population dynamics and animal
habitat (Knapp and Seastedt 1986; Lunt 1997a; Morgan and
Lunt 1999). Disturbances such as fire can promote species
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diversity by constraining biomass and hence, the competitive
effects of dominant species. In unproductive environments,
plants tend to recover more slowly after disturbance, leading
to slower rates of competitive exclusion. Hence, disturbance-
promoting-diversity is thought to be contingent on productivity.
Rates of biomass accumulation are dictated by the rates of
primary productivity and decomposition, both of which are
regulated by climate (Knapp and Smith 2001; O’Halloran
et al. 2013) and, at smaller scales, by soil fertility (Harpole
et al. 2016). Hence, productivity gradients controlled by climate
and edaphic factors are likely to regulate the degree to which
disturbance is necessary in grasslands to maintain diversity and
ecosystem function.
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The temperate grasslands of southern Australia are among the
nation’s most well studied ecosystems (see synthesis by
Williams et al. 2015) and biomass accumulation is known to
be rapid in some parts of the range (McDougall 1989; Morgan
and Lunt 1999; Prober et al. 2007; Schultz et al. 2011). As a
consequence, moderate to high-frequency fire regimes typically
promote plant species coexistence in productive grasslands
(Morgan 1999), whereas infrequently-burned grasslands have
lower plant species density (Stuwe and Parsons 1977). Such
findings underpin management recommendations that have
promoted frequent burning as necessary to maintain plant
biodiversity, particularly in those sites that have a long-
history of fire. Indeed, Williams et al. (2006) found that local
extinction of plants was highest in native grasslands where
burning regimes were relaxed, an outcome also observed in
tallgrass prairie (Leach and Givnish 1996).

Prior to European colonisation, Australian temperate
grasslands were burnt by Indigenous peoples for hunting and
to promote food plants (Gott 2005). The details of the pre-
European fire regime (i.e. frequency, intensity) are largely
unknown in southern Australia due to the history of colonial
invasion which meant Indigenous people had few opportunities
to remain on their country and maintain traditional practices
(Neale et al. 2019). It is generally thought that lowland
grassland distributions are mostly driven by bottom-up
processes  (resource-constrained) rather than top-down
(disturbance-driven) (Morgan et al. 2017). However, it is
likely fire played a role in promoting plant diversity in these
ecosystems. The disturbance created from Indigenous people
collecting roots of food plants is likely to have also influenced the
dynamics of grasslands (Gott 2005). Changes in disturbance
regimes following European colonisation had dramatic and rapid
effects —the removal of fire and introduction of livestock grazing
resulted in the local extinction of grazing-sensitive and fire-
dependent species. Additionally, grasslands have been heavily
cleared and degraded by agricultural and urban development
(McDougall and Kirkpatrick 1993), and all temperate grasslands
in southern Australia are now endangered or critically
endangered (Morgan et al. 2017).

A common assumption is that native grasslands require
frequent disturbance to remove accumulated biomass (i.e. live
+ dead plant material = phytomass) in order to maximise local
species diversity. In the absence of disturbance, perennial grass
phytomass accumulates as annual leaf production by the
dominant grass adds to the previous year’s litter which is slow
to decompose. The diverse array of species occupying the inter-
tussock spaces decline because of the direct relationship between
phytomass, light availability and plant competitive interactions
(Grace 1999). In temperate grasslands in south-eastern Australia,
kangaroo grass (Themeda triandra) tussocks create a thatch of
dead leaves over the soil surface that decomposes slowly (Morgan
and Lunt 1999), shading out inter-tussock species (Morgan 1997,
1998b), smothering seedlings (although quantitative data are
lacking) and contributing to the decline of plant diversity
(Williams et al. 2006). However, the applicability of this
model to other ecosystems is less well documented.

For fauna, disturbance has also been thought crucial to
maintain habitat suitability of grassland species. The plains-
wanderer (Pedionomus torquatus), for example, is sensitive to
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grassland biomass — as it affects structure — which can either be
too dense or too open (Baker-Gabb et al. 2016), whereas the
striped legless lizard (Delma impar) is thought to be suited to a
complex grassland structure that develops with increasing time
since disturbance (Dorrough and Ash 1999; Howland et al.
2016). Howland et al. (2014) showed that reptile richness and
abundance are positively related to grass cover. Although
disturbance-diversity relationships are often invoked to
explain  faunal habitat suitability, the mechanisms
underpinning such relationships are rarely explored, nor are
how these relationships change over a species’ range.

A simplified model summarising over 40 years of research on
disturbance-diversity relationships in lowland temperate
Australian grasslands is presented in Fig. 1. The approach to
understanding drivers of biodiversity has been univariate, largely
focussed on rainfall as the key driver of biomass, and disturbance
as the single factor that modifies biomass, which then governs
small-scale richness. A more nuanced model incorporating some
of the contingencies in this relationship (e.g. species identity,
resource availability) has not been incorporated into the
disturbance-promoting-diversity —paradigm (although see
Clarke 2003; Prober et al. 2013 for notable exceptions). Such
nuances are necessary when making predictions about the need
for, and type of, management interventions to maintain
biodiversity.

We developed a conceptual model of the multivariate drivers
of grassland diversity that explores mechanisms underpinning
patterns of species richness. Overwhelmingly the grassland
literature in temperate Australia has come from one type of
grassland (Themeda-dominated), at one spatial scale (small), in
one bioregion (Victorian Volcanic Plains). Hence, these findings
are unlikely to be generalisable to other grasslands, particularly
more xeric ecosystems. Despite this, disturbances (fire, grazing
or slashing) are being employed as a biomass reduction
management tool in many temperate grasslands, with little
understanding of the effects on biodiversity (especially at
large spatial scales) and often without a clear theoretical
underpinning for doing so.

We review the literature from lowland temperate grasslands
in southern Australia and use examples from other grasslands to
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Fig. 1. The univariate model developed from literature in grasslands in
southern Australia, in which rainfall is the main driver of biomass, and
biomass determines diversity which is mediated by disturbance. The problem
with this simple paradigm is that it misses both the multivariate and
mechanistic nature of the factors that determine biodiversity, as well as
their causal relationships.
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understand the mechanisms governing diversity and how they
may vary in space and time. In particular, we explore the
limitations of focusing on small-spatial scales and o diversity
for understanding the relationship between disturbance and
diversity (see section ‘The scales at which grasslands have
been studied limit generality about landscape patterns’), the
multivariate drivers of phytomass accumulation (see section
‘Phytomass accumulation is governed by multiple drivers;
disturbance is just one of them’), the importance of grassland
structure for plants and animals (see section ‘Grassland structure
— more than just biomass’), multivariate drivers of grassland
function (see section ‘The need to account for multivariate
drivers of grassland function’), and if disturbances are
substitutable (see section ‘Disturbances are not substitutable:
on the need to understand why disturbance affects function
differently’). We then identify key research questions that
must be addressed to advance the conservation management
of these endangered ecosystems (see section ‘Future research
directions’).

The scales at which grasslands have been studied limit
generality about landscape patterns

Most ecological research in Australian temperate grasslands has
been conducted at small spatial scales, limiting our ability to
understand relationships that occur at larger scales. As a result,
many management interventions are focussed on maximising
plant and animal diversity at the plot or (less typically) the site
scale. Yet, we know that average plant size increases with
biomass (Oksanen 1996), and fewer individuals can occur in
small plots at high biomass, even if there are no ecological
interactions. As aresult, species density (the number of species in
an area of fixed size) inevitably will decline with increasing time-
since-disturbance, even if species richness does not. The focus on
maximising small-scale plant richness (o diversity), typically by
promoting forb species over grass cover, has come at the expense
of understanding the complex, interacting drivers of diversity
(such as climate, species identity, disturbance, regeneration) of
this ecosystem across its range. Of the 21 published studies
reporting fire effects on temperate grassy ecosystems in Australia
between 1977 and 2017, all use plots <20 m? to describe
compositional, structural or functional response to fire (see
Supplementary Material table S1 available at the journal’s
website). Hence, an important and as yet unanswered question
is: do small plots adequately describe the effects of long-term fire
regimes on species persistence in temperate native grasslands in
southern Australia, or are these regime effects scale-dependent?

Similarly, the effects of grazing on grassland diversity have
predominantly been observed at small spatial scales
(0.01-400 m?), with the common conclusion being that
moderate grazing can promote species diversity at local scales
by negating competitive exclusion (Tremont 1994; Fensham
1998; MclIntyre and Martin 2001). However, grazing can
reduce plant species diversity at the landscape or regional
scale by removing grazing-sensitive species from the species
pool, or by favouring grazing-tolerant species (Lunt 1997q;
Landsberg et al. 2002; Dorrough et al. 2007; Schultz et al.
2016). Grassland management often aims to create a structure
that accommodates the highest diversity of species, but the
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landscape configuration that most effectively conserves the
highest proportion of the local species pool may include a
variety of grassland structures, some of which may be
relatively species poor (Schultz et al. 2016; Shahan et al.
2017; Abraham and Morgan 2018).

At larger spatial scales, species richness in less-frequently
disturbed temperate grasslands may be comparable to
frequently-disturbed grasslands due to within-community
habitat heterogeneity which can promote species coexistence
(Harper et al. 1965; Grace 1999). Environmental heterogeneity
occurs due to spatial variation in soil properties (Harrison et al.
2003; Lundholm and Larson 2003; Price ef al. 2017), animal
disturbance (Hobbs and Mooney 1985; Martin 2003),
topographic and edaphic factors (Fuhlendorf and Engle 2001)
and variable competitive interactions among plant species
(Aarssen 2001). Hence, frequent disturbance is perhaps only
necessary to maintain small-scale (e.g. 1-100 m?) richness in
productive grasslands, by allowing mechanisms such as species
packing to operate (Oksanen 1996). In tallgrass prairie, Collins
(1992) found that heterogeneity was significantly negatively
related to burning frequency, perhaps because nitrogen-
limitation is higher in frequently burned areas (Seastedt er al.
1991; Collins and Steinauer 1998). Collins (1992) also found a
significant positive relationship between heterogeneity and species
diversity and total species richness. Hence, if unburned grasslands
develop patchiness based on topography and edaphic factors, high
diversity might be permitted at larger scales despite dominance by
tussock grasses that constrain small-scale diversity. In Australia,
moderate to high disturbance is not consistently beneficial for plant
diversity; rather, diversity can depend on management history and
spatial heterogeneity (Prober et al. 2013).

Fauna-habitat relationships are also likely to be influenced by
spatial scale, but for most fauna that occur in grasslands, there is
little information on their habitat requirements. Globally, studies
of fauna—habitat relationships have also suffered from a lack of
acknowledgement of the effects of spatial scale on the observed
patterns (Levin 1992; Shahan et al. 2017).

Phytomass accumulation is governed by multiple drivers;
disturbance is just one of them

We argue that it is the accumulation of phytomass and the
arrangement of biomass (see section ‘Grassland structure —
more than just biomass’), not productivity per se, that
indirectly affects grassland diversity (Fig. 2). Data on
phytomass accumulation rates in temperate grasslands are
sparse (Morgan et al. 2017); this is perplexing given biomass
is thought to be a key driver of local species richness. Phytomass
in mesic Themeda-dominated grassland increases after fire
(Groves 1965; McDougall 1989); increases are linear because
annual leaf production of Themeda subsequently contributes to
accumulation of dead leaves that fail to decompose quickly (see
fig. 1 in Morgan and Lunt 1999). Phytomass of up to 4.6t ha ™'
has been recorded within 2 years of burning a Themeda grassland
in southern Australia (Morgan and Lunt 1999),and 2.5t ha™ ' has
been recorded within 2.5 years in subtropical 7hemeda grasslands
in north-western Australia (Bennett er al. 2003). At regional
scales, Schultz et al. (2011) found phytomass accumulation in
ungrazed grasslands varied from 28 to 944 g m 2, increasing with
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Fig.2. The multivariate and mechanistic nature of the factors that determine biodiversity, as well as their causal relationships, are outlined in our conceptual
model. Our model highlights the paucity of direct drivers of diversity (blue arrows). A key difference with the univariate model presented in Fig. 1 is the
lack of a direct link between biomass and diversity; rather this is mediated through the effects of accumulated biomass on resources and sward structure
which influences regeneration. We expect disturbance type to effect these responses and this is discussed in section ‘Disturbances are not substitutable: on

the need to understand why disturbance affects function differently’.

mean annual rainfall (independent of time-since-grazing
exclusion). In low rainfall grasslands (<500 mm annual
rainfall), rates of biomass accumulation were slow (Schultz
etal. 2011).

Most grass leaves have short lifespans, so accumulated
phytomass is mostly comprised of dead leaf material
produced in earlier years. Undisturbed Themeda grasslands in
mesic regions, for example, accumulated large quantities of dead
grass; 88-93% of phytomass in long unburnt (11-14 years)
Themeda and Themeda—Poa grasslands was dead material
(Morgan and Lunt 1999; Prober et al. 2007). Environmental
controls on litter decomposition are typically related to
differences in litter quality (e.g. N, C:N, lignin content) and
local climate (precipitation) (Brandt et al. 2010; Gaxiola and
Armesto 2015). These factors modulate the activity of microbes
and other decomposers. The effects of photodegradation (UV
radiation during rainless periods) also contributes to differences
in decomposition rates (Austin and Vivanco 2006).
Photodegradation is greater in arid than in mesic ecosystems,
and in litter that is more recalcitrant to microbial decomposition
(with high lignin concentrations) (Brandt ez al. 2010).

In subtropical and semiarid ecosystems, low biomass
accumulation might reflect high decomposition rates (Fensham
et al. 2017) or erratic production (e.g. tied to above-average

rainfall; Austin and Williams 1989). Importantly, phytomass
accumulation does not follow a linear function of time-since-
disturbance, i.e. it is decoupled from disturbance (Fensham et al.
2017). Lewis et al. (2008, 2010) found in arid (A4strebla)
grasslands, with a highly variable climate, that recent rainfall
events were far more important for sward density than
disturbance. In drier grasslands, litter accumulation is also
negligible over long periods; either it decays quickly or gets
blown away (Lewis et al. 2008; Morgan and Williams 2015). For
example, Conway (2000) found that litter cover declined from
over 50 to <10% in a single year during drought conditions in
northern Victoria. Thus, low levels of accumulated biomass in
semiarid grasslands probably reflect high decomposition rates as
well as low productivity.

Given that phytomass accumulation varies in different
grasslands, disturbance may only promote small-scale richness
in areas where phytomass accumulation is substantial. Indeed,
Schultz et al. (2011) found diversity in Victorian grasslands
declined when biomass was >500 g m 2. Disturbances are
thought to maintain richness in these high productivity sites
because the removal of the phytomass produced by the
dominant grass species frees up resources (light, space,
nutrients and moisture) for subordinate species to germinate,
grow or persist in the ecosystem (Fig. 2). Lunt and Morgan
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(2002) found light availability was reduced to less than 10%
beneath Themeda tussocks when phytomass exceeded 4 t ha '
This level of phytomass can accumulate within just 2—4 years after
burning (Morgan and Lunt 1999). Phytomass accumulation is also
influenced by disturbance history and species identity (Fig. 2). For
example, Prober ef al. (2013) found declines in richness with
increasing time-since-fire in sites with a recent history of tree
clearing and burning and with high biomass (>600 g m?), a
response that was not reported in uncleared sites without a recent
history of fire and with low biomass (314 g m2). These sites have
similar rainfall to mesic Themeda-dominated grasslands in
Victoria, which highlights the importance of considering
multiple drivers of phytomass accumulation (Fig. 2). Although
Themeda recovers rapidly after fire, other dominant grasses
require more time to return biomass to pre-disturbance levels
(Prober et al. 2007).

Given that we identify phytomass accumulation (and
decomposition) as a key indirect driver of species diversity in
grasslands (Fig. 2), it is crucial that data be obtained to test this
relationship. Additionally, we need studies from xeric sites
dominated by other species, as most studies in south-eastern
Australia are primarily from Themeda-dominated grasslands
(Stuwe and Parsons 1977; Lunt and Morgan 2002; Lunt et al.
2012), in which fast accumulation of phytomass smothers inter-
tussock species and reduces light availability. In particular,
uncoupling the effects of species identity and climate on
phytomass accumulation should be a priority. This can be
done experimentally (e.g. standardised decomposition rates
using teabag protocols, Didion et al. 2016) and by field
studies coupled with models (Grace 1999).

Grassland structure — more than just biomass

The horizontal and vertical arrangement of biomass — not just
the quantity of biomass — has profound effects on ecological
processes in grasslands, particularly as it affects light
interception, microclimate, plant—soil interactions, canopy gap
availability and animal behaviour (Baker-Gabb 1988; Lunt
1997b; Zehm et al. 2003; Baker-Gabb et al. 2016). Biomass
per se is a poor measure to capture the spatial (i.e. horizontal
and vertical arrangement), temporal and functional aspects of

(a) High biomass, closed sward
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grassland swards. Light penetration may vary according to a
combination of factors including phytomass, but also plant
architecture (Fig. 3). High biomass grasslands can provide
abundant gaps if the sward is open (Fig. 3b), whereas a closed
sward with high biomass is unlikely to provide safe sites for
recruitment (Fig. 3a). Conversely, low biomass (when
comprising a closed sward) may provide limited safe sites for
establishment (Fig. 3c¢). Currently, few examples exist that
document the variation in temperate grassland structure as a
function of climate variation (i.e. temporal rhythmicity) and
disturbance processes (but see Lunt 19975 for an exception).

Measures of grassland structure that include multiple
variables, such as grass height and cover (or grass volume,
Howland et al. 2014; Schultz et al. 2017), likely provide a
better estimate of the vegetation profile than biomass, and
might capture attributes of grass swards that plants and
animals respond to (e.g. habitat complexity, light availability).
There are other approaches for measuring grassland structure and
heterogeneity, including variance in biomass (Dorrough and Ash
1999), point quadrats to capture height and canopy distribution
(Lunt 1997b), the ‘golf ball method’ to provide an integrative
measure of vegetation density, height and heterogeneity (Schultz
et al. 2017), and horizontal photography to measure vertical
arrangement of vegetation (Zehm et al. 2003). Measuring the
amount of bare ground, cryptogamic crust, and soil cracks is also
important as these attributes affect seed germination of native
(Briggs and Morgan 2011) and exotic species (Morgan 2006),
provide important refuges for fauna (Hadden 1995; Bourke et al.
2017), and are responsive to management interventions (Morgan
2004; Wong and Morgan 2012). Indeed, it is likely that structure
(and its complexity and heterogeneity) may be a more important
driver of small-scale richness than biomass per se through
impacts on regeneration (Fig. 2).

We poorly understand the habitat preferences of most
grassland fauna, but structure (not biomass per se) is typically
invoked as a key attribute of grasslands that needs to be
manipulated to maximise selected faunal taxa (Supplementary
Material table S2). Habitat suitability for grassland birds is
directly related to the structural environment provided by the
dominant tussock grasses, with some species preferring short and

(b) High biomass, open sward

(c) Low biomass, closed sward

(d) Low biomass, open sward

Fig.3. Biomass poorly captures the spatial (i.e. horizontal and vertical arrangement) aspects of grassland swards. Here, we illustrate that (¢) high biomass in a
closed sward provides limited opportunities for seedling recruitment and animal movements, whereas (b) high biomass in an open sward may provide safe sites
for recruitment and faunal habitat use. Low biomass can provide safe sites for recruitment if the swards are open () but might not if closed (c).
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sparse grassland (Baker-Gabb et al. 2016) while others utilise
denser, closed swards (Antos and Williams 2015). Clearly, some
species are more abundant in closed than open swards e.g.
stubble quail (Coturnix pectoralis) and Richard’s pipit (Anthus
richardi) (Neave and Tanton 1989) — hinting that a ‘one size fits
all’ approach to biodiversity conservation has limited
application. At landscape-scales, a range of different sward
structures is required to maintain habitat for a range of different
species (Mclntyre 2005). Reptiles typically require a grass
canopy to avoid heat stress and predation (Howland et al.
2014), but also need a degree of canopy openness to permit
sufficient sunlight for metabolic function. Some reptiles,
however, are found across a range of grassland structures
and respond to other habitat elements. The abundance of the
hooded-scaly foot (Pygopus schraderi), for example, is
determined by the cover of cryptogams and the incidence of
spider holes and soil cracks (Brown and Scroggie 2012),
whereas the earless dragon (Tympanocryptis pinguicolla)
requires access to holes excavated by arthropods (Stevens
et al. 2010).

For many faunal species, the effects of grassland structure
may be mediated by indirect factors such as food resource
availability (i.e. invertebrates, seeds). King and Hutchinson
(1983) showed that the biomass and diversity of invertebrates
declined with increasing intensity of sheep grazing in the New
England Tablelands, and similar trends have been demonstrated
in grasslands elsewhere (Dennis et al. 1998; McCracken and
Tallowin 2004). Typically, there are fewer decomposers in a
grassland system when a greater proportion of the biomass is
removed (King and Hutchinson 1976), and the life cycle stages of
invertebrates are disrupted by biomass removal (McQuillan
1999). Ant composition, however, shows a different trend,
and is mostly determined by grassland structural complexity.
High ant diversity has been demonstrated across a range of
grassland habitats and conditions (New 2000), although ant
abundance is generally higher in heavily grazed, low-biomass
sites (Hutchinson and King 1980). Phytophagous species such as
the golden sun moth (Synemon plana) and morabine grasshopper
(Keyacris scurra) appear to respond more to the presence of
particular food plant species than to grassland structure
(O’Dwyer and Attiwill 1999; Griffith and Nano 2011; Richter
et al. 2013). While the abundance and diversity of invertebrates
in grasslands is assumed to influence grassland food webs, we do
not have a good understanding of how invertebrates influence
grassland ecosystem function (Abraham and Morgan 2018).

The need to account for multivariate drivers of grassland
function

Univariate drivers of diversity, such as those presented in the
simplified model (Fig. 1), underplay the complex processes that
affect biodiversity in grasslands (Grace 1999; Harpole et al.
2017). Biodiversity is invariably influenced by, and interacts
with, multiple drivers through both direct and indirect pathways.
To account for this complexity, models of ecological dynamics
need to be developed that incorporate these multivariate drivers
of diversity. We introduce a conceptual model of temperate
grassland dynamics that proposes the key multivariate drivers
that underpin diversity in grasslands (Fig. 2). Here, accumulated
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biomass governs the structure of grasslands and this, in turn,
affects diversity through its effects on resource availability.
Regeneration opportunities are influenced by species-specific
responses to disturbance regimes, resources and structure
(Fig. 2). We outline the key direct drivers of diversity in
temperate  grasslands —  disturbance, resources and
regeneration — in an effort to better understand how
grasslands vary ecologically across their range, and why
structure, function and diversity are more than outcomes of
the amount of biomass singularly.

Species identity

Despite four decades of research, we actually know very little
about most grassland species. Hence, our understanding of
grassland dynamics comes from a small subset of the species
pool. Grassland management has mostly focussed on the ecology
of the dominant grass (Themeda triandra), a limited number of
forbs from (mostly) the Asteraceae, and a suite of highly
threatened species, while the literature on land-use
intensification has identified those species sensitive to nutrient
addition and grazing (Vesk and Westoby 2001; Clarke 2003;
Dorrough et al. 2004). Plant functional traits have been used to
generalise responses to disturbance (e.g. McIntyre and Lavorel
1994) and management (Williams et al. 2006). For example,
Zeeman and Morgan (2018) found that grassland habitat
suitability varies with plant species and can be predicted by
traits affecting competition such as height. Native species that
increase in little disturbed grasslands (after being absent from
frequently disturbed grasslands) typically comprise tall, wind-
dispersed species, while those native species that decline are
often short, rosette forming species. Studies of faunal responses
are generally limited to charismatic threatened species such as
plains wanderer (Pedionomus torquatus), striped legless lizard
(Delma impar) and golden sun-moth (Synemon plana). Similarly,
little is known about the role of species identity in ecosystem
function (Abraham and Morgan 2018) and how the loss of rare
species affects ecosystem function (Mokany et al. 2008).

What is clear is that species respond differently to
disturbance, a point poorly articulated in the simplified model
(Fig. 1). Stuwe and Parsons (1977) showed that native grasslands
in grazed areas support a different suite of species, not just a
subset of those in ungrazed and burnt grasslands. For example,
Glycine latrobeana (Fabaceae) and Comesperma polygaloides
(Polygalaceae) are disadvantaged by frequent fire regimes, their
occurrence being favoured in unburnt and/or grazed areas
(Scarlett and Parsons 1982). There are also many examples of
grassland species that do well under anthropogenic disturbance
regimes (Kirkpatrick 2007). Lunt (1997a) coined this process
‘habitat segregation’ and found evidence for different species
complements in ungrazed, burnt railway verges compared with
grazed, unburnt forests. Hence, species responses to disturbance
are more nuanced than is depicted in the current simplified model
of grassland function. As a case in point, Sinclair ef al. (2014)
showed that long-unburnt C; grasses such as Austrostipa (spear
grasses) did not recover by vegetative resprouting after a summer
fire, despite the general temperate grassland literature suggesting
that grasses are resistant (via resprouting) to fire. Moore et al.
(2019) showed that temperate C, grasses had higher probabilities
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of surviving fire relative to Cs grasses, and that drought plays a
role in the ability of native grasses to vegetatively recover after
fire. This has implications for understanding the persistence of
species in landscapes where fire management is practiced.
Hence, models need to specify which species are advantaged
or disadvantaged by a given disturbance regime, and identify the
mechanisms that underpin such responses.

Regeneration opportunities

Itis commonly thought that fire promotes regeneration indirectly
— by removing biomass and providing gaps for recruitment —
rather than directly stimulating germination. As such, much of
the grassland literature has focussed on the importance of
biomass removal in promoting diversity (Fig. 1). However,
studies have mostly examined particular plant groups (mostly
Poaceae and Asteraceae, e.g. Morgan 1998¢; Clarke and French
2005) and few studies have directly explored the effect of fire-
cues on germination. Disturbances such as fire, grazing and
bioturbation can cause a myriad of changes in abiotic and
biotic conditions that can affect seedling recruitment. We
expect germination cues to be related to gap formation and
resource availability, or to fire-related cues such as heat or
smoke (Fig. 2). Hence, we require an understanding of the
factors that directly affect germination as a result of gap
formation e.g. nutrient changes, light intensity changes,
temperature changes, temperature during fire (dormancy
removal), soil changes (disturbance/compaction) and
cryptogram cover, and how the effects of these factors may
also vary with species identity.

Germination of some grassland forbs are promoted by fire-
cues (Vening et al. 2017; Hodges et al. 2019) and restoration
practitioners have also identified many difficult-to-germinate
species from grassy ecosystems, indicating seed dormancy
may be more prevalent than previously recognised. As such,
fire may directly promote germination or remove dormancy for
grassland species, as found in other fire-prone ecosystems (Bell
1999). Many herbaceous species have types of dormancy
(physiological or morphological) that often require a
combination of cues to remove dormancy and enable
germination (Merritt et al. 2007; Baskin and Baskin 2014).
Some species may only become responsive to fire-cues once
dormancy has been removed and may therefore require a
combination of dormancy removal and fire-cues to enable
germination (Ooi et al. 2006; Thompson and Ooi 2010; Long
et al. 2011). For example, Dianella revoluta had highest
germination when subject to warm stratification (dormancy
removal treatment) and smoke (fire-cues) in combination
(Hodges et al. 2019), and further investigations of such
treatments are required to determine if other grassland species
have a similar strategy. Determining the processes involved in
gap-driven germination is important for understanding the effect
of disturbance type and timing on seedling recruitment. For
example, if fire directly promotes seed germination, then fire
may promote diversity regardless of biomass accumulation and
this has implications for considering if disturbances are
substitutable (see section ‘Disturbances are not substitutable:
on the need to understand why disturbance affects function
differently’). Resource variation and the environmental
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conditions during seedling emergence and establishment are
also critical for recruitment success.

Below ground, whether species are able to form persistent soil
seed banks that survive the disturbance interval is relatively
unstudied, but vital for understanding recruitment potential after
different disturbance types. Seed persistence or longevity across
the diversity of species in grasslands is likely to have a much
greater range than the transient soil seed banks known for a select
few daisies and forbs (Lunt 1995), and requires further
investigation.

Resource variation

Temperate grasslands exist over a range of climates as a
consequence of their wide distribution across latitude,
distance to coast and altitude (Fig. 4). Importantly, grasslands
also differ in their seasonality of precipitation (uniform to
distinctly winter-dominated), frequency of drought (return
interval), and the severity of drought (duration) throughout
the range of climates that support temperate grasslands. As a
result, gradients in rainfall quantity and seasonality, as well as
temperature, drive turnover in plant species composition
(McDougall and Kirkpatrick 1993), and long-term ecological
dynamics as driven by exposure to different disturbance regimes
(Morgan et al. 2017).

Availability and use of water by plants is one of the dominant
forces influencing the phenology and productivity of
ecosystems, and deserves greater recognition in temperate
grasslands. Interannual variation in precipitation, for instance,
has been shown to be a strong determinant of yearly primary
productivity in Australian temperate grasslands (e.g. Groves
1965; McDougall 1989; Morgan et al. 2017) and elsewhere
(Knapp and Smith 2001). Year-dependent effects on primary
production are particularly important in Australian grasslands
because the El Nifio—Southern Oscillation cycles cause large
inter-annual variation in precipitation (Vines et al. 2004). This
introduces the potential for significant variation in the rates
of canopy recovery after disturbance, seedling recruitment
opportunities, as well as species coexistence processes.
Elsewhere, temporal variation in water availability influences
community composition in grasslands (Pitt and Heady 1978;
Hamilton ez al. 1999; Corbin et al. 2005) and herb-rich savanna
(Myers and Harms 2011).

Grassland productivity is also influenced by soil nutrients,
either singly or via co-limitation (Elser and Bracken 2007;
Harpole and Ngai 2011; Fay et al. 2015). Temperate
grasslands generally occur on fine-textured soils (Fensham
et al. 2015), but soil nutrients vary substantially as a function
of parent material and age. Temperate grasslands are mostly
associated with cracking clay vertisols derived from recent
deposits of basalt and alluvium, although in some regions,
such as the Monaro Tablelands, grasslands also occur on
clays derived from a greater range of parent rocks including
limestone, fine-grained sedimentary rocks and even granite
(Benson 1994). Such differences in soils likely play a role in
the rate at which competitive exclusion occurs. Multiple nutrient
limitations have also been shown to structure plant diversity and
composition in grasslands, independently of changes in light and
biomass (Harpole et al. 2017). Indeed, in the global NutNet
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Fig. 4. The extent of temperate grasslands in south-eastern Australia in
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rainfall and temperature layers were produced by averaging the Bureau of
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experiment examining drivers of plant diversity in grasslands
(which includes temperate grasslands from south-east Australia;
Morgan et al. 2016), many sites showed no significant increase in
biomass with nutrient addition, yet lost diversity when nutrients
were added (Harpole er al. 2017). Hence, although light
limitation can be an important contributor to diversity loss in
grasslands, it is notalways a causal mechanism. Additionally, the
magnitude of the nutrient addition effect in grasslands increases
with increasing plant available water, i.e. nutrient addition
interacts positively with growing season precipitation (Prober
and Wiehl 2012; Dwyer et al. 2015). A robust assessment of the
extent to which water and nutrient availability limit productivity
in Australian temperate grasslands under present climatic
conditions is needed. Variation in rainfall and soil nutrients in
time and space, likely modifies species’ responses to disturbance
and competitive exclusion and it can be predicted that patterns of
diversity will respond in non-linear ways to these key drivers;
hence the need for their inclusion in updated models of grassland
function (Fig. 2).

Disturbances are not substitutable: on the need to
understand why disturbance affects function differently

The ‘state’ of a grassland (e.g. species composition, degree of
invasion by exotic species, life form representation) has typically
been regarded as a function of its long-term management history,
i.e. its disturbance regime (Stuwe and Parsons 1977; Lunt 19974;
Mclntyre and Lavorel 2007). Based on this, the literature often
recommends maintaining the status quo inrelation to disturbance
regimes to manage grasslands (Fig. 1; Ross 1999; Wong and
Morgan 2007). This is based on the idea that maintenance of the
processes that gave rise to the patterns of diversity is viewed as
the best way of maintaining those patterns. For example,
cessation of fire results in local extinction of native forbs from
temperate grasslands that previously had a history of frequent fire
(Williams et al. 2006; Zeeman et al. 2017). Maintaining the
status quo, however, may no longer be an option with global
climate change (Harris et al. 2015).

Little is known about whether different disturbance types are
substitutable, i.e. moving beyond the status quo. Disturbance, as
defined by Grime (1977), is any event that removes biomass, but
disturbance type can have fundamentally different outcomes on
vegetation; grazing is selective, fire consumes all biomass, and
slashing generally leaves litter on the ground. This will have
impacts on the post-disturbance ecosystem that is created, with
consequent effects on the biota that utilise grassland habitat. Such
changes are already occurring as land management practices
change with rural population decline (Williams 2007),
urbanisation (Williams et al. 2006; Zeeman et al. 2017) and
conservation covenanting (Wong and Morgan 2012). Changing
long-term regimes might lead to instability in the system (in the

Meteorology’s annual rainfall and temperature grids for 2001 to 2015 in
ESRI’s Arcmap ver. 10.5. The NPP (net primary productivity) layer was
produced by averaging the annual net primary productivity grids produced
by NASA (reference https://neo.sci.gsfc.nasa.gov/view.php?datasetld=
MODI17A2_M_PSN, accessed 31 August 2018) 2001 to 2015 in ESRI’s
Arcmap. The grids were clipped to the grassland study regions as defined by
the grassland layers supplied by D. Keith (from Morgan et al. 2017). The
layers were then symbolised.
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short term), but to improved conservation outcomes because it
ultimately favours more species (at landscape scales). Legacy
effects will influence the response of grasslands to new
disturbances. Species identity is likely to be an important
determinant of how grasslands respond to different types of
disturbances (Kirkpatrick et al. 2005). For example, high
mortality has been observed in C; tussock grasses when
reinstating fire into a long unburnt site (Sinclair ez al. 2014),
and C,4 grasses are more resilient to burning than C; grasses
(McDougall 1989; Moore et al. 2019). Additionally, two types of
disturbances applied concurrently can have different impacts
than a single disturbance type. For example, fire and grazing
can benefit the striped legless lizard but concurrent application of
both disturbances may trigger population collapse (Scroggie
et al. 2019).

Fire is a ‘pulse’ disturbance (Bender ef al. 1984), typically
destroying all plant material in arelatively homogenous way, but
it can vary in intensity both spatially and temporally (Morgan
1999). The effects of fire and fire regimes on grasslands are
generally well described, particularly for plants (Lunt and
Morgan 2002; Morgan et al. 2017). For invertebrate species,
abundance and richness are reduced after fire, but can recover
relatively quickly to pre-fire levels (Greenslade 1997; Abraham
and Morgan 2018). Among vertebrates, reptiles can suffer
elevated mortality from fire, with mortality influenced by
the season of burning (Griffiths and Christian 1996) and
burrow use (Fenner and Bull 2007). Marsupials like fat-
tailed dunnarts aim to evade fire; they can arouse from
torpor when they detect smoke, increasing their likelihood
of evading an approaching fire (Stawski et al. 2015; Nimmo
et al. 2019), suggesting that the presence of unburnt refuges,
and the speed of an approaching fire front may influence
mortality. For soil fungal communities, fungal diversity and
composition were influenced by fire regime (long-term fire
frequency), but not time-since-fire (Egidi et al. 2016). It is
clear that removing fire has negative effects for many species
(Williams et al. 2006; Zeeman et al. 2017), but there has been
little quantification of (1) the time that grasslands can remain
unburned before irreversible declines in diversity occur, and
(2) how substituting other disturbances in place of fire may
mitigate such declines.

Livestock grazing can reduce vegetation cover, with
substantial reductions persistent over time in many areas (i.e.
a ‘press’ disturbance sensu Bender et al. 1984). Grazing is used as
a management tool because it can maintain species richness (at
high numbers in small quadrats)—based on the idea that
competitive exclusion reduces small scale diversity (Fig. 1).
Although o diversity is high, B diversity across the landscape
may be low when grazed (Schultz et al. 2016) and fire-cued
recruitment opportunities will be lost. Conservation managers
are loathe to remove stock from native grasslands because they
are acutely aware that destocking might lead to declines in o
diversity. This fails to recognise that destocking might lead to
increases in [ diversity if it promotes heterogeneity via microsite
differentiation. So far, the evidence for effects of changing
disturbance — such as moving from a grazing to fire regime,
abandonment, or altering the status quo grazing regime — is
mixed, with positive, neutral and negative impacts on plant,
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invertebrate and bird diversity observed (Hadden 1995;
Kirkpatrick et al. 2005; Zimmer et al. 2010; Wong and
Morgan 2012). If a grassland has a long history of grazing, it
is likely that grazing-sensitive plant species have been lost
from the system (Price et al. 2010). Hence, reinstating fire or
grazing removal is unlikely to recover those species without
further management interventions such as seed addition and
could lead to loss of species that require some disturbance
(Kirkpatrick et al. 2005; Johnson et al. 2018; Zamin et al.
2018). Little is known about the effects of native marsupial
grazing on Australian temperate grasslands; a few studies have
explored impacts of over abundant native animals, and high
selectivity has been observed (Leonard et al. 2010).

In general, mowing promotes greater native richness than
grazing (Verrier and Kirkpatrick 2005), but reduced richness
compared with fire (Prober et al. 2013). Slashing is
comparatively a fairly homogenous disturbance, particularly if
applied frequently, as it generally encourages low-biomass,
closed grassland structure (Prober er al. 2008; Fig. 3c).
Mowing can result in aggregated litter which can have
negative consequences unless slash is removed (Verrier and
Kirkpatrick 2005; Morgan 2015). Slashing is generally
viewed as unfavourable in temperate grasslands (Kirkpatrick
1986), particularly for taller species, but Smith ez al. (2018) show
that annual mowing can have positive influences on plant
diversity, and may promote structural heterogeneity when
applied patchily, and can also favour some rare species
(Gilfedder and Kirkpatrick 1997). Mowing increased cover of
native species (including some rare or threatened species) and
reduced exotic grass cover compared with grazing in Tasmania
(Verrier and Kirkpatrick 2005). In degraded grasslands in the
ACT, tussock thinning and litter removal favoured native
forbs, but only when seeds were added (Johnson et al.
2018). Positive effects of slashing at small spatial scales
(oo diversity), might not translate to larger scales
(B diversity) (Smith et al. 2018).

Bioturbation is another disturbance type that has been
understudied, particularly in the context of Australian
temperate grasslands. Burrowing mammals are recognised
globally as ecosystem engineers in grasslands, increasing
biodiversity and habitat heterogeneity (Davidson et al. 2012).
In Australian ecosystems, the ecological roles of digging animals
are best understood in semiarid and arid ecosystems, where
digging by burrowing bettongs (Bettongia lesueur) can
suppress shrubs and increase the cover and diversity of
perennial grasses by altering soil characteristics, trapping litter
and water, and enhancing seed germination (Noble et al. 2007;
Eldridge and James 2009). In Australia’s temperate grasslands,
bioturbation by digging animals such as eastern-barred
bandicoots (Perameles gunnii) could perform similar or other
ecological roles, but such animals have been lost from temperate
grasslands (Dufty 1994; Reading et al. 1996). A recent study
highlights the potential for bettongs (Bettongia gaimardi) to
enhance soil processes in degraded temperate woodlands (Munro
et al. 2019). We predict that digging might provide a relatively
low-intensity disturbance that could have ecological benefits in
the more xeric temperate grasslands that do not require frequent
disturbance.
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Future research directions

Despite four decades of research in temperate grasslands, much
remains unknown about the multivariate drivers of animal and
plant diversity as outlined in Fig. 2. Using this model as a starting
point for future research, we believe there are five key questions
that need to be urgently addressed.

1. What are the rates, and drivers, of phytomass accumulation
in different grasslands?

Rates of phytomass accumulation across the range of
temperate grasslands are likely to be influenced by climate,
dominant grass species identity, and decomposition.
Understanding how these processes vary in space and time
would allow us to predict phytomass accumulation in a
given location enabling better prediction of the disturbance
requirements for promoting diversity, and hence more tailored
management decisions.

2. Under what conditions is disturbance required for
recruitment?

More research is required on seed persistence, dormancy and
germination cues for many grassland plant species. From a
management perspective, identifying responses to fire-cues for
many component species is required to determine if fire per se is
required to promote diversity, or simply the removal of biomass.
We also need to explore the ability of species to form persistent
soil seed banks and the effect of other disturbance types on
seedling regeneration, e.g. soil disturbance, animal diggings.

3. What are the impacts of changing from long implemented
management regimes (status quo) to alternative disturbance
regimes?

Little is known about whether a switch from one long-term
management regime (the status quo) to another management
regime (e.g. fire to grazing and vice versa) has positive, negative
or neutral outcomes for diversity. Responses of plants and
animals will depend on land-use legacies and if sites are
stable under the current management regime.

4. Do small plots adequately describe the effects of long-term
disturbance regimes on species persistence?

We require a better understanding of the drivers of B and
gamma diversity in grasslands, as well as the drivers of spatial
and temporal variation in composition. There is almost no data to
address these questions, both of which logically flow to
landscape-scale conservation planning.

5. How does disturbance influence faunal assemblages and
habitat?

More research is needed on the effect of disturbance on habitat
provision and food resources for most grassland fauna. In
particular, we need to understand the relationship between
faunal diversity and grassland structure, and how habitat
diversity and disturbances might affect different faunal food webs.
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