Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
REVIEW

Guttation: path, principles and functions

Sanjay Singh
+ Author Affiliations
- Author Affiliations

School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Haramaya, Ethiopia. Email: sanju_bsi@yahoo.co.in

Australian Journal of Botany 61(7) 497-515 https://doi.org/10.1071/BT12308
Submitted: 3 August 2013  Accepted: 30 October 2013   Published: 11 February 2014

Abstract

Guttation is a process of natural secretion of fluid from leaves via specialised structures called ‘hydathodes’, which are located at the tips, margins, and adaxial and abaxial surfaces of leaves. Hydathodes form natural openings but, unlike stomata, are open permanently and offer little resistance to the flow of fluid out of leaves. Each hydathode is formed of colourless cells, and appears as stomata-like pores in the epidermis or epithem, also known as ‘transfer tissue’. The cells of epithem are soft and made of loosely arranged thin-walled parenchyma cells and without chloroplast, and are involved in absorption and secretion. Internally, they are connected by tracheary endings to a large chamber with masses of thin-walled parenchymatous tissue surrounded by a sheath layer. Ultrastructurally, the epithem cells have a dense cytoplasm, numerous mitochondria, an extensive endoplasmic reticulum system, many small Golgi-derived vesicles, numerous peroxisomes, and are interconnected by abundant plasmodesmata. Functionally, there are two types of hydathodes, namely, epidermal ones that actively exude fluid, and epithemal hydathodes that passively exude fluid. Natural guttation is often observed during early morning or late hours of the day. However, it can also be induced as desired in intact or excised plants under pneumatic pressure. Earlier notions regarding harmful effects on plants of guttation have now been addressed by botanical and physiological research discoveries regarding the basic and practical utility of guttation. This knowledge could lead to new health care applications on the one hand and ease global food-security concerns on the other.

Additional keywords: biopharmaceuticals, epithem, hormones, hydathode, root pressure, secretion, ultrastructure.


References

Adler CL, Lock JA, Fleet RW (2008) Rainbows in the grass. II. arbitrary diagonal incidence. Applied Optics 47, 214–219.
Rainbows in the grass. II. arbitrary diagonal incidence.Crossref | GoogleScholarGoogle Scholar |

Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano-scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant & Cell Physiology 49, 767–790.
Nano-scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFWns7k%3D&md5=e4c827c5cf83e896afb2e09950fb0fbbCAS |

Anonymous (2009) Guttation water of no relevance for agricultural practice as a route of exposure to pesticide residues. Press release, Bayer Crop Science, 16 February, Monheim, Germany. Available at www.bayercropscience.com [Verified October 2011]

Baba I (1957) Studies on the nutrition of the rice plant with special reference to nitrogen and silica: IV. On silica in the exudation and guttation sap. Nihon Sakumotsu Gakkai Kiji 25, 139–140.
Studies on the nutrition of the rice plant with special reference to nitrogen and silica: IV. On silica in the exudation and guttation sap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXmvFWgsg%3D%3D&md5=06bacc840a8f1708c83319e7f66b2edfCAS |

Bald JG (1952) Stomatal droplets and the penetration of leaves by plant pathogens. American Journal of Botany 39, 97–99.
Stomatal droplets and the penetration of leaves by plant pathogens.Crossref | GoogleScholarGoogle Scholar |

Baluska F (2010) Recent surprising similarities between plant cells and neurons. Plant Signaling & Behavior 5, 87–89.

Baluska F, Mancuso S (2009) ‘Signalling in plants.’ (Springer: Berlin)

Barrs HD (1966) Root pressure and leaf water potential. Science 152, 1266–1268.
Root pressure and leaf water potential.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvgsVOrsQ%3D%3D&md5=862e6062c782a699f4ee95f26364a81eCAS | 17769543PubMed |

Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba YY, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nature Biotechnology 17, 466–469.
Production of recombinant proteins in plant root exudates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFWqu7g%3D&md5=fb3e9f2815aa9c367c4bce591499ab1aCAS | 10331806PubMed |

Brandl MT, Amundson R (2008) Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica. Applied and Environmental Microbiology 74, 2298–2306.
Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157:H7 and Salmonella enterica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOhsrc%3D&md5=52630b89ffe21ffed67f3fa35fbed2f9CAS | 18310433PubMed |

Brodribb TJ, Holbrook NM (2006) Declining hydrolic efficiency as transpiring leaves desiccate: two types of response. Plant, Cell & Environment 29, 2205–2215.
Declining hydrolic efficiency as transpiring leaves desiccate: two types of response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVaitA%3D%3D&md5=1ceda334e9ca129f50e29d87c83f1ff9CAS |

Burgerstein A (1887) Materialien zu einer monographie betreffend die erscheinungen der transpiration der pflanzen. Zool-bot Ges Wien 37, 691–782.

Burgerstein A (1920) ‘Die Transpiration der Pflanzen. Vol. II.’ (Gustav Fischer: Jena, Germany)

Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D.Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment 27, 1023–1034.
The contribution of fog to the water relations of Sequoia sempervirens (D.Don): foliar uptake and prevention of dehydration.Crossref | GoogleScholarGoogle Scholar |

Bürkle I, Cedzich A, Dopke C, Stransky H, Okumoto S, Gillissen B, Kuhn C, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. The Plant Journal 34, 13–26.
Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Carlton WM, Braun EJ, Gleason ML (1998) Ingress of Clavibacter michiganensis subsp. Michiganensis into tomato leaves through hydathodes. Phytopathology 88, 525–529.
Ingress of Clavibacter michiganensis subsp. Michiganensis into tomato leaves through hydathodes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjjvVajsw%3D%3D&md5=c84ba6cbc76d27a5c15f0f702ada108cCAS | 18944904PubMed |

Chen C-C, Chen Y-R (2005) Study on laminar hydathodes of Ficus formosana (Moraceae) I. Morphology and ultrastructure. Botanical Bulletin of Academia Sinica 46, 205–215.

Chen C-C, Chen Y-R (2006) Study on laminar hydathodes of Ficus formosana (Moraceae) II. Morphogenesis of hydathodes. Botanical Studies (Taipei, Taiwan) 47, 279–292.

Chen C-C, Chen Y-R (2007) Study on laminar hydathodes of Ficus formosana (Moraceae) III. Salt injury of guttation on hydathodes. Botanical Studies (Taipei, Taiwan) 48, 215–226.

Curtis LC (1943) Deleterious effects of guttated fluids on foliage. American Journal of Botany 30, 778–781.
Deleterious effects of guttated fluids on foliage.Crossref | GoogleScholarGoogle Scholar |

Curtis LC (1944a) The exudation of glutamine from lawn grass. Plant Physiology 19, 1–5.
The exudation of glutamine from lawn grass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2MXitlynsQ%3D%3D&md5=c2f5276accba591639484d423e9148f1CAS | 16653891PubMed |

Curtis LC (1944b) The influence of guttation fluid on pesticides. Phytopathology 34, 196–205.

Dalbro S (1955) Leaching of apple foliage by rain. In ‘14th international horticultural congress’. pp. 770–778. Scheveningen, Holland.

Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in Plant Science 7, 84–91.
Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFyku7s%3D&md5=f46b86fdb1c5839b5c059a0198ec6d28CAS | 11832280PubMed |

Dieffenbach H, Kramer D, Lüttge U (1980a) Release of guttation fluid from passive hydathodes of intact barley plants. I. Structural and cytological aspects. Annals of Botany 45, 397–401.

Dieffenbach H, Lüttge U, Pitman MG (1980b) Release of guttation fluid from passive hydathodes of intact barley plants. II. The effects of abscisic acid and cytokinins. Annals of Botany 45, 703–712.

Drake PMW, Chargelegue DM, Vine ND, van Dolleweerd CJ, Obregon P, Ma JK (2003) Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Molecular Biology 52, 233–241.
Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFSnurk%3D&md5=2350dab0ad77dfb2b0959fbcf8ad320cCAS |

Drake PMW, Barbi T, Sexton A, McGowan E, Stadlmann J, Navarre C, Paul MJ, Ma JKC (2009) Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. The FASEB Journal 23, 3581–3589.
Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gjtb7O&md5=d326b64821e486075d5b7942e00bd536CAS |

Drennan PM, Goldsworthy D, Buswell A (2009) Marginal and laminar hydathode-like structures in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. Flora – Morphology, Distribution, Functional Ecology of Plants 204, 210–219.
Marginal and laminar hydathode-like structures in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw.Crossref | GoogleScholarGoogle Scholar |

Eaton FM (1943) The osmotic and vitalistic interpretations of exudation. American Journal of Botany 30, 663–674.
The osmotic and vitalistic interpretations of exudation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2cXmslGq&md5=8f3e5f43b60db1842580f3a56944884fCAS |

Emberger G (2008) Fungi growing on wood. Available at www.messiah.edu/Oakes/fungi_on_wood/poroid fungi/species pages/Polyporussquamosus. [Verified October 2011]

Esau K (2006) ‘Anatomy of seed plants.’ (John Wiley and Sons: Hoboken, NJ)

Fahn A (1979) ‘Secretory tissues in plants.’ (Academic Press: London)

Fahn A (1988) Secretory tissues in vascular plants. New Phytologist 108, 229–257.
Secretory tissues in vascular plants.Crossref | GoogleScholarGoogle Scholar |

Fahn A (2000) Structure and function of secretory cells. Advances in Botanical Research 31, 37–75.
Structure and function of secretory cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFKgsLw%3D&md5=bd4e1ca6491366e89670d409091d02ebCAS |

Feild TS, Arens NC (2007) The ecophysiology of early angiosperms. Plant, Cell & Environment 30, 291–309.
The ecophysiology of early angiosperms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlemu70%3D&md5=ff4514bb5d5363177e8fe6ee7b948d6aCAS |

Feild TS, Arens NC, Dawson TE (2003) The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. International Journal of Plant Sciences 164, 129–142.
The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages.Crossref | GoogleScholarGoogle Scholar |

Feild TS, Sage TL, Czerniak C, Iles WJD (2005) Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll. Plant, Cell & Environment 28, 1179–1190.
Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyll.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltrfJ&md5=4b0d1b23ffa2d8c25c188a4e1a0a221dCAS |

Fischer R, Schillberg S (2004) ‘Molecular farming: plant-made pharmaceuticals and technical proteins.’ (John Wiley and Sons: Hoboken, NJ)

Fletcher AT, Mader JC (2007) Hormone profiling by LC–QToF–MS/MS in dormant Macadamia integrifolia: correlations with abnormal vertical growth. Plant Growth Regulation 26, 351–361.
Hormone profiling by LC–QToF–MS/MS in dormant Macadamia integrifolia: correlations with abnormal vertical growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyit7jL&md5=ae32aedfc78364e0dfbc2d49286d9bd4CAS |

French CJ, Elder M (1999) Virus particles in guttate and xylem of infected cucumber (Cucumis sativus L.). Annals of Applied Biology 134, 81–87.
Virus particles in guttate and xylem of infected cucumber (Cucumis sativus L.).Crossref | GoogleScholarGoogle Scholar |

French CJ, Elder M, Skelton F (1993) Recovering and identifying infectious plant viruses in guttation fluid. HortScience 28, 746–747.

Frey-Wyssling A (1941) Die Guttation als aligemeine Erscheinung. Berichte Der Schweizerischen Botanischen Gesellschaft 51, 321–325.

Fukui R, Fukui H, Alvarez AM (1999) Suppression of bacterial blight by a bacterial community isolated from the guttation fluids of anthuriums. Applied and Environmental Microbiology 65, 1020–1028.

Gareis M, Gareis E (2007) Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins Ochratoxin A and B. Journal of Mycopathologia 163, 207–214.
Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins Ochratoxin A and B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlSmt7g%3D&md5=01531670db3d47c35eb03d11c7f0d816CAS |

Gaumann E (1938) Uber die experimentelle Auslosung der Guttation. Berichte der Deutschen Botanischen Gesellschaft 56, 396–405.

Gay PA, Tuzun S (2000) Involvement of a novel peroxidase isozyme and lignification in hydathodes in resistance to black rot disease in cabbage. Canadian Journal of Botany 78, 1144–1149.
Involvement of a novel peroxidase isozyme and lignification in hydathodes in resistance to black rot disease in cabbage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos12jsbo%3D&md5=fbffc5d0b3bccf13c5c52aa4b0cf6528CAS |

Georgiou CD, Patsoukis N, Papapostolou I, Zervoudakis G (2006) Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology 46, 691–712.
Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlent7zP&md5=c3e6806e33bc9ba03e0802af817a6848CAS | 21672779PubMed |

Goatley JL, Lewis RW (1966) Composition of guttation fluid from rye, wheat, and barley seedlings. Plant Physiology 41, 373–375.
Composition of guttation fluid from rye, wheat, and barley seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktVGntbo%3D&md5=936a0b8b1f411f9a847c4d2684199cf4CAS | 16656266PubMed |

Gordon-Kamm WJ, Steponkus PL (1984) The behaviour of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury. Protoplasma 123, 83–94.
The behaviour of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury.Crossref | GoogleScholarGoogle Scholar |

Grunwald I, Rupprecht I, Schuster G, Kloppstech K (2003) Identification of guttation fluid proteins: the presence of pathogenesis-related proteins in non-infected barley plants. Physiologia Plantarum 119, 192–202.
Identification of guttation fluid proteins: the presence of pathogenesis-related proteins in non-infected barley plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVyhsbs%3D&md5=6f5d78eab18b343fd440bc7fc6ed7f3eCAS |

Haberlandt G (1914) ‘Physiological plant anatomy.’ [English translation.] (Macmillan: London)

Harris RI (1999) Guttation – the basis of an assay for evaluating formulation behaviour in vivo. Pesticide Science 55, 582–584.
Guttation – the basis of an assay for evaluating formulation behaviour in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1yqsr0%3D&md5=9428b6f16c7ed056d767f243dd075c5eCAS |

Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging (MRI). Plant Physiology 126, 27–31.
In vivo observation of cavitation and embolism repair using magnetic resonance imaging (MRI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslWjs7s%3D&md5=9a25f7fc9f14579e401c42bc11d607acCAS | 11351066PubMed |

Hone K, Vollenweider G (1960) Beziehungen zwischen Transpiration, Guttation und Wachstum bei Avena sativa. Beiträge zur Biologie der Pflanzen 35, 41–53.

Hughes RN, Brimblecombe P (1994) Dew and guttation formation and environmental significance: agricultural and forest meteorology. Agricultural Meteorology 67, 173–190.
Dew and guttation formation and environmental significance: agricultural and forest meteorology.Crossref | GoogleScholarGoogle Scholar |

Hutwimmer S, Wang H, Strasser H, Burgstaller W (2010) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia 102, 1–10.
Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitF2nsb0%3D&md5=d344e8376eb0fc491c2c734385ebcf60CAS | 20120222PubMed |

Ivanoff SS (1941) Chemical deposits on foliage of citrus and other plants and their possible relation to chlorosis and yield. Texas Agric. Exp Sta, Fifty-fourth Annual Report, pp. 181–182.

Ivanoff SS (1963) Guttation injuries of plants. Botanical Review 29, 202–229.

Jaradat TT, Allen RD (1999) Isolation of a novel cDNA encoding an auxin-induced basic helix–loop–helix transcription factor (accession no. AF 165924) from cotton (Gossypium hirsutum L.). Plant Physiology 121, 685–686.

Jennings DH (1991) The role of droplets in helping to maintain a constant growth rate of aerial hyphae. Mycological Research 95, 883–884.
The role of droplets in helping to maintain a constant growth rate of aerial hyphae.Crossref | GoogleScholarGoogle Scholar |

Kang MS (2007) ‘Agricultural and environmental sustainability: considerations for the future.’ (Haworth Food and Agricultural Products Press: Binghampton, NY)

Kerstetter RE, Zepp RG, Carreira LH (1998) Peroxidases in grass dew derived from guttation: possible role in polymerization of soil organic matter. Biogeochemistry 42, 311–323.
Peroxidases in grass dew derived from guttation: possible role in polymerization of soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVOrsLg%3D&md5=7f5361f21a1455f100b98040e977113dCAS |

Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology 59, 1–6.
What it will take to feed 5.0 billion rice consumers in 2030.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2ksbbM&md5=936ac6aaa05d8494803e0ceb317e61d9CAS | 16217597PubMed |

Klepper B, Kaufmann MR (1966) Removal of salt from xylem sap by leaves and stems of guttating plants. Plant Physiology 41, 1743–1747.
Removal of salt from xylem sap by leaves and stems of guttating plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXmt1KksQ%3D%3D&md5=5eab491012d38462730a3edf1b419b1dCAS | 16656467PubMed |

Koegel-Knaber I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matters. Soil Biology & Biochemistry 34, 139–162.
The macromolecular organic composition of plant and microbial residues as inputs to soil organic matters.Crossref | GoogleScholarGoogle Scholar |

Komarnytsky S, Borisjuk NV, Borisjuk LG, Alam MZ, Raskin I (2000) Production of recombinant proteins in tobacco guttation fluid. Plant Physiology 124, 927–934.
Production of recombinant proteins in tobacco guttation fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlWrur4%3D&md5=a995956f7955f38a40db2fdbf84bec21CAS | 11080270PubMed |

Komarnytsky S, Gaume A, Garvey A, Borisjuk N, Raskin I (2004) A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots. Plant Cell Reports 22, 765–773.
A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1ykurk%3D&md5=b2f73ba302d9282d02686ad63a0cce01CAS | 14770265PubMed |

Komarnytsky S, Borisjuk N, Yakoby N, Garvey A, Raskin I (2006) Co-secretion of protease inhibitor stabilizes antibodies produced by plant roots. Plant Physiology 141, 1185–1193.
Co-secretion of protease inhibitor stabilizes antibodies produced by plant roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKisb0%3D&md5=048e3b3a1779cd1df5793ea1278bd153CAS | 16896231PubMed |

Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stress-induced actin filament reorganisaton in leaf cells of Chlorophyton comosum. Journal of Experimental Botany 53, 1699–1710.
Hyperosmotic stress-induced actin filament reorganisaton in leaf cells of Chlorophyton comosum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt12nsL4%3D&md5=5bda0b76c1b6908a2e7938ccef35aed9CAS | 12147720PubMed |

Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68, 355–360.
Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlGmug%3D%3D&md5=f90cf90812111ad04cf73068cf899eb1CAS | 17126863PubMed |

Kramer PJ, Boyer JS (1995) ‘Water relations of plants and soils.’ (Academic Press: San Diego, CA)

Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Churchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. Journal of Natural Products 70, 1919–1924.
Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKru7bO&md5=a6348352c5775c34a936878b20b83ca7CAS | 18044842PubMed |

Lepeschkin WW (1923) Uber active und passive Wasserdrusen und Wasserspalten. Berichte der Deutschen Botanischen Gesellschaft 41, 298–300.

Lersten LR, Curtis JD (1982) Hydathodes in Physocarpus (Rosaceae: Spiraeoideae). Canadian Journal of Botany 60, 850–855.
Hydathodes in Physocarpus (Rosaceae: Spiraeoideae).Crossref | GoogleScholarGoogle Scholar |

Lersten LR, Curtis JD (1985) Distribution and anatomy of hydathodes in Asteraceae. Botanical Gazette 146, 106–114.
Distribution and anatomy of hydathodes in Asteraceae.Crossref | GoogleScholarGoogle Scholar |

Lersten LR, Curtis JD (1991) Laminar hydathodes in Urticaceae: survey of tribes and anatomical observation on Pilea pumila and Urtica dioica. Plant Systematics and Evolution 176, 179–203.
Laminar hydathodes in Urticaceae: survey of tribes and anatomical observation on Pilea pumila and Urtica dioica.Crossref | GoogleScholarGoogle Scholar |

Levin DA (1973) The role of trichomes in plant defense. The Quarterly Review of Biology 48, 3–15.
The role of trichomes in plant defense.Crossref | GoogleScholarGoogle Scholar |

Lewis RW (1962) Guttation fluid: effects on growth of Claviceps purpurea in vitro. Science 138, 690–691.
Guttation fluid: effects on growth of Claviceps purpurea in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvltlWmtA%3D%3D&md5=11ad59f78a5e55b2cba2cc5d535dd015CAS | 17829704PubMed |

Lock JA, Adler CL, Fleet RW (2008) Rainbows in the grass. I. External-reflection rainbows from pendant droplets. Applied Optics 47, 203–213.
Rainbows in the grass. I. External-reflection rainbows from pendant droplets.Crossref | GoogleScholarGoogle Scholar |

Logvenkov SA (1993a) On the guttation mechanism in plants. Biophysics 38, 865–869.

Logvenkov SA (1993b) The guttation mechanism in plants. Biophysics 38, 889–894.

Long WC, Sweet DV, Turkey HB (1956) Loss of nutrients from plant foliage by leaching as indicated by radioisotopes. Science 123, 1039–1040.
Loss of nutrients from plant foliage by leaching as indicated by radioisotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XotlWruw%3D%3D&md5=d71d3d11ff81608cb9f254774b2b5a8fCAS |

Luo W, Goudriaan J (2000) Dew formation on rice under varying durations of nocturnal radiative loss. Agricultural and Forest Meteorology 104, 303–313.
Dew formation on rice under varying durations of nocturnal radiative loss.Crossref | GoogleScholarGoogle Scholar |

Maeda E, Maeda K (1987) Ultrastructural studies of leaf hydathodes. I. Wheat (Triticum aestivum) leaf tips. Nihon Sakumotsu Gakkai Kiji 56, 641–651.
Ultrastructural studies of leaf hydathodes. I. Wheat (Triticum aestivum) leaf tips.Crossref | GoogleScholarGoogle Scholar |

Maeda E, Maeda K (1988) Ultrastructural studies of leaf hydathodes II. Rice (Oryza sativa) leaf tips. Nihon Sakumotsu Gakkai Kiji 57, 733–742.
Ultrastructural studies of leaf hydathodes II. Rice (Oryza sativa) leaf tips.Crossref | GoogleScholarGoogle Scholar |

Magwa ML, Lindner WA, Brand JM (1993) Guttation fluid peroxidases from Helianthus annuus. Phytochemistry 32, 251–253.
Guttation fluid peroxidases from Helianthus annuus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtF2ms7g%3D&md5=db9d394a2310195b2a748fb2c01fa261CAS |

Martin CE, von Willert DJ (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biology 2, 229–242.
Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Mizuno N, Takahashi A, Wagatsuma T, Mizuno T, Obata H (2002) Chemical composition of guttation fluid and leaves of Petasites japonicus v. giganteus and Polygonum cuspidatum growing on ultramafic soil. Soil Science and Plant Nutrition 48, 451–453.
Chemical composition of guttation fluid and leaves of Petasites japonicus v. giganteus and Polygonum cuspidatum growing on ultramafic soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFOrt7c%3D&md5=a0f35c4da307733216712e178ded3cc1CAS |

Necmi P (2005) Investigation of monthly variation in some plant-nutrient contents of guttation fluid samples taken from Dieffenbachia plants. Journal of Plant Nutrition 28, 1375–1382.
Investigation of monthly variation in some plant-nutrient contents of guttation fluid samples taken from Dieffenbachia plants.Crossref | GoogleScholarGoogle Scholar |

Nishizawa N, Mori S (1977) Invagination of plasmalemma: its role in the absorption of macromolecules in rice roots. Plant & Cell Physiology 18, 767–782.

Nishizawa N, Mori S (1978) Endocytosis (heterophagy) in plant cells: involvement of ER and ER-derived vesicles. Plant & Cell Physiology 19, 717–730.

Noda T, Kaku H (1999) Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice. Annals of the Phytopathological Society of Japan 65, 9–14.
Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice.Crossref | GoogleScholarGoogle Scholar |

O’Leary JW (1966) Leaf resistance to guttation. Plant Physiology 41, xx

Oparka KJ, Prior DAM, Harris N (1990) Osmotic induction of fluid-phase endocytosis in onion epidermis cells. Planta 180, 555–561.
Osmotic induction of fluid-phase endocytosis in onion epidermis cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7jvFyjug%3D%3D&md5=0ea331148bbad041f347943fdc3530edCAS | 24202101PubMed |

Palzkill DA, Tibbitts TW (1977) Evidence that root pressure flow is required for calcium transport to head leaves of cabbage. Plant Physiology 60, 854–856.
Evidence that root pressure flow is required for calcium transport to head leaves of cabbage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmtVWktw%3D%3D&md5=66bad458a77a917811d5fec8c19f557eCAS | 16660200PubMed |

Pedersen O (1993) Long-distance water transport in aquatic plants. Plant Physiology 103, 1369–1375.

Pedersen O (1994) Acropetal water transport in submerged plants. Botanica Acta 07, 61–65.

Pedersen O (1998) The nature of water transport in aquatic plants. In ‘Freshwater biology’. (Ed. O. Pedersen) pp. 196–207. (Blackwell Publishing: Hoboken, NJ)

Pedersen O, Jùrgensen LB, Sand-Jensen K (1997) Through-flow of water in leaves of a submerged plant is influenced by the apical opening. Planta 202, 43–50.
Through-flow of water in leaves of a submerged plant is influenced by the apical opening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFyis7g%3D&md5=8106bf16bcf4fcd34173d4d832d9290eCAS |

Peterson KM, Rychel AL, Torii KU (2010) Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. The Plant Cell 22, 296–306.
Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVanurg%3D&md5=d2eefa1369c8b446741ee14133f30a4aCAS | 20179138PubMed |

Pillitteri LJ, Bogenschutz NL, Torii KU (2008) The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant & Cell Physiology 49, 934–943.
The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Wjur0%3D&md5=9e77fbe003a2a972646a2f0c453b00b0CAS |

Pilot G, Stransky H, Bushey DF, Pratelli R, Ludewig U, Wingate VP, Frommer WB (2004) Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. The Plant Cell 16, 1827–1840.
Overexpression of GLUTAMINE DUMPER1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFSqtLo%3D&md5=5a9f601adb5875390aaa7ce25c04d26aCAS | 15208395PubMed |

Quanzhi Z, Erming G, Pisheng H, Qihong L (1999) Relation between bleeding potential in neck of spike and source–sink quality of rice. Scientia Agricultura Sinica 32, 101–106.

Raleigh GJ (1946) The effect of various ions on guttation of the tomato. Plant Physiology 21, 194–200.
The effect of various ions on guttation of the tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH28Xit1Cqug%3D%3D&md5=c3970e574d7410635363533086ec494dCAS | 16654036PubMed |

Raper KB, Thom C (1949) ‘A manual of the Penicillia.’ (Williams and Wilkins: Baltimore, MD)

Richards K (2004) Observation and simulation of dew in rural and urban environments. Progress in Physical Geography 28, 76–94.
Observation and simulation of dew in rural and urban environments.Crossref | GoogleScholarGoogle Scholar |

Riedell WE, Schmid WE (1987) Diuron decreases light-stimulated potassium translocation to shoots of barley seedlings. Journal of Plant Nutrition 10, 25–32.
Diuron decreases light-stimulated potassium translocation to shoots of barley seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlGjsLs%3D&md5=1331a6e93e7e18989bd213c119e6efe1CAS |

Ryan RP, Vorholter F-J, Potnis N, Jones JB, Van Sluys M-A, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nature Reviews. Microbiology 9, 344–355.
Pathogenomics of Xanthomonas: understanding bacterium–plant interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFWgt70%3D&md5=c0401c695fefb3b29d0af379d8f5d49cCAS | 21478901PubMed |

Rybicki EP (2009) Third international conference on plant-based vaccines and antibodies. Expert Review of Vaccines 8, 1151–1155.
Third international conference on plant-based vaccines and antibodies.Crossref | GoogleScholarGoogle Scholar | 19722888PubMed |

Salisbury FB, Ross CW (1992) ‘Plant physiology.’ (Wadsworth Publishing Company: Belmont, CA)

Samson RA, Gams W (1984) The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium. Antonie van Leeuwenhoek 50, 815–824.
The taxonomic situation in the hyphomycete genera Penicillium, Aspergillus and Fusarium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7kslKksQ%3D%3D&md5=2810fa14308252d75059cfd09c6cc43dCAS | 6397143PubMed |

Sattelmacher B (2001) Tansley review no. 22 – The apoplast and its significance for plant mineral nutrition. New Phytologist 149, 167–192.
Tansley review no. 22 – The apoplast and its significance for plant mineral nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlKmu7w%3D&md5=65e0b0590bad2e98008298784f45b506CAS |

Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. Cellular and Molecular Life Sciences 60, 433–445.
Molecular farming of recombinant antibodies in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFGit7o%3D&md5=1753cdd94fcc36fa84b37619ee3b1a55CAS | 12737305PubMed |

Schmidt O, Czeschlik D (2006) ‘Wood and tree fungi.’ (Springer-Verlag: Berlin)

Scofield GN, Hirose T, Aoki N, Furbank RT (2007) Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. Journal of Experimental Botany 58, 3155–3169.
Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kmt7%2FK&md5=8f94243348fecdbcd8d8ac0374f684a5CAS | 17728297PubMed |

Scott J, Untereiner WA, Wong B, Straus NA, Malloch D (2004) Genotypic variation in Penicillium chysogenum from indoor environments. Mycologia 96, 1095–1105.
Genotypic variation in Penicillium chysogenum from indoor environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVyrtbo%3D&md5=1d7f8e605e141444f1a892c736ac30b3CAS | 21148929PubMed |

Sharabani G, Manulis-Sasson S, Borenstein M, Shulhani R, Lofthouse M, Chalupowicz L, Shtienberg D (2012) The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses. Plant Pathology
The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses.Crossref | GoogleScholarGoogle Scholar |

Shawki MA-A, Kazda TD, Kohoutkova JJ, Taborsky V (2006) Toxicity to honeybees of water guttation and dew collected from winter rape treated with Nurelle D. Plant Protection Science – Prague 42, 9–14.

Shepherd RW, Wagner GJ (2007) Phylloplane proteins: emerging defenses at the aerial frontline? Trends in Plant Science 12, 51–56.
Phylloplane proteins: emerging defenses at the aerial frontline?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVyrsr8%3D&md5=165ad9cbf761525eb6e904542e820777CAS | 17208510PubMed |

Simmons E (2011) Food security. In ‘Encyclopedia of earth’. (Ed. CJ Cleveland) Available at http://www.eoearth.org/article/Food_Security [Verified October 2011]

Singh S (2014) Guttation: quantification, microbiology and implications for phytopathogy. In ‘Progress in botany. Vol. 75’. (Eds U Luttege, W Beyschlag, J Cushman) pp. 187–214. (Springer: Berlin)

Singh G, Singh TN (1989) Root-mediated water transport to the shoot of rice. Current Science 58, 1134–1138.

Singh S, Singh TN (2013) Guttation 1: chemistry, crop husbandry and molecular farming. Phytochemistry Reviews 12, 147–172.

Singh S, Chauhan JS, Singh TN (2008) Guttation: a potential yield enhancing trait in rice. Current Science 95, 455–456.

Singh S, Singh TN, Chauhan JS (2009a) Water transport in crop plants with special reference to rice: key to crop production under global water crisis. Journal of Crop Improvement 23, 194–212.
Water transport in crop plants with special reference to rice: key to crop production under global water crisis.Crossref | GoogleScholarGoogle Scholar |

Singh S, Singh TN, Chauhan JS (2009b) Guttation in rice: occurrence, regulation, and significance in varietal improvement. Journal of Crop Improvement 23, 351–365.
Guttation in rice: occurrence, regulation, and significance in varietal improvement.Crossref | GoogleScholarGoogle Scholar |

Soejima H, Sugiyama T, Ishihara K (1995) Changes in the chlorophyll contents of leaves and in levels of cytokinins in root exudates during ripening of rice cultivars Nipponbare and Akenohoshi. Plant & Cell Physiology 36, 1105–1114.

Sperry JS (1983) Observations on the structure and function of hydathodes in Blechnum lehmannii. American Fern Journal 73, 65–72.
Observations on the structure and function of hydathodes in Blechnum lehmannii.Crossref | GoogleScholarGoogle Scholar |

Staiger CJ, Baluska F, Volkmann D, Barlow PW (2000) Actin: a dynamic framework for multiple plant cell functions. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Stocking CR (1956) Guttation and bleeding. In ‘Encyclopedia of plant physiology’. (Ed. W Ruhland) pp. 489–502. (Springer: Berlin)

Stokes A (1954) Uptake and translocation of griseofulvin by wheat seedlings. Plant and Soil 5, 132–142.
Uptake and translocation of griseofulvin by wheat seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXks1ymsw%3D%3D&md5=61dc1be2ddfabb16767314dd88749161CAS |

Stoller EW (1970) Mechanism for the differential translocation of amiben in plants. Plant Physiology 46, 732–737.
Mechanism for the differential translocation of amiben in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXnsFCktQ%3D%3D&md5=241a0bd9073e62298182bed0792e2ce4CAS | 16657538PubMed |

Sudzuki F (1969) Absorción foliar de humedad atmosférica en tamarugo, Prosopis tamarugo Phil. Universidad de Chile, Facultad de Agronomía. Boletín Técnico 30, 1–23.

Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449.
Boron-toxicity tolerance in barley arising from efflux transporter amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGmtLnL&md5=56d4547d7e7f71c82373e7149f3b0e9cCAS | 18048688PubMed |

Takeda F, Glenn DM (1989) Hydathode anatomy and the relationship between guttation and plant water status in strawberry (Fragaria × ananassa Duch.). Acta Horticulturae 265, 387–392.

Takeda F, Wisniewski ME, Glenn DM (1991) Occlusion of water pores prevents guttation in older strawberry leaves. Journal of the American Society for Horticultural Science 116, 1122–1125.

Tang AC, Boyer JS (2003) Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves. Journal of Experimental Botany 54, 2479–2488.
Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVert7Y%3D&md5=a7bc49d2efb55bc60fb3f72a5312fd7dCAS | 14512379PubMed |

Tanner W, Beevers H (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? Proceedings of the National Academy of Sciences, USA 98, 9443–9447.
Transpiration, a prerequisite for long-distance transport of minerals in plants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFSrtrk%3D&md5=1c6ec12fff43884016b8bec6a1b33ea8CAS |

Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytologist 175, 641–654.
Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKgsL3O&md5=1e3bd2051c07c526ba2ad45d0482b17bCAS | 17688581PubMed |

Tarakanova GA, Zholkevich VN (1986) The study of electrochemical parameters kinetics of Pilobolus umbonatus Buller mucor fungus. Doklady Akademii Nauk SSSR 286, 504–508.

Tarakanova GA, Shvedova OY, Zholkevich VN (1985) Electrochemical parameters and guttation of Pilobolus umbonatus Buller cells. Doklady Akademii Nauk SSSR 280, 1277–1280.

Tasenkevich LO (2012) ‘Proceedings of the 1st international scientific conference on modern plant morphology, Issue 1&2, 24–26 April 2012, Ivan Franko Lviv National University, Ukraine.’

Telewski FW (2006) A unified hypothesis of mechanoperception in plants. American Journal of Botany 93, 1466–1476.
A unified hypothesis of mechanoperception in plants.Crossref | GoogleScholarGoogle Scholar | 21642094PubMed |

Testone G, Condello E, Verde I, Caboni E, Iannelli MA, Bruno L, Mariotti D, Bitonti MB, Giannino D (2009) The peach (Prunus persica [L.] Batsch) homeobox gene KNOPE3, which encodes a class 2 knotted-like transcription factor, is regulated during leaf development and triggered by sugars. Journal of Molecular Genetics and Genomics 282, 47–64.
The peach (Prunus persica [L.] Batsch) homeobox gene KNOPE3, which encodes a class 2 knotted-like transcription factor, is regulated during leaf development and triggered by sugars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFartLo%3D&md5=d3a2e6f347d43dc827ad4d3511020070CAS |

Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes overproduction of abscisic acid. The Plant Journal 23, 363–374.
Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes overproduction of abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFSltbY%3D&md5=25713e395026006843866ad9b43d06cbCAS | 10929129PubMed |

Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IRA, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiology 143, 1905–1917.
Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFWjuro%3D&md5=e764aa233bb3d30a3603dab0ef5e0185CAS | 17277097PubMed |

Traore MD, Traore VSE, Galzi-pinel A, Fargette D, Konate G, Traore AS, Traore O (2008) Abiotic transmission of Rice yellow mottle virus through soil and contact between plants. Pakistan Journal of Biological Sciences 11, 900–904.
Abiotic transmission of Rice yellow mottle virus through soil and contact between plants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnisFKksQ%3D%3D&md5=ae72720999dd551bb4dfadb7836939fdCAS | 18814653PubMed |

Tucker SC, Hoefert LL (1968) Ontogeny of the tendril in Vitis vinifera. American Journal of Botany 55, 1110–1119.
Ontogeny of the tendril in Vitis vinifera.Crossref | GoogleScholarGoogle Scholar |

Tyree MT, Zimmermann MH (2002) ‘Xylem structure and the ascent of sap.’ (Springer: Berlin)

Valente M, Bologna R (2011) ‘Enough poison (Basta veleni).’ Available at www.rfb.it/bastaveleni/chisiamo.htm [Verified December 2011]

Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany 93, 3–11.
New approaches for studying and exploiting an old protuberance, the plant trichome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srps1KjsA%3D%3D&md5=a55b443306240595b5726fdeb2450b51CAS | 14678941PubMed |

Wang C, Skrobek A, Butt TM (2004) Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology 85, 168–174.
Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtl2msrc%3D&md5=d04a9dfb11497cc792683b7f303c4363CAS | 15109899PubMed |

Wang W, Ben X, Wang H, Li J, Huang H, Xu L (2011) YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. Plant Physiology 157, 1805–1819.
YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ektL7E&md5=ed8eb281f3bfc68885f78a48edda0caaCAS | 22003085PubMed |

Wei C, Tyree MT, Steudle E (1999) Direct measurement of xylem pressure in leaves of intact maize plants. a test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiology 121, 1191–1205.
Direct measurement of xylem pressure in leaves of intact maize plants. a test of the cohesion-tension theory taking hydraulic architecture into consideration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFyju7Y%3D&md5=298ca6b9f78a5921e584cb12bf383a3eCAS | 10594106PubMed |

Young SA, Guo A, Guikema JA, White FF, Leach JE (1995) Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv oryzae. Plant Physiology 107, 1333–1341.