Bark traits, decomposition and flammability of Australian forest trees

Saskia Grootemaat^{A,D}; Ian J. Wright^A; Peter M. van Bodegom^B; Johannes H. C. Cornelissen^C and Veronica Shaw^A

^ADepartment of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.

^BInstitute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands.

^cSystem Ecology, Faculty of Earth and Life Sciences, VU University, 1081 HV Amsterdam, The Netherlands.

^DCorresponding author. Email: saskia.grootemaat@live.nl

Trait	Bark	Leaves
Trait	(range; <i>x-fold variation</i>)	(range, <i>x-fold variation</i>)
One sided surface area (cm ²)	10.9-16.5; <i>1.5</i> *	13.0-38.1; 2.9
Thickness (mm)	0.99-7.11; 7.2	0.33-0.81; 2.5
Dry mass (g)	0.40-2.20; 5.6*	0.27-1.02; 3.8
Density (g cm ⁻³)	0.22-1.13; 5.1	0.33-0.74; 2.2
Area per mass $(cm^2 g^{-1})$	5.63-30.67; <i>5.4</i> (BAM)	27.23-59.97; 2.2 (SLA)
Tensile strength (Newton mm ⁻¹)	3.75-53.75; <i>14.3</i>	N/A
Moisture content - before burning	11.8-14.4; 1.2	7.3-10.0; 1.4
(% odw)	11.0-14.4, 1.2	7.5-10.0, 1.4
Energy content (MJ kg ⁻¹)	18.7-20.2; 1.1	20.8-22.8; 1.1
C (%)	44.5-48.9; 1.1	48.2-51.9; 1.1
Ca (%)	0.02-0.96; 48.0	0.36-1.01; 2.9
$Cu (mg kg^{-1})$	1.15-8.37; 7.3	2.97-22.03; 7.4
K (%)	0.01-0.15; <i>15.0</i>	0.05-0.35; 6.5
Mg (%)	0.01-0.16; <i>16.0</i>	0.14-0.28; 1.9
N (%)	0.05-0.32; 6.4	0.31-0.68; 2.2
$P(mg kg^{-1})$	22.1-63.4; 2.9	66.6-367.7; 5.5
Lignin (%)	19.3-45.7; 2.4	8.0-24.2; 3.0
Cellulose (%)	36.1-53.8; 1.5	19.0-44.1; 2.3
Ash (%)	0.05-1.05; 21.0	0.06-1.16; 18.2
Tannins (%)	0.08-33.64; 420.5	0.96-31.95; <i>33.3</i>
Decomposition after 12 months	6.7-27.8; 4.2	22.1-60.1; 2.7
(% mass loss)	0.7 27.0, 1.2	22.1 00.1, 2.7
Decomposition after 24 months	26.7-71.2; 2.7	55.8-91.9; 1.6
(% mass loss)		
Time To Ignition (s)	2.6-14.0; 5.4	1.9-4.2; 2.2
Flame Duration (s)	11.2-94.2; 8.4	6.0-16.4; 2.7
FD/mass (g s^{-1})	26.8-47.9; 1.8	12.0-29.3; 2.4
Smoulder Duration (s)	55.0-566.6; 10.3	22.0-79.0; 3.6
SD/mass (g s^{-1})	122.5-205.4; 1.7	53.1-97.3; 1.8
Combustibility (mg s ⁻¹)	4.9-7.5; 1.5	9.8-18.3; 1.9

Table S1. Trait measurements, decomposability measurements and flammability measurements based on species' means, n = 9. Measurements marked with an asterisk (*) are not independent since we standardised by bark-size at the beginning of the experiment.

Bark traits	Mass loss 12	Mass loss 24	TTI	Log FD/mass	SD/mass	Combustibility
	months (%)	months (%)	(s)	(s g ⁻¹)	(s g ⁻¹)	(mg s ⁻¹)
Surface area	$r^2 = 0.03$	$r^2 = 0.01$	$r^2 = 0.17$	$r^2 = 0.04$	rho = 0.20	$r^2 = 0.02$
	P = 0.655	P = 0.852	P = 0.232	P = 0.597	P = 0.590	P = 0.711
Log	$r^2 = 0.06$	$r^2 < 0.01$	$r^2 < 0.01$	$r^2 < 0.01$	<i>rho</i> = 0.26	$r^2 = 0.12$
Thickness	P = 0.483	P = 0.860	P = 0.932	P = 0.947	P = 0.467	P = 0.326
Log Dry	$r^2 = 0.04$	$r^2 = 0.02$	$r^2 = 0.19$	$r^2 = 0.01$	rho = 0.10	$r^2 = 0.29$
mass	P = 0.587	P = 0.673	P = 0.209	P = 0.741	P = 0.777	P = 0.107
Log Density	$r^2 = 0.03$	$r^2 = 0.02$	$r^2 = 0.13$	$r^2 = 0.02$	<i>rho</i> = 0.16	$r^2 = 0.04$
•	P = 0.652	P = 0.730	P = 0.313	P = 0.728	P = 0.663	P = 0.596
Area per	$r^2 = 0.06$	$r^2 = 0.01$	$r^2 = 0.10$	$r^2 = 0.04$	rho = 0.07	$r^2 = 0.10$
mass	P = 0.509	P = 0.798	P = 0.384	P = 0.580	P = 0.855	P = 0.378
Log Tensile	$r^2 = 0.05$	$r^2 = 0.11$	$r^2 = 0.28$	$r^2 = 0.03$	rho = 0.12	$r^2 = 0.01$
strength	P = 0.519	P = 0.359	P = 0.113	P = 0.609	P = 0.751	P = 0.800
Moisture	$r^2 = 0.05$	$r^2 < 0.01$	$r^2 = 0.40 (+)$	$r^2 = 0.01$	rho = 0.22	$r^2 = 0.01$
content	P = 0.522	P = 0.919	P = 0.049	P = 0.852	P = 0.533	P = 0.742
Energy	$r^2 = 0.55(-)$	$r^2 = 0.19$	$r^2 = 0.28$	$r^2 = 0.26$	rho = 0.14	$r^2 < 0.01$
content	P = 0.014	P = 0.212	P = 0.116	P = 0.129	P = 0.701	P = 0.939
Log C	$r^2 = 0.56(-)$	$r^2 = 0.29$	$r^2 = 0.13$	$r^2 = 0.31$	rho = 0.01	$r^2 < 0.01$
0	P = 0.012	P =0.108	P = 0.304	P = 0.093	P = 0.987	P = 0.910
Log Ca	$r^2 = 0.06$	$r^2 < 0.01$	$r^2 = 0.61 (+)$	$r^2 = 0.04$	rho = 0.23	$r^2 = 0.47$ (-)
0	P = 0.483	P = 0.943	P = 0.008	P = 0.607	P = 0.532	P = 0.029
Log Cu	$r^2 = 0.09$	$r^2 = 0.07$	$r^2 = 0.04$	$r^2 = 0.54 (+)$	rho = 0.41	$r^2 = 0.29$
0	P = 0.400	P = 0.465	P = 0.568	P = 0.016	P = 0.244	P = 0.107
Log K	$r^2 = 0.32$	$r^2 = 0.30$	$r^2 = 0.20$	$r^2 = 0.03$	rho = 0.03	$r^2 < 0.01$
0	P = 0.090	P = 0.104	P = 0.201	P = 0.640	P = 0.945	P = 0.879
Log Mg	$r^2 = 0.12$	$r^2 = 0.03$	$r^2 = 0.62 (+)$	$r^2 < 0.01$	rho = 0.05	$r^2 = 0.12$
8 8	P = 0.330	P = 0.615	P = 0.007	P = 0.924	P = 0.894	P = 0.318
Log N	$r^2 < 0.01$	$r^2 = 0.04$	$r^2 = 0.69(-)$	$r^2 = 0.06$	rho = 0.01	$r^2 = 0.03$
5	P = 0.893	P = 0.562	P = 0.003	P = 0.498	P = 0.987	P = 0.638
Р	$r^2 = 0.22$	$r^2 = 0.22$	$r^2 = 0.03$	$r^2 = 0.03$	rho = 0.44	$r^2 = 0.03$
	P = 0.173	P = 0.168	P = 0.613	P = 0.628	P = 0.200	P = 0.613
Lignin	$r^2 = 0.66$ (-)	$r^2 = 0.64(-)$	$r^2 = 0.01$	$r^2 = 0.49 (+)$	<i>rho</i> = 0.37	$r^2 = 0.25$
0	<i>P</i> = 0.004	P = 0.006	P = 0.811	P = 0.025	P = 0.293	P = 0.144
Cellulose	$r^2 = 0.57 (+)$	$r^2 = 0.43 (+)$	$r^2 = 0.10$	$r^2 = 0.38$	rho = 0.49	$r^2 = 0.18$
	<i>P</i> = 0.011	P = 0.038	P = 0.375	P = 0.056	<i>P</i> =0.150	P = 0.227
Log Ash	$r^2 < 0.01$	$r^2 = 0.01$	$r^2 = 0.29$	$r^2 = 0.40$	<i>rho</i> = 0.13	$r^2 = 0.01$
3	P = 0.932	P = 0.854	P = 0.106	P = 0.052	P = 0.725	P = 0.840
Tannins	$r^2 = 0.06$	$r^2 = 0.05$	$r^2 = 0.03$	$r^2 = 0.14$	rho = 0.30	$r^2 = 0.10$
	P = 0.503	P = 0.547	P = 0.626	P = 0.296	P = 0.405	P = 0.364

Table S2. Bivariate regressions between bark traits and several parameters of decomposability and flammability. Significant relationships (P < 0.05) are presented in bold, followed by the sign of these relationships in parentheses; (+) for positive, (-) for negative relationships.

Table S3. Decomposition after 12 and 24 months (percentage mass loss of initial samples) versus the				
different flammability parameters, i.e., time-to-ignition (TTI), mass-standardised flame duration				
(FD/mass), mass-standardised smoulder duration (SD/mass), and combustibility. Results (r^2 or <i>rho</i> and				
<i>P</i> -values) are presented for bark and leaves. No significant relationships were found (all $P \ge 0.180$).				
2				

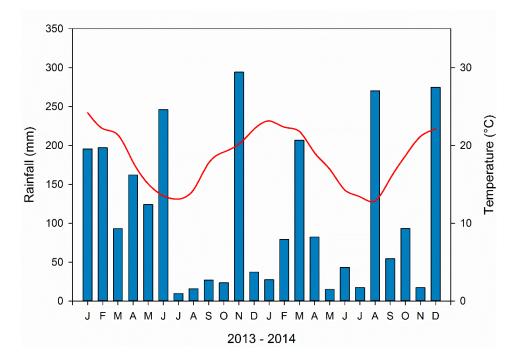

Material	Mass loss	Flammability	r^2 (or rho)	Р
	after x months	parameter		
Bark	12	TTI	0.005	0.854
		Log FD/mass	0.002	0.894
		SD/mass	rho: -0.091	0.803
		Combustibility	0.054	0.517
	24	TTI	0.066	0.475
		Log FD/mass	0.188	0.211
		SD/mass	rho: -0.321	0.365
		Combustibility	0.213	0.180
Leaves	12	TTI	0.001	0.947
		Log FD/mass	0.168	0.239
		SD/mass	0.092	0.395
		Combustibility	0.005	0.845
	24	TTI	0.004	0.869
		Log FD/mass	0.204	0.190
		SD/mass	0.088	0.404
		Combustibility	0.000	0.953

Table S4. Traits with significant importance for decomposition and flammability parameters Results after stepwise multiple regressions; both for bark and leaves. Relationships are based on species-means. TTI = time-to-ignition, FD = flame duration and SD = smoulder duration.

Material	Mass loss 12 months (%)	Mass loss 24 months (%)	TTI (s)	Log FD/mass (s g ⁻¹)	SD/mass (s g ⁻¹)	Combustibility (mg s ⁻¹)
Bark	Lignin (-) P = 0.004 $r^2 = 0.66$	Lignin (-) P = 0.006 $r^2 = 0.63$	Log [N] (-) P = 0.003 $r^2 = 0.69$	Log [Cu] (+) P = 0.016 $r^2 = 0.54$	N/A	Log [Ca] (-) P = 0.029 $r^2 = 0.47$
	Tannins (-) P = 0.013 Tot $r^2 = 0.87$	Tannins (-) P = 0.037 Tot $r^2 = 0.81$	Log [Ca] (+) P < 0.001 Tot $r^2 = 0.96$			Cellulose (+) P = 0.015 Tot $r^2 = 0.79$
Leaves	Lignin (-) P = 0.005 $r^2 = 0.64$	Lignin (-) P = 0.015 $r^2 = 0.55$	SLA (-) P = 0.001 $r^2 = 0.79$	Log [K] (-) P = 0.037 $r^2 = 0.44$	N/A	N/A
		Thickness (-) P = 0.015 Tot $r^2 = 0.82$				

Material	Parameter	Variation within species (%)	Variation among species (%)
Bark	Decomposition 12 months	39.8	60.2
	Decomposition 24 months	43.2	56.8
	Log TTI	42.9	57.1
	Log FD	45.9	54.1
	Log FD/mass	88.0	12.0
	Log SD	20.4	79.6
	Log SD/mass	71.4	28.6
	Log combustibility	72.7	27.3
Leaves	Decomposition 12 months	42.8	57.2
	Decomposition 24 months	44.1	55.9
	Log TTI	57.9	42.1
	Log FD	48.6	51.4
	Log FD/mass	64.3	35.7
	Log SD	34.4	65.6
	Log SD/mass	66.7	33.3
	Log combustibility	65.0	35.0

Table S5. Variance component analysis for two decomposition and six flammability parameters (based on MINQUE – Minimum Norm Quadratic Unbiased Estimation).

Fig. S1. Rainfall and temperature for the years 2013 and 2014. Rainfall from Turramurra weather station, 3.8 km from Macquarie University campus; temperature from Riverview Observatory, 7.0 km from Macquarie University campus (<u>www.bom.gov.au</u>).

Text S1. Extraction methods for leaf and bark chemistry

Carbon and nitrogen

0.25 g of sample was weighed out into a tin foil capsule which was placed into the induction furnace of a LECO Truspec CHN combustion analyser set at 1100° C and calibrated on EDTA. The carbon present was combusted to CO₂ which was determined with an infrared detection cell. The nitrogen present was combusted to N₂, NO₂ and NO. The oxides were reduced to N₂ which was determined quantitatively using a thermal conductivity cell.

(Rayment, G.E. & Lyons, D.J. (2011) Soil Chemical Methods: Australasia. CSIRO Publishing. Handbook section 6B2, p75.)

Other elements (acid digestions)

0.25 g of sample was weighed out and digested with 15 ml of 5:1 nitric-perchloric acid. The digested sample was made up to a volume of 25 ml and the elemental concentrations were then determined by ICPAES.

(Martinie, G.D. & Schilt, A.A. (1976) Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Analytical Chemistry, 48, 70-74.)

Tannin analysis

0.2 g of sample was weighed out and extracted 3 times with 8 ml of 70% acetone for 45 minutes with the extracts made up to 25 mL volume. 1 ml of extract was heated with 5 ml of 19:1 butanol-HCl at 95°C for 45 minutes in a water bath. The extracts were analysed at a wavelength specific to the tannin in question. Bound tannin is measured by adding 5 ml of Butanol HCl to the extraction residue and heating as above. Please note that these samples have been quantified using a condensed tannin stock prepared from Acacia aneura (mulga) which was the best fit we could find for the range of samples in question. As a consequence these values should be reported as relative numbers rather than absolutes. (*Dalzell, S.A. & Kerven, G.L. (1998) A rapid method for the measurement of Leucaena spp proanthocyanidins by the proanthocyanidin (butanol/HCl) assay. Journal of the Science of Food and Agriculture, 78, 405-416.*)

Lignin and Cellulose analysis (ADF extraction)

ADF analysis measures cellulose + lignin + ash content. ADF reagent was prepared from CTAB (cetyltrimethylammonium bromide) and H_2SO_4 . 1.0 g of sample was extracted with 45 ml of ADF reagent at 100°C for 70 minutes. The samples were then filtered, rinsed and dried at 60°C for 12 hrs. The dried samples were then reacted with 25 mL of cold 72% H_2SO_4 for 3 hours; then filtered and rinsed again prior to ashing at 500°C for three hours.

(Rowland, A.P. & Roberts, J.D. (1994) Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Communications in Soil Science and Plant Analysis, 25, 269-277.)