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ABSTRACT

Context. Wagyu Feeder Check is a genomic-based tool designed to provide genomic estimated
breeding values (GEBV) for five feedlot growth and carcase traits. At present, Wagyu Feeder
Check is based on a reference population of 8316 genotyped and phenotyped Australian fullblood
(FB; N = 2120) Wagyu and Wagyu-crossed (XB; N = 6196) cattle, principally Wagyu × Angus F1
animals. Aims. We provide technical details behind the development of the Wagyu Feeder Check
and validate the ability of its GEBV to predict differences in performance of Wagyu cattle in daily
weight gain at feedlot, carcase weight, carcase eye muscle area, carcase marbling score and carcase
rump fat at the P8 site. Methods. Data supplied from eight commercial supply chains across
Australia was used to generate GEBV using mixed-model equations that incorporated a genomic
relationship matrix build with 82 504 autosomal markers. The bias, dispersion, and accuracy of
the GEBV were evaluated using a four-way cross-validation scheme where, in each turn, the
phenotypes from a random 1549 (or 25%) XB cattle were set as missing.Key results. The genomic
estimate of the Wagyu content in the FB and XB population averaged 99.12% and 59.55%,
respectively, and with most of the non-Wagyu content associated with Angus. The estimates of
heritability (± s.e.) were 0.497 ± 0.016, 0.474 ± 0.004, 0.347 ± 0.014, 0.429 ± 0.003 and
0.422 ± 0.003 for daily weight gain at feedlot, carcase weight, eye muscle area, marbling and rump
fat, respectively. Averaged across the four XB validation populations, the accuracy of GEBV was
0.624, 0.634, 0.385, 0.620, and 0.526 for the same set of traits.Conclusions. Genomic predictions
generated by Wagyu Feeder Check can predict differences in feedlot and carcase performance of
Australian Wagyu cattle. Given the large content of Angus in the XB population, further research is
required to determine the predictive ability of GEBV in Wagyu × Bos indicus and Wagyu × dairy
animals. Implications. Commercial feedlot operators finishing animals with a strong Wagyu
breed component will benefit from using Wagyu Feeder Check for decision making.

Keywords: accuracy, beef cattle, bias, carcase, feedlot, genomic predictions, heritability, marbling.

Introduction

Building on a long line of research mapping phenotypes to genotypes, genomic technologies 
have changed and may continue to change animal breeding (Johnsson 2023). Nowadays, 
genomic-based technologies are allowing commercial beef producers to predict the genetic 
merit of individual animals in their herds of unknown pedigree for the first time (Reverter 
et al. 2016; Hine et al. 2021; Alexandre et al. 2022). 

Specifically for the Australian beef cattle industry, recent examples of such genomic tools 
include the Angus HeiferSELECT (Alexandre et al. 2022) and the Angus SteerSELECT (Hine 
et al. 2021). The former has been validated using historical data from 153 978 registered 
Angus animals; the latter has been validated using a population of 522 short-fed (100 days) 
or long-fed (270 days) Angus steers finished in commercial feedlots. Also, for SteerSELECT 
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the potential benefit of incorporating commercial data in the 
reference population has been evaluated (Reverter et al. 
2023). 

Expanding on the premises of that prior work, Wagyu 
Feeder Check is a genomic-based tool designed with the 
express purpose of providing genomic estimated breeding 
values (GEBV) for five traits related to feedlot growth and 
carcase characteristics. The Wagyu Feeder Check tool was 
launched in April 2023 during the WagyuEdge23 Conference. 
Practical aspects and details about how producers can benefit 
from using Wagyu Feeder Check can be found online from the 
Australian Wagyu Association website: https://www.wagyu. 
org.au/for-members/wagyu-feeder-check. At present, Wagyu 
Feeder Check is based on a reference population of 8316 
genotyped and phenotyped Australian Wagyu fullblood and 
Wagyu-crossed cattle, principally Wagyu × Angus F1 animals. 

A recent study by Takeda et al. (2021) with a Japanese 
Black cattle population showed that, for carcase traits, a total 
of 7000–11 000 animals is a sufficient reference population 
size for genomic prediction. In this sense, previous studies 
have explored the benefits of expanding the reference 
population, for instance, incorporating multiple breeds in 
the context of crossbreeding programs and for the selection 
of purebreds for optimal crossbred performance (Porto-Neto 
et al. 2015; van Grevenhof and van der Werf 2015; Karaman 
et al. 2021). 

Therefore, in addition to providing the technical details 
behind the development of the Wagyu Feeder Check genomic 
tool, our aim for this study is to undertake a comprehensive 
internal cross-validation to ascertain the quality of Wagyu 
Feeder Check GEBV in the crossbred population. 

Materials and methods

Wagyu fullblood (FB) and crossbred (XB)
population details

The Wagyu Feeder Check is based on a reference population of 
8316 genotyped and phenotyped Australian fullblood Wagyu 
(FB, N = 2120) and Wagyu-crossed (XB, N = 6196) cattle, 
principally Wagyu × Angus F1 animals. Feedlot and carcase 
records were supplied by independent commercial supply 
chains from eight populations including three FB populations 
(POP1, N = 1455; POP2, N = 477; and POP3, N = 188) and 
five XB populations (POP4, N = 1049; POP5, N = 1285; 
POP6, N = 2456; POP7, N = 654; and POP8, N = 752). 
Animals were slaughtered from 2013 to 2022, with XB 
animals slaughtered only in 2021 (N = 2098) and 2022 
(N = 4098). Phenotypes included daily gain at feedlot 
finishing (FADG), carcase weight (CWT), carcase eye muscle 
area (CEMA), carcase AUS-MEAT marbling score (MARB) and 
carcase rump fat at the P8 site (CP8). To accommodate high 
marbling content, MARB was measured using a modified 

AUS-MEAT scoring system (AUS-MEAT 2005), which ranges 
from 1 (nil) to 12 (abundant) in increments of 1. 

For the analysis of phenotypes, a contemporary group (CG) 
was defined as a combination of population of origin (eight 
levels combining feedlot and abattoir), sex (two levels), and 
kill date. There were 71 and 13 kill dates for the FB and XB 
populations, respectively. For the FB populations all months 
were represented, whereas for the XB population all months 
were represented except for December and January. Initial 
edits aimed at removing animals without genotypes or from 
CG with less than three individuals. For the FB population, 
there were 82 CG with an average of 25.8 cattle and 
ranging from 3 to 145. For the XB population, there were 
29 CG with an average of 213.6 cattle and ranging from 8 
to 576. 

Genotypes and genomic relationships

Genotypes for 82 504 autosomal single nucleotide polymor-
phisms (SNP) were available for all 8316 animals included 
in this study and used to compute the genomic relationship 
matrix (GRM) following Method 1 of VanRaden (2008) with 
the modification of Karoui et al. (2012) to make it invertible: 

SST 
GRM = 0.95 · P + 0.05 · I,

2 pið1 − piÞ 
where S is the centred matrix relating SNP genotypes (recoded 
as 0, 1 or 2) in columns with animals in rows, and pi is the 
frequency of the second allele of the i-th SNP, and I is an 
identity matrix included to make GRM invertible by 
enlarging the diagonal elements. 

To obtain a measure of the genomic similarity between the 
two populations, FB and XB, we explored the SNP allele 
frequencies, the values of the GRM and performed a principal 
components analysis (PCA) based on a singular value 
decomposition of the GRM (Misztal and Legarra 2017). 
Additionally, using a smaller panel of 27 883 SNPs and 
numerical approaches outlined in Reverter et al. (2020) we 
estimated the genomic breed composition of FB and XB 
cattle across 10 breeds including: Wagyu, Angus, Brahman, 
Charolais, Hereford, Holstein, Limousin, Santa Gertrudis, 
Shorthorn and Simmental. 

Finally, the genomic relationships among all individuals 
were processed following the network-based Pedigromics 
pipeline (Reverter et al. 2019) by establishing network 
connections after considering genomic relationships ≥0.125 
corresponding to the equivalent of a great-grandparent to 
great-grand offspring relationship. 

Genomic predictions and cross-validation
accuracy

Variance components, heritability (h2), genetic (rg) and 
residual (re) correlations were estimated based on GBLUP 
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methodology (genomic best linear unbiased prediction) using 
the Qxpak5 software (Pérez-Enciso and Misztal 2011). For the 
genomic prediction models, we carried out GBLUP analyses 
including one pentavariate analysis with the entire dataset 
to produce the most accurate genomic predictions to use as 
reference; and a series of 20 univariate analyses from the 
cross-validation datasets (with 20 from five traits by four 
validation groups). In all cases, the GBLUP models contained 
the fixed effects of CG and the linear regression covariates 
of slaughter age (in days), and the first three principal 
components of the GRM. Fitting the principal components 
aims at accounting for hidden population structures, likely 
with FB and XB populations, that could have been missed if 
only fitting CG. Additionally, the random additive polygenic 
and residual effects were fitted in the GBLUP models with 
assumed distributions N(0, G⊗V) and N(0, I⊗R), respec-
tively, where G represents the GRM described earlier, V is 
the genetic covariance matrix, I is an identity matrix, R is the 
residual variance–covariance matrix and ⊗ represents the 
Kronecker product. 

Firstly, the resulting GEBV from the pentavariate analysis 
were termed ûw to indicate that they are based on the whole 
dataset. Secondly, for the cross-validation of genomic 
predictions, we created four cross-validation datasets each 
with the phenotypes from a random 1549 (or 25%) XB cattle 
set as missing. In each cross-validation schema, the resulting 
GEBV were termed ûp to indicate that they are based on 
partial data. 

Finally, traditional (Bolormaa et al. 2013) and LR method 
(Legarra and Reverter 2018)  approaches were used  to estimate  
accuracy, bias, and dispersion of GEBV. The following four 
metrics were employed: 

1. Traditional Accuracy (ACCT): In the context of cross-
validation, the accuracy of a GEBV is traditionally 
computed from the Pearson correlation between a GEBV 
and the adjusted phenotype (y*; phenotype y adjusted for 
fixed effects) for individuals in the validation population, 
and divided by the square root of heritability: 

2. Method LR Accuracy (ACCLR): For individuals in the 
validation population, Method LR accuracy was computed 
as follows: 

where F̄ is the average inbreeding coefficient obtained by 
subtracting one from the diagonal elements of G, 2f̄  is the 
average relationship between individuals obtained from 
the off-diagonal elements of G, and σ2 

g,∞ is the genetic 
variance at equilibrium in a population under selection. 

Assuming the individuals in the validation population 
are not under selection, σ2 

g,∞ can be approximated by the 
additive genetic variance estimated from the partial dataset. 

3. Method LR Bias (BiasLR): This is the difference between the 
average GEBV of individuals in the validation population 
using the partial data minus that using the whole data: 

¯BiasLR = ûp − u ¯̂w 

In the absence of bias, the expected value of BiasLR is 0; 
positive and negative values indicate respectively overesti-
mation and underestimation of GEBV for validation animals 
when their own observation was not included. 

4. Method LR Dispersion (DispLR): For individuals in the 
validation population, dispersion was measured from 
the slope of the regression of ûw on ûp: 

covðûw,ûpÞDispLR = 1 − 
varðûpÞ 

In the absence of bias, the expected value of DispLR is 0. 
Values less than 0 indicate under-dispersion (or deflation) 
of ûp into ûw as phenotypes become available. Values 
greater than 1 indicate over-dispersion (or inflation) of 
ûp into ûw. 

For bias and dispersion, we constructed 95% confidence 
intervals based on ± 1.96 s.e. around the observed means 
across the 20 scenarios, i.e. 5 traits × 4 validation datasets. 

Results and discussion

Phenotypes

Table 1 provides summary statistics for all raw and 
unadjusted phenotypes, and the slaughter age covariate 
used in the analyses. Based on the fixed effects model used to 
adjust phenotypes, the CG effects and covariates combined 
accounted for 33.5%, 37.1%, 30.7%, 30.8% and 45.2% of 
the variation in FADG, CWT, CEMA, MARB and CP8, 
respectively, and with all effects being highly significant 
(P < 0.001) for all traits, except for slaughter age (P > 0.1) 
for CEMA, which was likely captured by the effect of CG. 
On average and compared to FB, XB cattle were 15 days 
older, with 6.5% heavier carcases and 27% less marble, but 
46% more subcutaneous fat. For the XB cattle, the values in 
Table 1 are very similar to those reported by Connolly et al. 
(2019) with a Wagyu crossbred population with a Wagyu 
content estimated at 73.0 ± 0.7%. In that work, and after 
163 days on feed and an average age at slaughter of 
1147 days, the authors reported means ± s.e. for CWT, CEMA, 
MARB and CP8 of 434 ± 5.2 kg, 41.4 ± 0.85 cm2, 5.9 ± 0.52 
scores and 23.7 ± 1.01 mm, respectively. 

With respect to FADG, our averages of 0.83 kg/day for FB 
and of 0.92 kg/day for XB are comparable to those from 
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Table 1. Summary statistics including mean, standard deviation (s.d.),
minimum and maximum for the raw and unadjusted feedlot and carcase
traits and slaughter age covariates in the fullblood (FB) and crossbred
(XB) populations.

Population Trait N Mean s.d. Min. Max.

FB AGE (day) 2120 874.27 125.49 614.00 1746.00

FADG (kg/day) 2120 0.83 0.11 0.38 1.16

CWT (kg) 2120 408.60 41.37 213.00 563.50

CEMA (cm2) 1738 90.88 11.82 42.00 139.00

MARB (score) 2119 7.52 1.87 2.00 12.00

CP8 (mm) 2095 16.49 6.46 4.00 50.00

XB AGE (day) 6196 890.46 98.83 750.00 1242.00

FADG (kg/day) 4880 0.92 0.16 0.26 1.51

CWT (kg) 6155 435.03 45.03 239.40 628.00

CEMA (cm2) 4551 89.35 8.51 17.00 140.00

MARB (score) 6155 5.91 1.48 2.00 9.00

CP8 (mm) 4877 24.06 8.46 7.00 62.00

FB, fullblood population; XB, crossbred population; AGE, slaughter age; FADG,
average daily gain during feedlot finishing; CWT, hot carcase weight; CEMA,
carcase eye muscle area; MARB, AUS-MEAT marbling score; CP8, carcase
subcutaneous fat depth at the rump or P8 site.

Vázquez-Mosquera et al. (2022), who reported daily weight 
gains of 0.916 kg/day for Wagyu purebred steers (N = 262) 
and 1.046 kg/day for Wagyu × Angus crossbred steers 
(N = 103) during the weaning to growing period, and 
0.628 kg/day for purebred and 0.640 kg/day for crossbred 
during the growing to fattening phase. Similarly, the study 
of Alexandre et al. (2021) with 3408 Australian Angus steers 
slaughtered at an average of 734.53 days reported means ± 
s.d. for FADG, CWT, and CEMA of 1.59 ± 0.33 kg/day, 
432.99 ± 65.60 kg and 90.06 ± 10.86 cm2, respectively. 
More recently, Reverter et al. (2023) with a population of 
2120 Angus-based steers from four commercial feedlots feed 
for an average of 222.46 day, reported means ± s.d. for CWT 
and MARB of 425.45 ± 43.94 kg and 3.64 ± 1.33, 
respectively. 

Genotypes and genomic relationships

On average, the estimated percentage of genomic Wagyu 
content in the FB and XB cattle was 99.12% and 59.55%, 
respectively. Also on average, the sum of Wagyu and Angus 
content in the XB cattle was 94.12% and with the remaining 
5.88% estimated to originate from mostly Holstein, Santa 
Gertrudis, and Shorthorn with more than 1% (Table 2). 
Given the large content of Angus in the XB population, 
caution will be needed when exploring the applicability of the 
Wagyu Feeder Check tool in Wagyu × Bos indicus crossbred 
animals. In particular, among the XB cattle, there were 129 
(or 2.1%) for which the summed Wagyu and Angus content 
was <50%. For these animals, the average Wagyu and 

Table 2. Genomic breed composition of the crossbred population:
summary statistics including mean, standard deviation (s.d.), minimum
and maximum for the estimated percentage of genomic breed
content of Wagyu, Angus, Holstein, Santa Gertrudis, Shorthorn,
Hereford, Charolais and Brahman in the 6196 crossbred populations.

Breed Mean s.d. Min. Max.

Wagyu 59.55 17.18 0.00 100.00

Angus 34.57 19.24 0.00 100.00

Holstein 1.17 6.79 0.00 62.19

Santa Gertrudis 1.10 4.38 0.00 50.44

Shorthorn 0.89 4.44 0.00 43.53

Hereford 0.84 3.86 0.00 50.58

Charolais 0.81 2.84 0.00 33.13

Brahman 0.77 3.73 0.00 50.03

Angus content was 42.63% and 2.33%, respectively. Therefore, 
these 129 XB cattle could be considered F1 Wagyu × non-
Angus. Other significant breed percentages represented 
among these 129 XB cattle were Shorthorn (17.80%), Santa 
Gertrudis (12.90%), Charolais (7.07%), Holstein (6.21%) 
and Hereford (5.46%). 

The percentage of variation in genomic relationships 
accounted for the first three principal components was 4.97%, 
1.02% and 0.90%, respectively. Fig. 1 displays the scatter plot 
of the PCA for the first two principal components (PC1 and 
PC2) with the two populations (FB and XB) distinctly 
highlighted. Also highlighted in Fig. 1 are the 129 XB cattle 
with low Angus content. Explaining 4.97% of the variation 
in genomic relationships, PC1 shows a clear separation 
between FB and XB. On closer examination, we found a 
very strong Pearson correlation coefficient (r) between the 
genomic estimate of Wagyu content and PC1 (r = 0.976 ± 
0.002). This correlation remained strong when examined 
within the FB (r = 0.687 ± 0.016) and within the XB 
(r = 0.959 ± 0.004) populations. In multibreed beef 
populations, it is not uncommon for PC1 to distinguish 
between Bos taurus and Bos indicus cattle. For recent examples, 
see for instance Yonesaka et al. (2016)  and Porto-Neto et al. 
(2023). The work by Yonesaka et al. (2016)  is of particular 
relevance because although their PC1 explained 17.6% of 
the variation, indeed separating Bos taurus from Bos indicus 
population, PC2 explained 4.5% (very close to our 4.96%) 
and distinguished Japanese Black cattle in one extreme and 
Angus on the other. 

Fig. 2a shows the structure of the Wagyu Feeder Check 
population using the Pedigromics network approach (Reverter 
et al. 2019). The centre of the network is dominated by the 
three FB populations whereas the five XB populations, with 
smaller node sizes, are scattered around the periphery. To 
better illustrate the interconnectivity within and across 
populations, the insert in Fig. 2b shows a subset of the 
whole Pedigromics network where only the 10 most 
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Fig. 1. Scatter plot of the first two principal component, PC1 and PC2, of the genomic relationship among individuals in the
Wagyu fullblood (FB; black dots), Wagyu crossbreds (XB; red dots) populations, and in the 129 XB cattle with low Angus
content (blue inverted triangles).

connected animals within each of the eight populations are 
displayed. As expected, due to the larger size of POP1 among 
the FB, most of the connectivity from XB to FB happens 
through POP1. This interconnectivity within and across 
populations is further exemplified in Fig. 2c where a heatmap 
of genomic relationships >12.5% is tabled. The diagonals are 
showing the connectivity within a population and populations 
are more highly correlated within themselves than across 
populations. Although there’s little connectivity among the 
three FB populations (POP1, POP2 and POP3) including no 
connectivity between POP2 and POP3, all five XB 
populations (POP4 to POP8) have connections with the FB 
populations. Also, the XB population with the highest Wagyu 
content (POP7 and 84.4% Wagyu) has the highest 
connectivity with the three FB populations. Importantly, the 
Wagyu content was not estimated based on connections to the 
FB populations. 

Upon closer inspection of the GRM, the proportion of 
genomic relationships >25% (indicating potential half-sibs) 
was 5.30%, 11.82%, 6.79%, 1.30%, 0.73%, 0.64%, 0.61%, 
and 0.27% for POP1 to POP8, respectively. Therefore, the 

proportion of half-sibs within each XB population (POP4 to 
POP8) does not seem to be higher than that observed 
within the FB populations (POP1 to POP3). 

Genetic parameter estimates

Table 3 shows the estimates of heritability (h2, ± standard 
error (s.e.)), genetic (rg) and residual correlation (re) obtained 
from the pentavariate GBLUP model with the entire dataset. 
Heritability estimates were generally moderate to high, 
ranging from 0.347 ± 0.021 for CEMA to 0.526 ± 0.018 for 
FADG. Our h2 estimates are very similar to those recently 
reported by Rostamzadeh Mahdabi et al. (2023) using a 
population of 9850 Wagyu steers and heifers. In that work, 
the authors reported h2 estimates of 0.510 ± 0.014 for 
CWT, 0.430 ± 0.015 for CEMA, 0.473 ± 0.015 for CP8 and 
0.486 ± 0.014 for MARB. In Japanese Black cattle, Onogi et al. 
(2014) reported h2 for CWT (0.56), CEMA (0.43) and MARB 
(0.66), which are higher than those from our study. Similarly, 
h2 estimates for carcase traits in Korean Hanwoo cattle have 
been reported recently. Estimates from Mehrban et al. (2019) 
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Fig. 2. (a) Structure of the Wagyu Feeder Check population using the Pedigromics network approach (Reverter et al. 2019), where
animals from the eight populations (POP1 to POP8) are nodes, genomic relationships >12.5% are edges and the percent Wagyu
content is mapped to the size of each node. (b) A subset of the whole Pedigromics network where only the 10 most connected
animals within each of the eight populations are displayed. (c) Interconnectivity within and across the eight populations (POP1 to
POP8) including number of records (N Rec), percentage of Wagyu content (% Wag) and based on genomic relationships >12.5%.

Table 3. Estimates (±s.e.) of heritabilities (bold, diagonal), genetic correlations (above diagonal) and residual correlations (below diagonal) for the
feedlot and carcase traits.

FADG CWT CEMA MARB CP8

FADG 0.526 ± 0.018 0.832 ± 0.012 0.307 ± 0.047 −0.083 ± 0.04 0.131 ± 0.040

CWT 0.742 ± 0.009 0.475 ± 0.017 0.391 ± 0.045 0.026 ± 0.037 0.139 ± 0.039

CEMA 0.199 ± 0.020 0.275 ± 0.018 0.347 ± 0.021 0.333 ± 0.048 −0.124 ± 0.05

MARB 0.036 ± 0.019 0.081 ± 0.018 0.209 ± 0.018 0.437 ± 0.018 −0.085 ± 0.04

CP8 0.097 ± 0.022 0.148 ± 0.020 0.016 ± 0.020 0.017 ± 0.019 0.428 ± 0.021

FADG, average daily gain during feedlot finishing; CWT, hot carcase weight; CEMA, carcase eye muscle area; MARB, AUS-MEAT marbling score; CP8, carcase
subcutaneous fat depth at the rump or P8 site.

include CWT (0.39), CEMA (0.45), MARB (0.64) and CP8 
(0.51); and estimates from Naserkheil et al. (2021) were 
0.42, 0.50, 0.59, and 0.56 for CWT, CEMA, MARB and CP8, 
respectively. 

The review of Ríos Utrera and Van Vleck (2004) reported 
average h2 estimates for CWT, CP8, CEMA and MARB of 0.40, 
0.36, 0.40, and 0.37, respectively. Therefore, at 0.347 ± 0.021 
our h2 estimate for CEMA is somewhat lower than what 
has been generally reported. On the other extreme, at 
0.526 ± 0.018 our h2 estimate for FADG is higher than 
published values including the 0.33 of Torres-Vázquez et al. 
(2018) and the 0.30 of Alexandre et al. (2021) both with 

Angus cattle, and the 0.31 of Somavilla et al. (2017) with 
Nellore cattle. 

Estimates of rg were strong and positive between FADG and 
CWT (0.832 ± 0.012), and moderate and positive between 
CWT and CEMA (0.391 ± 0.045) and between CEMA and 
MARB (0.333 ± 0.048). For the same three pairs of traits, the 
study of Alexandre et al. (2021) with Angus cattle reported rg 

estimates of 0.65, 0.37 and 0.14, respectively; with Hanwoo 
cattle, Naserkheil et al. (2021) estimated rg of 0.56 between 
CWT and CEMA and 0.35 between CEMA and MARB. In 
general, all other rg estimates were within two s.e. and likely 
not significantly different from zero. Also, in general, the 
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estimates of re were lower and closer in magnitude to zero 
than the rg estimates. 

GEBV accuracies are consistent with the theoretical 
expectation of ~55% and ~65% respectively for traits of 

Heritabilities, genetic and residual correlations are trait-
and population-specific parameters; therefore, a diversity of 
estimates can be observed in different studies even with the 
same breed and trait. Factors such as breed, environment, age 
at measurement, accuracy of measurement and data source 
(i.e. pedigree or genomic), as well as the analytical method-
ology may affect the estimates. Because of this diversity, it 
is always worthwhile to explore the quality of the resulting 
genomic predictions in terms of their accuracy, bias, and 
dispersion. This is particularly the case when, as in the 
current study, the main objective is to develop a genomic 
tool to be deployed at scale in commercial scenarios. 

0.3 and 0.5 heritability and a reference population of 
~7000 individuals (Goddard and Hayes 2009), which is the 
equivalent of 8316 total animals in our case minus the 
~1500 XB animals set aside for each validation. If a whole 
sub-population of XB had their phenotypes set to missing 
the expectation is that the ACC would be diminished, 
particularly if that sub-population is poorly connected. 
However, all XB populations have connections among 
themselves and among all three FB populations (Fig. 2c). In 
addition, because most sub-populations of XB have less 
than 1549 animals or 25% of XB cattle (the exception being 
POP6 with 2456 cattle), setting their phenotypes to missing 
would imply that the remaining ‘reference’ is larger 
which might result in higher genomic prediction ACC. This Genomic predictions and cross-validation results
phenomenon has been recently reported by Reverter et al. 

Shown in Fig. 3 are the genomic prediction accuracies for all 
traits averaged across the four cross-validation samples and 
based on both accuracy metrics, ACCT and ACCLR. Also in 
Fig. 3 are the ACCT for the 129 XB cattle with low Angus 
content. Across the 20 accuracy estimates obtained from five 
traits and four validation datasets, the correlation between 
ACCT and ACCLR was 0.922, an estimate higher than the 0.73 
reported by Alexandre et al. (2021) across 49 estimates, and 
the 0.831 reported by Reverter et al. (2021) across 15 
estimates and both studies with feedlot and carcase traits in 
Angus cattle. 

(2023) where data from four commercial feedlots were 
removed one feedlot at a time and compared to removing 
50% of all the commercial data. 

The study of Onogi et al. (2014) with Japanese Black cattle 
reported a predicted ability (correlation between the GEBV 
and the adjusted phenotypes) of 0.44, 0.42 and 0.39 for 
CWT, CEMA and MARB, respectively. Meanwhile, the study 
of Mehrban et al. (2019) with Hanwoo cattle estimated GEBV 
accuracies of 0.56, 0.44, 0.36 and 0.33 for CWT, CEMA, 
MARB and CP8, respectively. 

For the 129 XB cattle with low Angus content GEBV 
Accuracies were in the range of 55–65% for all traits except 

for CEMA, which were in the 40–50% range. This lower 
accuracy for CEMA was attributed to its lower h2 of ~0.35 
compared to h2 > 0.45 for the other traits (Table 3). Our 

accuracies were not markedly affected for FADG and CP8, 
whereas they were somewhat lower for CWT, and higher for 
CEMA and MARB. This rather unexpected result was attributed 
to the low number of animals affecting the precision of the ACC 

Fig. 3. Genomic prediction accuracy based on traditional accuracy (ACC_T) and LR method accuracy
(ACC_LR) across the entire population and ACC_T in 129 XB cattle with low Angus content for average
daily gain during feedlot finishing (FADG), hot carcase weight (CWT), carcase eye muscle area (CEMA),
AUS-MEAT marbling score (MARB), and carcase subcutaneous fat depth at the rump or P8 site (CP8).
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estimates, and to the large proportion of Wagyu content in 
these cattle (average 42.6%, range = 0–49.9%). Nevertheless, 
we maintain that caution will be needed when exploring the 
applicability of the Wagyu Feeder Check tool in Wagyu × 
non-Angus, particularly Wagyu × Bos indicus crossbred animals. 

Averaged across all validation datasets, and indicating no 
bias, the 95% confidence interval for GEBV bias contained 
zero in all traits (Table 4, upper part). Similarly, the 95% 
confidence intervals for the dispersion in GEBV contained 
zero for all traits except FADG for which the 95% confidence 
interval showed a tendency for under-dispersion (or 
deflation) of GEBV (Table 4, lower part). Nevertheless, this 
under-dispersion vanished at 99% confidence interval. 

Unlike the recent work of Reverter et al. (2023) with 3766 
purebred Angus steers plus 2124 Angus-based commercial 
steers, in the present study we did not observe a tendency for 
over-dispersion (or inflation) of GEBV for CWT or MARB. 
Similarly, the recent work by Koo et al. (2023) exploring the 
quality of the genomic evaluation of Korean Hanwoo cattle 
based on a large number of genotyped cows, steers and 
young animals applied the LR method to confirm a slight 
negative bias (GEBV overestimation) for all traits and animal 
groups, but a slight positive bias (GEBV underestimation) for 
CEMA and MARB in steers. However, their estimates of bias 
did not deviate significantly from zero. Similarly, their LR 
estimate of dispersion did not deviate markedly from the 
expected value of 1 suggesting that GEBV were neither 
inflated nor deflated. 

Like the case for genetic parameters, estimates of GEBV 
quality metrics (i.e. bias, dispersion, and accuracy) can be 
affected by a myriad of reasons including the size of the 
reference population, heritability of the trait, relatedness 

Table 4. Mean (±s.e.) and lower (LB) and upper (UB) bounds for the
95% confidence interval for bias and dispersion of genomic predictions
for the feedlot and carcase traits.

Trait Mean 95% LB 95% UP

Bias

FADG (kg/day) −0.000 ± 0.001 −0.003 0.002

CWT (kg) 0.063 ± 0.318 −0.559 0.683

CEMA (cm2) 0.022 ± 0.067 −0.110 0.154

MARB (score) 0.001 ± 0.011 −0.019 0.022

CP8 (mm) 0.031 ± 0.061 −0.090 0.151

Dispersion

FADG (kg/day) −0.056 ± 0.025 −0.106 −0.007

CWT (kg) −0.034 ± 0.021 −0.074 0.007

CEMA (cm2) −0.001 ± 0.031 −0.062 0.060

MARB (score) 0.005 ± 0.019 −0.032 0.042

CP8 (mm) −0.010 ± 0.027 −0.062 0.042

FADG, average daily gain during feedlot finishing; CWT, hot carcase weight;
CEMA, carcase eye muscle area; MARB, AUS-MEAT marbling score; CP8,
carcase subcutaneous fat depth at the rump or P8 site.

Table 5. Mean measured trait values for validation Wagyu
crossbreed animals assigned to quartiles on the basis of genomic
estimated breeding values and difference (Q1mQ4) between top
(Q1) and bottom (Q4) quartile.

Trait Q1 Q2 Q3 Q4 Q1mQ4

FADG (kg/day) 0.076 0.019 −0.016 −0.078 0.154

CWT (kg) 20.701 5.496 −5.835 −20.220 40.92

CEMA (cm2) 2.044 0.287 0.002 −2.324 4.368

MARB (score) 0.736 0.178 −0.226 −0.683 1.419

CP8 (mm) 3.043 0.709 −0.916 −2.282 5.325

FADG, average daily gain during feedlot finishing; CWT, hot carcase weight;
CEMA, carcase eye muscle area; MARB, AUS-MEAT marbling score; CP8,
carcase subcutaneous fat depth at the rump or P8 site.

between reference and validation population, and marker 
density. Again, because of this diversity, it is always 
worthwhile to explore the quality of the resulting GEBV in 
terms of their ability to reflect phenotypic differences in the 
highest and lowest GEBV quartile. 

Table 5 presents phenotypic values for validation XB 
animals assigned to quartiles on the basis of GEBV and the 
difference (Q1mQ4) between the top (Q1) and the bottom 
(Q4) quartile. In agreement with the theoretical expectation 
of a linear relationship between ACC and phenotypic 
differences in predefined percentiles (Reverter et al. 2022), 
we observed a Q1mQ4 difference of 0.154 kg/day in FADG, 
40.92 kg of CWT, 4.368 cm2 of CEMA, 1.419 scores of 
MARB and 5.325 mm of CP8. 

Conclusions

The present study highlights the potential of genomic 
predictions generated by Wagyu Feeder Check regarding 
differences in feedlot and carcase performance of Australian 
Wagyu cattle. Given the large content of Angus in the XB 
population, further research is required to determine the 
predictive ability of GEBV in Wagyu × Bos indicus and 
Wagyu × dairy animals. Our preliminary results indicate that 
commercial feedlot operators finishing animals with a strong 
Wagyu breed component will benefit from using Wagyu 
Feeder Check. Benefits will come from identifying and 
discarding low genetic merit animals from long-fed programs, 
as well as from minimising days on feed required to achieve a 
high marbling product. Future research will focus on the 
expansion of the database constituting the reference population 
and on the recalibration of the genomic predictions. 
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