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ABSTRACT 

The relationship among nutrition, health, and productivity of livestock is a continuously changing 
interaction between environment and physiology. As such, understanding how the physiological 
system is able to adapt to the type and amount of nutrients consumed is central to our ability to 
care for and manage livestock. Recognition that cells possess proteins with the ability to ‘sense’ 
and trigger a cascade of biological events in response to nutrient availability is at the core of 
nutritional genomics (or nutrigenomics) as a field of science. Nutrigenomics is generally defined as 
the study of the genome-wide influence of nutrition. Certain transcriptional regulators can interact 
with nutrients and cause large-scale alterations in gene expression, metabolic and signaling 
pathways, and ultimately tissue function. The advent of high-throughput technologies to study an 
animal’s microbiome, genome, transcriptome, proteome, and metabolome (i.e. ‘omics’ tools) has 
been instrumental in moving the field of nutrigenomics forward. Available data from studies with 
livestock species using targeted or untargeted molecular methods underscore the existence of 
networks of multiple transcriptional regulators at play in controlling nutrigenomics responses. 
Fatty acids, amino acids, trace nutrients, and level of feed and energy intake have the strongest 
reported nutrigenomics potential. An important goal for applying nutrigenomics at the animal level 
is to uncover key molecular players involved in the physiological adaptations to changes in nutrient 
supply and environmental conditions. 
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OPEN ACCESS 

The advent of methods to study large-scale molecular adaptations in tissues of livestock in 
response to specific nutrients, environmental changes, and their interactions has in the past 
10 years resulted in a remarkable output of biological information. Reviews as far back as 
2005 (Everts et al. 2005) on the role of ‘functional genomics’ as a discrete field of study 
within the broader animal sciences underscored the value of molecular information in 
livestock species as a way to better manage growth and production performance of the 
animal (Cogburn et al. 2007; Tuggle et al. 2007; Loor 2010). Recognition that metabolic 
regulation in livestock, as in model organisms (Papin et al. 2005), relies partly on 
transcriptional control of gene networks (i.e. a set or sets of genes controlling specific 
cellular functions) that are under the control of transcription factor(s) or nuclear 
receptor(s) led to proposals for broader application of the ‘systems biology approach’ 
(Bionaz and Loor 2012; Loor et al. 2013, 2015; McNamara 2015). Conceptually, such an 
approach would allow for integrating information from an animal at the gene (DNA), 
mRNA, protein, and metabolite level with measures of performance. Thus, from a 
‘nutrigenomics’ standpoint, the systems biology approach is a means to understand 
better how nutrients (or diet composition, e.g. energy density) can alter phenotypes 
such as marbling, milk composition, growth rate, and health. 

The systems approach to livestock biology research has been dramatically enhanced by the 
development of ‘high-throughput’ technologies (also known as ‘omics’) and the completion 
and functional annotation of livestock genomes, i.e. ‘the process of identifying functional 
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elements along the sequence of a genome, thus, giving 
biological meaning to it’ (The FAANG Consortium et al. 
2015). A central aspect of the systems approach is the use 
of tools to infer biological meaning from the vast amount 
of data that can be generated (Huang et al. 2009a). For 
example, a number of ‘gene enrichment’ tools that use 
biological knowledge accumulated in public databases such 
as the ‘Gene Ontology Resource’ (Ashburner et al. 2000; The 
Gene Ontology Consortium 2021) or  ‘Kyoto Encyclopedia of 
Genes and Genomes (KEGG)’ (Kanehisa et al. 2021) have 
been developed since at least 2000 (Huang et al. 2009a). 
Publicly accessible tools such as the ‘Database for 
Annotation, Visualization and Integrated Discovery (DAVID)’ 
(Huang et al. 2009a, 2009b) allow users to upload large 
gene lists and perform analyses to identify biological themes 
that are ‘enriched’ or ‘over-represented’ within the gene list, 
and also to visualise genes on the KEGG pathways. Other 
tools such as STRING (Szklarczyk et al. 2021) contain 
databases of known and predicted protein–protein interactions 
for a large number of organisms, including livestock 
(Szklarczyk et al. 2021). The user can input a list of proteins 
and after the tool identifies the proteins, it will display a 
‘network’ encompassing all the mapped proteins and their 
interconnections. A similar tool for building networks with 
gene expression data is Ingenuity Pathway Analysis (IPA), 
which allows users to build causal networks constructed 
from individual relationships curated from the scientific 
literature (Krämer et al. 2014). International efforts such as 
the Functional Annotation of ANimal Genomes (FAANG) 
project have generated foundational data regarding regulatory 
genomic regions in farmed animal genomes (Clark et al. 2020). 
Although key goals of FAANG in the long-term are to link 
genotypes, phenotypes, and genetic merit for application in 
the field, knowledge on the role of specific macro- and  
micronutrients in contributing to a specific phenotypic 
outcome is still in its infancy. 

The main objective of this short review is to provide a 
general overview of the recent advances on ‘nutrient-
sensing’ transcriptional networks that affect livestock 
performance and health. A number of ‘nutrient-sensing’ 
proteins exist in cells and have a potential nutrigenomics 
role (non-exhaustive list in Table 1). Similarly, there has 
been progress in identifying compounds that can induce a 
nutrigenomics effect in tissues of livestock (Table 2). 
Additional nutrient-sensing proteins may yet be identified. 

Methods for nutrigenomics 

In-depth understanding of the role of a given nutrient, mixtures 
of nutrients, or even feed additives and diet composition on 
gene transcription ideally requires the application of ‘high-
throughput’ techniques such as RNA sequencing, often called 
‘next-generation sequencing’ (NGS; Loor et al. 2015). 

Application of genome-enabled NGS also requires use of 
bioinformatics and proper statistical analysis methods so as 
to generate meaningful biological data. Because the use of 
NGS allows for evaluating the entire genome landscape in a 
given tissue or cell, application of ‘omics’ generates a holistic 
view of the overall physiology and molecular adaptations of 
an organism (Loor et al. 2015). Such a view can encompass 
genes and genome (transcriptomics), proteins and proteome 
(proteomics) and metabolites and biological pathways 
(metabolomics). Detailed explanation of these methods, 
along with some historical background, in the context of 
livestock are available and will not be discussed in this 
review (Bionaz et al. 2015; Loor et al. 2015; Osorio et al. 
2017). Suffice it to emphasise that transcriptomics allows for 
exploring changes in the profiles of mRNA, proteomics deals 
with evaluating changes in protein profiles, and metabolomics 
allows evaluation of changes in metabolite profiles. As a result, 
besides their application in nutrigenomics, these approaches 
are routinely used in studies aimed at understanding 
complex phenotypes such as feed efficiency, ability for fat or 
lean deposition, and the role of maternal nutrition on 
development of the offspring (‘programming effect’; Table 2). 

Due to complexity and cost, most published nutrigenomics 
studies have relied on one of these approaches to infer how 
nutrients, diets, or climate impact the physiology of 
livestock. There are few published attempts integrating two 
or more technologies. One study that merits specific mention  
is that of Jastrebski et al. (2017), dealing with the hepatic 
response at the transcriptome and metabolome to a chronic 
heat stress challenge. That work underscored changes in 
cell-cycle regulation, DNA replication, and DNA repair along 
with immune function. When metabolomics data were 
integrated, it revealed important biological effects on pathways 
including glucose, amino acid, and lipid metabolism, along 
with glutathione production and β-oxidation (Jastrebski 
et al. 2017). Another example of the complementary use of 
transcriptomics and metabolomics is the study of Shahzad 
et al. (2019)  in which these techniques were used to establish 
biological associations between the prepartal transcriptome/ 
metabolome profiles in the liver and the susceptibility to 
clinical ketosis postpartum in Holstein cows. Among the 
most-salient findings, the study uncovered that a lower 
concentration of glucose-6-phosphate (from metabolomics) 
and a marked downregulation of fructose-1,6-bisphosphatase 
2 and pyruvate dehydrogenase kinase 4 mRNA abundance in 
the liver 2 weeks prior to parturition were associated with 
the development of ketosis postpartum. Thus, authors 
inferred that impaired gluconeogenesis in the liver of cows 
prior to parturition could increase the risk of developing 
ketosis after calving. As such, practical approaches that 
optimise feed intake in the late prepartum period could help 
reduce the susceptibility to this metabolic disease. Additional 
examples of published studies in which various omics have 
been applied are listed in Table 2. 
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Table 1. Proteins responsive to specific nutrients, dietary manipulations, and intracellular metabolites. 

Common name Symbol Ligand/activator Main function 
condition 

Retinoic acid receptor α RARα Retinoic acid Development, differentiation, apoptosis 

Retinoic acid receptor β RARβ Retinoic acid Embryonic morphogenesis, cell growth and differentiation 

Retinoic acid receptor γ RARγ Retinoic acid Limb bud development, skeletal growth, and matrix homeostasis 

Peroxisome proliferator-activated receptor α PPARα Fatty acids/polyphenols Fatty acid metabolism, inflammation, tissue regeneration 

Peroxisome proliferator-activated receptor β/δ PPARβ/δ Fatty acids/polyphenols Fatty acid metabolism, tissue regeneration, epidermal proliferation 

Peroxisome proliferator-activated receptor γ PPARγ Fatty acids/polyphenols Adipogenesis, insulin sensitivity, lipogenesis 

Liver X receptor α LXRα Oxysterols/fatty acids (?) Cholesterol homeostasis, macrophage functions, inflammation 

Liver X receptor β LXRβ Oxysterols/fatty acids (?) 

Vitamin D receptor VDR Vitamin D Mineral metabolism, immune response 

Pregnane X receptor PXR Vitamin E Detoxification 

Hepatocyte nuclear factor 4 α HNF4α Fatty acids (?) Development of the liver, kidney, and intestines 

Retinoid X receptor α RXRα 9-cis-retinoic acid Forming heterodimers with other LdNR, differentiation of 
leukocytes 

Retinoid X receptor β RXRβ 9-cis-retinoic acid Embryonic morphogenesis, cell growth and differentiation 

Nuclear factor, erythroid 2 like 2 NFE2L2 Electrophilic ligands, Control of antioxidant response, enhances utilisation of 
polyphenols glutathione and metabolism of methionine via 1-carbon 

metabolism 

Histone deacetylases HDAC Butyrate Removal of acetyl groups from histone proteins, leads to 
suppression of gene transcription 

Sterol regulatory element binding transcription SREBF1 Glucose, carbohydrate Lipogenesis 
factor 1 

Sterol regulatory element binding transcription SREBF2 Sterols Cholesterol synthesis 
factor 2 

Nuclear factor kappa B subunit 1 NFKB1 Electrophilic ligands, Regulator of immune, stress, apoptosis, and differentiation 
polyphenols, amino acid responses; activated when one or more amino acids become 
deprivation limiting 

CCAAT-enhancer binding protein-α CEBPA Amino acids Cell-cycle regulation; activated when one or more essential amino 
acids becomes limiting 

CCAAT-enhancer binding protein-β CEBPB Amino acids Cell-cycle regulation in hepatocytes; regulation of lipid metabolism; 
regulation of gluconeogenesis; activated when one or more amino 
acids become limiting 

Serine/threonine-protein kinase GCN2 Amino acids Sensor of amino acid deprivation; activated when one or more 
amino acids become limiting 

MLX interacting protein like (carbohydrate- MLXIPL Glucose, carbohydrate Lipogenesis (adipose) 
responsive element binding protein) (ChREBP) 

cAMP response element binding protein 1 CREB1 Glucose, carbohydrate Gluconeogenesis, lipogenesis (mammary), adipogenesis (adipose) 

E2F transcription factor 1 E2F1 Glucose, carbohydrate Cell cycle regulation; gluconeogenesis, lipogenesis (liver), 
cholesterol uptake (liver), oxidative metabolism (muscle, brown 
adipose) 

Adapted and modified from Bionaz et al. (2015). Regulation of the activity of these proteins occurs mainly at the post-translational level, and in some cases 
via phosphorylation and dephosphorylation of specific amino acid residues on the protein. 

Transcriptional regulators and nutrient 
supply 

ruminants is available (Bionaz et al. 2013) and it is also 
important to highlight that other livestock species such as 
pigs possess a PPAR (at least in the liver) network that is 
responsive to changes in nutrient supply, i.e. PPARα 
target genes are upregulated in response to fasting (Cheon 
et al. 2005). With few exceptions, the three PPAR isotypes, 
α, β, and γ , are expressed preferentially in a given tissue, 

In livestock, one of the most-studied molecular regulators of 
transcriptional networks responsive to nutrients are the 
peroxisome proliferator-activated receptors (PPAR; Bionaz 
et al. 2013, 2015). A comprehensive review of PPAR in 
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Table 2. Selected examples of published papers reporting the use of various omics techniques to study livestock physiology, including the effect of 
nutrition. 

Animal Type of Tissue Focus Effect or objectives Reference 
analysis 

Pig Transcriptomics 
Metabolomics 

Muscle Enshi black pigs Differentially expressed genes and metabolites 
revealed candidate targets that help explain 
intramuscular fat content and meat colour 

Zhan et al. (2022) 

Chicken Transcriptomics Muscle 
Abdominal fat 

Embryonic stage through 
Day 180 post-hatch 

Network analysis identified gene modules and hub 
genes associated with important traits such as 
intramuscular fat content and breast muscle 
content 

Xing et al. (2021) 

Pig Metabolomics Plasma Duroc pigs Branched-chain amino acids are associated with 
high intramuscular fat (IMF) content. Thus, these 
can be used as biomarkers for IMF content in the 
loin eye area 

Taniguchi et al. (2020) 

Pig Transcriptomics Muscle Pigs with different residual 
feed intake 

Differentially expressed genes revealed enhanced 
activity of adaptive immunity and phagocytes in 
feed-efficient pigs, suggesting more efficient 
conservation of resources, which can be utilised for 
other important biological processes 

Horodyska et al. (2018) 

Pig Proteomics Muscle Chinese and western-type 
pig breeds 

More than 250 differentially expressed proteins 
were detected between breeds. Network analysis 
indicated that a subset of these proteins was 
associated with differences in muscle growth and 
lipid deposition between breeds 

Wang et al. (2017b) 

Beef steers Transcriptomics Muscle 
Liver 

SNP detection for feed 
efficiency 

Liver and muscle tissue RNA sequencing data from 
beef steers with low or high residual feed intake 
measures were used to determine detection 
power, read depth, and accuracy of SNP calling by 
comparing three different RNA sequencing 
pipelines 

Lam et al. (2020) 

Dairy cows Transcriptomics Liver SNP detection for feed 
efficiency in Holstein 
and Jersey 

Liver tissue RNA sequencing data from lactating 
Holstein and Jersey cows were used to identify SNP 
associated with low or high residual feed intake 
(RFI) within each breed, and also overlapping SNP 
in the low or high RFI groups that are common 
across both breeds 

Lam et al. (2021) 

Nutrigenomics and systems biology 

Pig Transcriptomics Muscle Level of dietary lysine 
(5-week feeding) 

Dietary level of lysine can regulate various signaling 
patwhays associated with protein turnover and lipid 
metabolism. Excess supply of dietary Lysine can 
enhance skeletal muscle deposition at the expense 
of lipid synthesis 

Wang et al. (2017a) 

Pig Transcriptomic Muscle Mulberry leaf powder 
fed at three levels 

Feeding 6% mulberry-supplemented diets to 
finishing pigs led to differential expression of more 
than 500 genes and was associated with better 
average daily gain and measures of meat quality 

Chen et al. (2019) 

Sheep Transcriptomics Muscle 
Subcutaneous 
fat 

Level of vitamin E 
(30-day feeding after 
weaning) 

Supplemental vitamin E increased its concentration 
in muscle and decreased lipid oxidation of the meat. 
Those responses were asociated with differential 
expression of genes, especially in pathways related 
to lipid biosynthesis, cholesterol, and steroid 
biosynthesis 

González-Calvo et al. 
(2017) 

Dairy cow Transcriptomics 
Metabolomics 
Proteomics 
Enzyme activity 

Neonatal liver Rumen-protected 
methionine (last 4-weeks 
prior to birth) 

Enhanced post-ruminal supply of methionine in late-
pregnancy led to greater calf development in utero 
and, although hepatic DNA methylation was 
increased, there were distinct alterations in the 
hepatic transcriptome, metabolome, and proteome 
profiles at birth 

Palombo et al. (2021) 

(Continued on next page) 
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Table 2. (Continued). 

Animal Type of Tissue Focus Effect or objectives Reference 
analysis 

Developmental programming and nutrigenomics 

Dairy cow Transcriptomics Embryo 
(whole) 

Rumen-protected 
methionine 
(from calving to 70 days 
postpartum) 

More than 250 genes from a total of ~10 500 
identified had differential expression in response to 
feeding RPM prior to implantation, and the majority 
were downregulated. A number of the differentially 
expressed genes are associated with development 
and immune function. The increased supply of 
methionine from feeding RPM was suggested to 
have increased the methylation of DNA, hence, 
explaining the downregulation of most genes 

Peñagaricano et al. 
(2013) 

Dairy cow Transcriptomics Mammary Heat stress (no cooling) 
during a ~45-day dry 
period 

More than 150 differentially expressed genes were 
detected due to heat stress from lack of cooling in 
the dry period. These were associated with 
alterations in ductal branching morphogenesis, 
inflammation, and cell death 

Dado-Senn et al. (2018) 

Dairy Transcriptomics 
DNA 
methylation 
Morphology 

Mammary Heat stress (no cooling) 
during a ~45-day dry 
period 

A number of differentially methylated DNA regions 
(i.e. CpG sites; regions of DNA where a cytosine 
(C) nucleotide is followed by a guanine (G) 
nucleotide) and more than 100 differentially 
expressed genes were detected in response to heat 
stress during the dry period. Authors suggested 
these alterations in utero were partly responsible 
for morphological changes detected in the 
mammary gland of heifers after birth 

Skibiel et al. (2018) 
heifer 

Sheep Transcriptomics 
Methylomics 

Fetal muscle Corn-based diet (mid-
gestation 
to 1-week before 
parturition) 

Feeding a corn-based versus a hay-based diet led to 
differential methylation of a discrete number of 
DNA regions. Those changes were associared with 
differential gene expression. Data indicated that 
maternal diet from mid- to late-gestation alters the 
epigenome and transcriptome of fetal muscle 

Namous et al. (2018) 

Broilers Transcriptomics Embryo spleen Vitamin C injection into 
fertile eggs at embryonic 
day 11 

There were 141 differentially expressed genes in 
spleen due to in ovo viatmin C injection. Functional 
analysis via bioinformatics indicated that the purine 
nucleotide metabolism pathway is key for the 
regulation of spleen development in response to 
vitamin C 

Zhu et al. (2021) 

Beef 
calves 

Transcriptomics Neonatal 
muscle 

Supranutritional selenium-
yeast supplementation 
during the first, second, 
or third trimester of 
gestation 

Longissimussas muscle biopsies harvested at 12–48 h 
after birth were used to evaluate gene expression. 
More than 3000 genes were differentially expressed 
across all treatment comparisons. A total of 237 
unique transcriptional regulators were identified 
and putatively regulate the differentially expressed 
genes. A number of genes related to muscle 
development were altered depending on selenium-
yeast supplementation trimester 

Diniz et al. (2021a) 

e.g. PPARα in liver, PPARβ in muscle, and PPARγ in adipose 
tissue (Bionaz et al. 2013). It is that preferential expression 
that confers each PPAR a unique biological function, 
e.g. PPARα coordinates transcriptional regulation of fatty acid 
oxidation genes in liver, PPARβ controls fatty acid oxidation in 
muscle, and PPARγ coordinates processes related to lipogenesis 
both in adipose tissue and mammary gland of ruminants and 
swine (Bionaz and Loor 2008; Bionaz et al. 2013; Moisá 
et al. 2014; Palombo et al. 2018; Albuquerque et al. 2020). 

Since the review of Bionaz et al. (2015), published data not 
only confirmed the potency of 16:0 and 18:0 fatty acids for 
activating transcriptional networks in ruminant mammary 
cells controlled by PPARγ, but also provided evidence for 
the existence of other transcriptional regulators (at least in 
mammary cells) that are uniquely sensitive to the supply of 
16:0 (Vargas-Bello-Pérez et al. 2019). Thus, other transcrip-
tion factors (TF) should be investigated to fully understand 
the transcriptomic effect of 16:0 on milk fat synthesis or 
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adipogenesis (Moisá et al. 2017; Minuti et al. 2020). Such an 
endeavor could encompass the use of RNA sequencing, which 
would provide data that could be mined through 
bioinformatics methods and help generate information 
regarding putative transcriptional regulators. An example of 

a bioinformatics analysis focused on gene networks and TF 
discovery is depicted in Fig. 1. In that study, a systems 
approach was used to understand changes in the 
subcutaneous adipose tissue transcriptome in dairy cows 
fed a typical lower-energy diet or a higher-energy diet 

Fig. 1. Network of upregulated genes including transcriptional regulators (FGF21, GHRL, LIPE, PAPR2, PPARG, PPARGC1A, RETN) 
with the highest predicted impact for controlling differences in subcutaneous adipose-tissue transcriptome profiles in Holstein dairy 
cows fed a higher-energy versus control-energy diet during a typical 50-day dry period. Adapted from Minuti et al. (2020). Analysis 
depicts data from transcriptomics analysis in biopsy tissue harvested at −14 days relative to parturition. Orange shades denote 
activation and blue shades inhibition of the upregulators. Red shades denote upregulation, while green shades denote downregulation. 
Blue and orange dotted lines in arrows denote the predicted inhibition and activation effect respectively, of the upstream regulators 
on target genes. Network analysis was performed with the commercial software Ingenuity Pathway Analysis (QIAGEN Digital Insights, 
Hilden, Germany). 
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during a typical ~50-day dry period (Minuti et al. 2020). 
Transcriptome data and bioinformatics analysis along with 
plasma and performance data were integrated to develop a 
systems view of the effect of dietary plane of energy on fat 
deposition. Besides the fundamental scientific questions 
under study, the practical relevance of the systems analysis 
performed is underscored by the fact that dietary energy 
overfeeding in confinement systems for dairy cows often 
increases the risk of developing disorders after calving 
(Drackley and Cardoso 2014). 

Another important consideration in the context of long-
chain fatty acid supply to the animal is the fact that tissues 
are actually exposed to mixtures of fatty acids, the 
amount of which, and profiles, are likely to change in 
response to physiological state or level of dietary intake. To 
begin addressing this complexity from a nutrigenomics 
standpoint, Busato and Bionaz (2021) performed an in vitro 
study with bovine hepatocytes to evaluate the degree of 
activation of PPARα in response to a wide range of 
saturated and unsaturated fatty acids, both individually and 
in combination. Results not only highlighted that 16:0 and 
18:0 alone elicit the strongest activation of PPARα, but when 
12:0 was combined with each of them, PPARα activation was 
even greater (Busato and Bionaz 2021). Thus, an exciting 
outcome was the recognition that some mixtures of long-
chain fatty acids display a synergistic effect leading to 
PPAR activation greater than the sum of their individual 
effects. Authors speculated that such responses are partly 
explained by structural dynamics within the PPAR ligand-
binding pocket (Busato and Bionaz 2021). The practical 
context of nutrigenomics studies like this one is underscored 
by the consistent increases in milk fat yield, without negative 
effects on ruminal digestion, in dairy cows fed rumen-
protected lipid supplements (at ≤3% diet dry matter) with 
a high 16:0 content (dos Santos Neto et al. 2021). 

Beyond milk fat synthesis regulation, it is evident that fat 
depots in livestock also possess a functional PPARγ (example 
for bovine in Fig. 1), and it has been demonstrated that the 
transcription network controlled by this transcriptional 
factor is not only sensitive to nutrition (e.g. high dietary 
starch; Moisá et al. 2014), but also responds to endocrine 
changes associated with a given physiological state, e.g. the 
transition from pregnancy (anabolic state) into lactation 
(catabolic state; Minuti et al. 2020). More important from a 
practical perspective, it is now well known that manipulation 
of the PPAR network not only alters aspects of lipid 
metabolism, but can also help control oxidative stress and 
inflammation (Gessner et al. 2017; Hassan et al. 2020). An 
example of such linkages was uncovered by the TF network 
analysis of Minuti et al. (2020) in which activation of 
PPARγ in adipose prior to calving when a higher-energy diet 
was fed was negatively associated with an abundance of the 
proinflammatory cytokine tumor necrosis alpha (TNF) and 
other immune-related genes (e.g. PTGS2, CCL5; Fig. 1). 

Besides the well known effect of long-chain fatty acids on 
the PPAR network, other nutrients such as polyphenols 
(flavonoids) can activate the PPAR network in tissues and 
antagonise inflammation and oxidative stress by blocking 
the activation of the proinflammatory TF nuclear factor 
kappa B (NFKB1; Gessner et al. 2017). Dairy cow liver 
expresses the PPARα and PPARβ isotypes, and the latter is 
upregulated by inflammatory challenges such as those that 
occur when circulating concentrations of endotoxin increase 
(Graugnard et al. 2013). It could be possible that PPAR 
networks in a given tissue play ‘dual roles’, for example, 
metabolic and immune. More importantly, the fact that 
feeding lipids or alternative feedstuffs (e.g. crop residues, 
agro-industrial byproducts) to livestock have or are becoming 
important in the management at the farm underscores the 
potential nutrigenomics effect of diets fed to livestock. 
Although agro-industrial byproducts such as grape marc 
and citrus leaves in ruminant diets have received special 
focus for their potential role in altering methane emissions 
(Moate et al. 2014; Fernández et al. 2021), they contain 
molecules such as polyphenols and essential oils, which 
could have a nutrigenomics effect at the tissue level. 

In addition to long-chain fatty acids, short-chain fatty acids 
such as butyrate have strong nutrigenomics potential. In vivo, 
using NGS, it was demonstrated that a sustained ruminal infu-
sion of sodium-butyrate (at 10% of expected daily metabolis-
able energy intake to support lactation) in dry Holstein cows 
over a 7-day period led to alterations in the abundance of 
more than 3000 genes relative to baseline (Baldwin et al. 
2018). Among the most notable changes induced by butyrate 
were alterations in genes controlled by PPAR, underscoring 
the broad biological relevance of these nuclear receptors in 
the coordination of nutrigenomics responses (Bionaz et al. 
2013). Although most of the published work on volatile 
fatty acid (VFA) metabolism, and butyrate specifically, has 
centered on ruminants (calf and mature animal), the 
continued emphasis on hindgut function as it relates to 
carbohydrate nutrition in non-ruminant livestock suggests 
that butyrate availability could have a real effect (Tiwari et al. 
2019). It is well accepted that, of the major VFA, butyrate 
elicits the most potent changes at the cellular level, e.g. cell 
differentiation, proliferation, motility, and induction of cell 
cycle arrest and apoptosis (Li and Elsasser 2005). Besides a 
direct effect on gene expression, potentially through a TF, 
butyrate inhibits the function of histone deacetylases (HDAC), 
which are active and essential components of transcriptional 
regulatory complexes (Li and Li 2014). 

Transcription-factor networks and 
nutrigenomics 

A large number of transcriptional regulators are likely to be 
involved in nutrient sensing, and application of various 
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omics in studies with livestock has shown potential biological 
associations among transcriptional regulators that can 
interact with nutrients or intermediate metabolites and, 
subsequently, trigger a response (Table 2, Fig. 1). For 
instance, work with bovine mammary cells first provided 
evidence that PPARγ partly controls abundance of the 
transcriptional regulator SREBF1 (Kadegowda et al. 2009), 
but the production of natural agonists (i.e. long-chain fatty 
acids) via the SREBF1 pathway (i.e. lipogenesis) can affect 
the activity of PPARγ, as observed during differentiation of 
3T3-L1 adipocytes (Kim et al. 1998). Perhaps the most 
concrete evidence for the high degree of interdependence 
among various transcriptional regulators arose from work 
with bovine and goat mammary cells, in which the use of 
techniques to overexpress or ‘silence’ these genes was used 
(Shi et al. 2013; Li et al. 2014; Cui et al. 2015; Zhu et al. 
2015). It is likely that interactions among TF control 
biological processes such as milk fat synthesis (Bionaz and 
Loor 2008), intramuscular adipogenesis (Moisá et al. 2014), 
fat depot deposition (Moisá et al. 2017; Minuti et al. 2020), 
and immune cell function (Vieira-Neto et al. 2021). 

The existence of networks among various TF highlights the 
complexity that needs to be accounted for in nutrigenomic 
studies and interventions. The complexity is even more 
evident when we consider that TF interact not only at the 
intracellular level, but also at the systemic level where 
activation of a TF in one tissue can induce the activation or 
repression of a TF in another tissue (i.e. tissue cross talk) by 
inducing expression of secreted signaling molecules. One 
example of this effect is the hepatokine fibroblast growth 
factor 21 (FGF21), a signaling molecule whose transcription 
is controlled by PPARα in the liver and after secretion 
into the circulation can affect adipose tissue metabolism 
(Eder et al. 2021). Adipokines such as adiponectin represent 
another example of a protein under control of TF (e.g. PPAR), 
which can affect metabolism in tissues such as the liver 
(Sauerwein and Häußler 2016). It is now more apparent 
that TF and target gene networks work in conjunction to 
alter physiological pathways, not only in the mature animal 
(Shahzad et al. 2014), but also in response to altering the 
nutrition of the mother during pregnancy (Namous et al. 
2018; Palombo et al. 2021; Table 2). 

Despite limitations in terms of availability of livestock-
specific data for building networks among TF and target 
genes in nutrigenomics studies, ‘user-friendly’ tools such as 
the commercially available IPA suite are helpful, especially 
when advanced computational biology approaches are not 
readily accessible to nutrition researchers. The gene network 
in Fig. 1 is an example of how IPA can be used to search and 
build connections between a TF (PPARG, PPARGC1A) and its 
targets within a list of differentially expressed genes (Minuti 
et al. 2020). Several of these genes have been validated via RT-
PCR in similar studies with dry/pregnant dairy cows (Ji et al. 
2012), and together with measures of body mass, fat depot 
mass, and plasma biomarkers, they highlight an anabolic 

response in bovine adipose tissue to increased intake of 
dietary energy that is similar to responses in non-ruminants 
(Janovick et al. 2011; Drackley et al. 2014). Although not 
depicted in the figure, the user also has the flexibility to 
include molecules such as metabolites (e.g. glucose) or 
hormones (e.g. insulin) in the network analysis, such that 
changes in concentrations can be linked with a given set of 
TF or target genes. 

There are also publicly accessible tools that allow 
identification of TF responsible for the observed changes in 
gene expression in a given nutrigenomics experiment, e.g. 
the ChIP-X Enrichment Analysis 3 (ChEA3) transcription-
factor enrichment analysis tool (Keenan et al. 2019). Its use 
in a recent nutrigenomics experiment dealing with RNA 
sequencing data from liver of neonatal calves born to cows 
fed normal or greater amounts of methionine (a methyl 
donor) during the last 30 days of pregnancy led to 
identification of 72 TF that had statistically significant 
associations with 568 differentially expressed genes 
(Palombo et al. 2021). Among the TF identified were some 
with known nutrigenomic potential (Table 1), e.g. PPARγ, 
hepatocyte nuclear factor 4 α (HNF4A), or some that are 
responsive to changes in endocrine signals such as circulating 
insulin (forkhead box O1, FOXO1; E2F transcription factor 1, 
E2F1) and glucagon (cAMP responsive element binding 
protein 1, CREB1). 

Clearly, generating molecular networks provides novel 
targets for hypothesis-driven experiments that can help 
better understand how nutrition of the animal may be used 
to achieve a given phenotype, such as e.g. alterations in 
marbling or milk fat composition. The application of 
algorithms that allow for building co-expression networks 
among differentially expressed genes based on correlations 
and information theory (e.g. PCIT) (Reverter and Chan 
2008) also has allowed for identifying significant gene-to-
gene associations within a tissue and among tissues. This 
approach has been used to study regulatory mechanisms 
controlling phenotypes that can be affected by nutrition, 
such as marbling (Cesar et al. 2015, 2018) or the mineral 
content of meat (Afonso et al. 2020). Besides ChEA3, 
identification of biologically relevant TF and target-gene 
networks can be conducted through implementation of 
regulatory impact factor (RIF) algorithms (Reverter et al. 
2010). The metrics generated from the RIF analysis provide 
information on TF connected to target genes, and also help 
identify those TF with the potential to predict target-gene 
abundance (Reverter et al. 2010; Pérez-Montarelo et al. 
2012). This approach was used recently in bovine fetal tissues 
(cerebrum, liver, and muscle) from beef cows underfed or fed 
to meet estimated dietary energy requirements from breeding 
to Day 50 of gestation (Diniz et al. 2021b). The greatest 
changes in target-gene and TF expression (e.g. PPARA, 
SREBF2; Table 2) due to underfeeding were detected in the 
liver (2319 unique differentially co-expressed gene pairs; 
Diniz et al. 2021b), an organ with a central role in fetal 
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metabolism (Battaglia and Meschia 1978). Analyses also 
identified TF that repress gene transcription in muscle tissue 
along with an over-representation of co-expressed genes in 
nutrient-signaling pathways such as the one encompassed by 
PI3K-AKT-mTOR. Some TF that function as transcriptional 
repressors were negatively correlated with genes in these 
nutrient-signaling pathways, suggesting that underfeeding 
led to an overall repression in muscle formation and 
differentiation (Diniz et al. 2021b). These data provided 
mechanistic information to explain the reduction in the 
number of muscle fibres and muscle mass in beef calves 
exposed in utero to underfeeding between mid- and late 
gestation (Paradis et al. 2017). 

Developmental programming and 
nutrigenomics 

A growing body of research is underscoring how specific 
nutrients (e.g. ‘methyl donors’), nutritional management 
(e.g. dietary energy density), or environmental temperature 
(e.g. heat stress) at various stages of pregnancy can lead to 
alterations in cellular ‘epigenetics’ in the offspring of livestock 
(Elolimy et al. 2019; Caton et al. 2020; Dunislawska et al. 
2022; Reynolds et al. 2022). Epigenetics is a key biological 
mechanism underlying the phenomenon of ‘developmental 
programming’ or ‘fetal programming’, a concept based on 
the idea that maternal stress, e.g. over- or under-nutrition, 
during critical developmental windows of the animal can 
have short- and long-term, positive or negative consequences 
for the offspring (Caton et al. 2020). Because the regulation of 
normal growth, development, and nutrient utilisation in 
mammals are programmed in utero and affect the postnatal 
physiology of the animal, perturbations of the maternal 
environment during gestation can affect fetal growth and 
development through epigenetic modifications (Tiffon 
2018; Caton et al. 2020). In the case of poultry, because the 
embryo develops outside the mother factors such as incuba-
tion temperature, humidity, light, and in ovo treatments 
such as specific nutrients can affect normal development 
before hatching (Saeed et al. 2019; Dunislawska et al. 2022). 

Epigenetics, the control of transcription through various 
chemical compounds added to the DNA or histone proteins, 
results in various ‘epigenomic marks’ that change the 
spatial conformation of chromatin (Tiffon 2018). As such, 
these marks can lead to compacting or opening of the 
chromatin complex and either prevent or allow TF binding 
to the DNA. Examples of epigenetic modifications include 
the following: DNA methylation, addition of methyl groups 
to cytosine on DNA, resulting in decreased transcription; 
and histone acetylation, addition of acetyl groups to lysine 
residues on histones resulting in increased transcription; and 
non-coding RNA, functional RNA molecules not translated 
into protein that modulate chromatin structure and 

function (Tiffon 2018). Work with ruminants and poultry in 
the past 10 years has confirmed the role of nutrition or other 
environmental factors (e.g. heat stress) on developmental 
programming of tissues such as brain, skeletal muscle, 
adipose, and the mammary gland, with pronounced 
consequences for the offspring (Table 2). With the 
increased pressure to develop efficient and sustainable 
approaches to raise livestock as a consequence of the expected 
increase in population growth worldwide (Caton et al. 2020), 
a greater focus on the role of nutrition and climate change 
before birth on efficiency of nutrient use by the offspring 
could prove critical. 

Perspectives 

As new technologies for high-throughput data generation 
become more affordable and user-friendly, ‘open-source’ 
statistical and bioinformatics tools are developed [Bioconductor 
suite; (Gentleman et al. 2004; Huber et al. 2015)], a growing 
number of animal scientists (especially younger generations) 
will undoubtedly embrace the systems approach; whether it is 
to address a nutrigenomics goal or to gather fundamental 
information regarding the physiology of the animal. 
Although genotype-to-phenotype research will continue to 
be important as we move towards greater understanding of 
functional elements in the genome of livestock species 
(Harrison et al. 2021), as those efforts continue to generate 
information, it will become more important to increase our 
understanding of the potential effects of management (e.g. 
nutrition, feed availability) and climate change on the 
phenome. Such a task, clearly, will be challenging; however, 
available data suggest that the nutrigenomics effects of 
dietary compounds are real and could, in the long-term, 
help fine-tune dietary requirements (under different 
environmental conditions) to optimise production and 
health of livestock. 
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