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Abstract. Extraordinary advances are occurring in biomedical science that may revolutionise how we approach health
and disease. Many have applications in the dairy industry. We have described one particular area of extracellular
vesicles thathave already proven to be of interest in diagnostics and prognostics for fertility and assessment of ‘transition’
cows (i.e. evaluation of the problems related to the risk of clinical diseases in dairy cows, such as mastitis and milk
fever, during transition period). The addition of measurements of circulating RNA and DNA may prove of value in
identifying dairy cows with higher risks of clinical diseases and potentially poor fertility. We describe the exciting
opportunity provided by the possibility of generating exosomes to order as therapeutic agents to potentially enhance
fertility. The even more radical concept of using exosomes to deliver a CRISPR-linked gene editing function is
presented. Undoubtedly, the use of biomedical advances to assist the dairy industry is an obvious and practical approach

that has significant merit.
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Introduction

Dairy cow health and fertility have declined over successive
decades with genetic selection for increased milk production
(Garnsworthy et al. 2008; Roche et al. 2011), while, at the same
time, consumers have begun to focus more consistently on
animal welfare and the desire to ensure that production
animals have ‘a life worth living’ (Adamczyk 2018). In most
industries, therefore, genetic-selection priorities have changed
from productivity focussed to a better balance of production and
functional traits, and management practices are being more
intensely scrutinised for their effect on both the animal’s
functional and affective states (Mellor 2016). Historically,
many of the functional traits have been difficult to measure.
However, with the development of new technologies for
understanding the health and function of different tissues,
there is a real opportunity to advance genetic selection for
animal health and well-being and to individualise animal care
through understanding the effect of farm management on
each animal.
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The use of non-invasive or minimally invasive methods for
diagnosing or predicting the onset of disease or inflammation
in real-time or categorising metabolic state patient-side is
revolutionising human medicine (Mal 2016). New rapid and
precise technologies for genomic, transcriptomic and metabolomic
testing are constantly being developed and improved on. In
medical practice, they offer clear advantages in patient
comfort and well-being, due to either the immediacy of
results (i.e. patient side and in real time) and the limited
resources required that are declining in price exponentially,
or by avoiding investigatory procedures that require periods
of post-operative convalescence (Andidon et al. 2014; Jo
Delaney 2018).

These technologies and approaches can be transferred into
animal science and veterinary clinical practice, enabling detailed
tissue phenotyping without biopsies, and to better understand
the effects of farm management on an animal’s functional
and, possibly, affective states. Although blood sampling is at
the core of these methods, there is also the potential use of milk
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in the case of dairy cows (Fricke et al. 2016). The use of saliva
and urine, although possible, is more problematic in cattle.

At least two approaches to minimally invasive deep-tissue
phenotyping have been advanced in recent years. One has been
the use of circulating (free) DNA and RNA (Lo 2016; Lo and
Lam 2016). In this, translation into clinical practice is occurring
(Sun et al. 2017, 2018). In parallel, but perhaps slightly behind,
is research into the use of exosomes as both diagnostic and
therapeutic drug-delivery mechanisms. In the space available,
we will focus in the potential uses of exosomes in dairy cow
research.

Exosomes: the new frontier in patient care

Exosomes are small (40-120 nm), stable, lipid-bilayer
nanovesicles that are formed by the inward budding of
multivesicular bodies and are released into extracellular
compartments, and identified in biological fluids (e.g. in milk,
blood, urine and saliva; Mitchell et al. 2015; Koh et al. 2017).
Through the analysis of tissue-specific markers on the
exosomes, the tissue of origin can be determined (Salomon
et al. 2014). They contain a diverse array of signalling
molecules, including messenger RNA (mRNA), micro-RNA
(miRNA), proteins, lipids and membrane receptors (Hata
et al. 2010; Record et al. 2014; Gangoda et al. 2015; Mitchell
et al. 2015), and they interact with target cells via multiple
pathways. They can either directly activate target cell-
membrane receptors, modify the extracellular milieu of the
target cell, or fuse with the cell membrane and release their
molecular cargo into the target cell (Cronin et al. 2012).

The cargo of circulating exosomes is indicative of the health
status of a specific tissue, granting the capacity for use of
exosomes as a tool for disease diagnosis without invasive and
expensive biopsy techniques. The use of exosomes as diagnostic
agents is particularly prevalent in the early detection of cancers
(Melo et al. 2015; Kalluri 2016), although they offer considerable
promise in the detection of other diseases also because differences
in their cargo are being linked to disease states (Mitchell et al.
2015; Ngo et al. 2018). For example, exosomes have a role in the
pathogenesis of neurodegenerative disease such as Alzheimer’s
and Parkinson’s disease and exosomal content from tissues
differs when cancerous tumours are present (Taylor and
Gercel-Taylor 2008; Vella et al. 2016). Excitingly, exosomes
have the potential to be ‘loaded’ with pharmaceutical agents
or intracellular mediators including miRNAs (Lakhal and
Wood 2011; Luan et al. 2017), which means that they could be
prognostic, diagnostic or therapeutic agents.

The importance of exosomes in health and disease in humans
has incited research into exosomes in dairy cattle and may lead
to their application as a tool for diagnosing bovine health
status (a summary of selected bovine exosome publications is
provided in Table S1, available as supplementary material for
this paper). With limited space to explore the role of these
technologies in the animal sciences, we will focus on the role
of exosomes as potential diagnostic and prognostic methods for
fertility and transition cow health in dairy cows, as well as the
use of exosomes for therapeutics. We will also incorporate,
possibly, the most exciting advance in biomedical science in
recent years, namely the CRISPR—Cas9 system for gene editing
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(Hille et al. 2018), with research in exosomes (Kim et al. 2017;
Lin et al. 2018).

The decline in dairy cow fertility

The decline in dairy cow fertility has been attributed to the
intensive genetic selection that has focussed primarily on milk-
production traits. Until recently, very few selection indices have
included functional traits, such as the health and reproduction
of the dairy cows (Miglior et al. 2005; Walsh et al. 2011; Berry
et al.2016). As a result, milk-production capacity has increased
dramatically, but fertility has steadily declined (Garnsworthy
et al. 2008; Roche et al. 2011). Consequently, it has been
estimated that 50% of the improved profitability from genetic
selection for milk production has been lost, at least in grazing
systems, due to the decreased productivity associated with
reduced fertility (Evans et al. 2006). Poor reproductive efficiency
in dairy herds results in longer inter-calving intervals, lower
voluntary culling and greater replacement rates, increased cow
maintenance costs, and slower genetic progress (Royal et al.
2000). Indications of poor fertility include the frequent
occurrence of abnormal oestrus cycles, poor conception rates
to first and successive inseminations and loss of pregnancies
(Royal et al. 2000).

Fertilisation rates in single-ovulating dairy cows remain
relatively high at above 80% and, as such, are not thought
to be the issue associated with the production-related loss of
fertility (Diskin et al. 2006; Sartori et al. 2010; Walsh et al.
2011). However, early embryonic loss is of concern, as greater
rates of embryonic loss/fetal mortality and resulting lower
calving rates occur to a greater extent in high-producing dairy
cows than in moderate-producing dairy cows (Diskin et al.
2006; Diskin and Morris 2008; Walsh ef al. 2011). The
inability of the embryo to signal its existence (e.g. failure to
initiate maternal recognition of pregnancy is one factor
associated with early embryonic loss; Walker et al. 2010).
A key component in this signalling is interferon tau, which is
required to inhibit the release of anti-luteolytic prostaglandin
F>o (PGF,,), and thus prevent the degradation of the corpus
luteum and enable the continued release of progesterone, which
is required for the maintenance of pregnancy (Diskin ez al. 2006;
Diskin and Morris 2008; Walsh et al. 2011).

Dairy cow health and the transition into lactation

A successful transition into lactation requires several metabolic,
nutritional, physiological and immunological changes to occur
in concert (i.e. homeorhesis). These changes make the transition
period the time of greatest risk of metabolic and infectious
disease for dairy cows, with an estimated third to a half of all
cows succumbing to disease (LeBlanc 2010). In fact, in grazing
systems, the risk of death during the first 3 weeks post-calving is
three to six-fold greater than that at any other stage of lactation
(Compton 2018).

Animals unable to meet the metabolic demands associated
with the onset of lactation will experience metabolic disorders
such as milk fever, ketosis, fatty liver, enteritis and displaced
abomasum (Bigras-Poulin et al. 1990; Ingvartsen 2006).
Likewise, bacteria-induced inflammatory disorders, such as
mastitis and uterine infection, are most prevalent in the first
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few weeks post-calving (Sheldon and Dobson 2004; @stergaard
et al. 2005) and can have profound effects not only on the
animal’s health, but on the odds of successfully breeding
subsequently (LeBlanc 2010). The severity of these
inflammatory disorders and the ability to resolve their
infections vary greatly among cows, suggesting that some cows
are more at risk to the disease and the failure to adequately resolve
(Formigoni and Trevisi 2003; Piccinini ez al. 2004; McDougall
et al. 2007; Fair 2015). For example, persistence of bacterial
contamination in the uterus can result in inflammation, histological
lesions of the endometrium, delayed involution and lower
conception rates (i.e. negatively affect embryo survival;
Sheldon et al. 2006; Herath et al. 2009).

There is a critical need to identify dairy cows with high
fertility and those more vulnerable or resistant to disease. The
identification of these animals using biomarkers could lead to
early interventions and higher survival rates, resulting in
reproductive success. Exosomes offer a potential route for the
discovery of such markers.

Role of exosome in dairy cow fertility and health

Recently, we investigated the exosomal content of dairy cows
differing in their metabolic health status during the onset of
lactation (Crookenden et al. 2016b), their uterine health status
(Almughlliq ef al. 2018) and their fertility status (Mitchell
et al. 2016; Koh et al. 2018). The exosomes isolated in each
population of dairy cows demonstrated protein cargo profiles
different from those of their control counterparts, indicating
that the proteomic profile of an exosome is influenced by the
‘environment’ in which it is packaged. Still to be uncovered in
these exosomes are the other signalling molecules which they
carry, such as miRNA. The differences in exosomal cargo
could be of utility in the development of biomarker panels
for identification of health/disease status in dairy cows or,
potentially, remedial therapy to improve health or the odds of
a successful pregnancy.

The miRNA content of bovine milk exosomes differs
depending on the stage of lactation (e.g. colostrum in contrast
to mid-lactation milk; Hata et al. 2010). Several of the miRNAs
and proteins identified in milk exosomes are those that have
important roles in maintaining mammary gland health and
initiating the immune response (Hata et al. 2010; Reinhardt
et al. 2012; Koh et al. 2017). This implies that milk exosomes
may have a role in protecting the mammary gland from
infection and responding to bacterial pathogens. Indeed,
exosomes isolated from bovine milk have unique cargo during
mastitis when compared with milk from non-infected animals.
For example, milk exosome miRNA profiles differ before, and
48 h after, infection of the mammary gland with Staphylococcus
aureus, which may lead to the identification of biomarkers
of subclinical mastitis (Sun et al. 2015). Sun et al. (2015)
identified 14 miRNAs that were significantly differentially
expressed between the control and infected animals and
suggested that exosomal miRNAs miR-223 and miR-142-5p
may be used as biomarkers of early mammary-gland infection.
Furthermore, this gives insight into the host defence mechanism
that could be utilised for development of novel treatments
of bacterial infection without the need for antibiotics.
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MicroRNA-223 was identified only in milk exosomes from
infected animals and miR-142—5p was upregulated over 250-
fold in exosomes from S. aureus-infected animals compared with
control animals (Sun ef al. 2015). In concordance with this, Cai
et al. (2018) also identified significant upregulation of miR-223
and miR-142-5p in milk exosomes of cows with experimentally
induced S. aureus infection compared with control animals. This
further highlighted these miRNAs as clinically important in
mastitis and as potential targets for mastitis diagnosis (Cai
et al. 2018).

The importance of exosomes in communication among cells,
including those of the immune system, is well established (Théry
et al. 2009). Interestingly, miR-223 is an important regulator
of innate immune function and is involved in granulopoiesis, the
haematopoietic process of granulocyte maturation (Fukao et al.
2007). Neutrophils are one such granulocyte and produce
exosomes that have an important role in the inflammatory
response (Gasser and Schifferli 2004). Neutrophil function is
dampened over the calving period with the transition into
lactation, which is evident by gene-expression changes that
are likely to increase the risk of infectious disease (Detilleux
et al. 1995; Crookenden et al. 2016a). Exosomes are involved
in both immune stimulation and tolerance, depending on the
cell origin (Raposo et al. 1996), and several studies have
proposed the potential use of exosomes in immunotherapy
(Péche et al. 2003; Aline et al. 2004; Morse et al. 2005).
Therefore, it is likely that exosomes could be used as a
solution to improve immune function, which would be
particularly useful during the challenging transition period
and during the establishment of embryo within the uterus in
early pregnancy.

Roles for exosomes in communication during the
development of gametes (Sullivan ef al. 2005), culture of
embryo in vitro (Qu et al. 2017) and between the embryo and
mother (Cleys et al. 2014; Saadeldin et al. 2015) have also
been described. Our recent investigations have focussed on
the effects of exosomes isolated from cows with differing
functional characteristics (i.e. divergent genetic merit for
fertility, metabolically divergent and the presence or absence
of subclinical endometritis on target-cell functions; e.g. cell
proliferation and gene expression; Almughlliq et al. 2017;
Crookenden et al. 2017). Our published findings have shown
that endometrial gene expression is altered by exosomes
from metabolically divergent animals and those with
subclinical infection. Our, as yet, unpublished findings have
also indicated a possible role for exosomes in the recovery
of the uterus postpartum for subsequent reproduction
(F. B. Almughlliq, Y. Q. Koh, H. N. Peiris, K. Vaswani,
S. Meier, C. R. Burke, J. R. Roche, M. A. Crookenden,
B. J. Arachchige, S. Reed and M. D. Mitchell, unpubl. data).
Moreover, exosomes from the dairy cows genetically selected
for inferior reproductive performance significantly altered the
production of prostaglandins by endometrial cells towards
a pattern negatively associated with the maintenance of
pregnancy (Fig. 1; lower ratio of prostaglandin E, (PGE,)
to PGF,,). These findings suggest that low-fertility exosomes
carry compounds that prevent the necessary suppression
of the anti-luteolytic PGF,, (anti-luteolytic factor) and,
therefore, potentially prevent the establishment/maintenance
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Fig. 1. Ratio of prostaglandin E, (PGE,) to prostaglandin F,, (PGF,) production by (@) bovine
endometrial epithelial cells (bEEL) and (b) bovine endometrial stromal cells (bCSC) following
co-incubation with exosomes isolated from the plasma of dairy cows designated low fertility
(LowFert Exosomes) or high fertility (HighFert exosomes). Non-parametric Kruskal-Wallis
one-way ANOVA P < 0.05 was considered statistically significant. *, P < 0.05; **, P < 0.005;
*#%k P <0.0001. Data are means + s.e.m. (n = 12).
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of pregnancy. The mechanism by which these low-fertility
exosomes prevent this suppression is still unclear and needs
further investigation. However, collectively, our research results
have indicated that exosomes are able to package, protect and
deliver content that is capable of altering the functions of
peripheral tissues in dairy cows.

Exosomes, therefore, may provide a solution for (1)
identifying cows that differ in their fertility function and/or
their risk of developing disease during the transition period,
enabling the identification of those animals that would
benefit from early intervention, and (2) disease or subfertility
treatment, utilising them as molecular delivery systems to
deliver cargo to specific cell types. If we can achieve these
solutions, we will be able to ameliorate diseases that create
major challenges for dairy farmers and animal welfare.

Exosomes as a therapeutic drug-delivery vehicle

In human medicine, several molecules such as proteins, miRNA,
mRNA, small interfering RNA (siRNA), and various chemical
drugs and antivirals have been loaded into exosomes with the
objective of using the exosomes as a drug-delivery vehicle. For
example, Haney et al. (2015) introduced the protein catalase
into exosomes, while miRNAs have also been encapsulated
(Momen-Heravi et al. 2014).

An exosome may be an ideal candidate vehicle for delivering
therapeutics. They have many of the desirable features of an
ideal drug-delivery system, such as a long circulating half-life,
the intrinsic ability to target tissues and biocompatibility
(Ha et al. 2016), meaning that they are less likely to suffer
immune rejection by the recipient’s body (Ha er al. 2016).
For example, minimal adverse effects have been reported
with the cross-species treatments (Zhu et al. 2017).
Furthermore, encapsulating drugs or anti-inflammatory
compounds in exosomes appears to increase the effectiveness
of the delivered material. For example, the inflammatory
activity of the phenolic compound curcumin is enhanced
when it is encapsulated in exosomes (Sun et al. 2010).

Recently, the anti-cancer drug paclitaxel displayed a 50-fold
increase in efficacy when encapsulated within an exosome
compared with when it was introduced directly (Kim et al.
2016). Exosomes encapsulating molecules may, therefore,
serve as a more potent therapeutic delivery mechanism.

Milk exosomes, in particular, are ideal vehicles as they can
deliver content across species with bovine milk exosomes known
to be taken up by human phagocytes (Pitari et al. 2000; Izumi
et al. 2015) and minimal adverse immune or inflammatory
responses have been reported (Munagala et al. 2016). In the
dairy industry, a major advantage of using milk to generate
exosomes is that large volumes of milk are readily available.
Collections can be made more frequently than with other fluids
such as plasma. Large numbers of high-purity exosomes (fewer
contaminating particles) can also be obtained from milk than
from some other fluids such as saliva and urine (Koh et al. 2017;
Vaswani et al. 2017).

Using exosomes as a vehicle is also advantageous as they
can be introduced into the body via several routes. Some routes
of administration include intranasal spray, intravenous injection
and orally via injecting (i.e. by drinking fortified milk, among
others). Zhuang et al. (2011) used curcumin encapsulated
exosomes from the nasal region to the brain. Another research
group has studied the effects of administering exosomes both
intradermally and subcutaneously (Hao et al. 2000).

The development of targeted drug-delivery system for
within the brain has been hindered by the inability of
therapeutic molecules, with proven in vitro efficacy, to cross
the blood brain barrier. A study by Alvarez-Erviti ef al. (2011)
highlighted the potential of exosomes to cross the blood—brain
barrier. Here, GAPDH siRNA was loaded via electroporation
into RVG exosomes, and delivered by intravenous injection
into the tails of C57BL/6 mice (Alvarez-Erviti et al. 2011).
Following which, a gene-specific knockdown as mediated by
the exosomes was observed in the striatum, mid-brain and
cortex of these mice (Alvarez-Erviti et al. 2011). Zhuang
et al. (2011) used exosome-encapsulated curcumin for brain-
related complications. Several other studies have reported
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Fig. 2. Treatment of bovine endometrial epithelial cells (bEEL) with

exosomes only, exosomes loaded with miRNA mimic (miR-143) and
exosomes loaded with miRNA 143 inhibitor by incubation. Prostaglandin
E, (PGE,) production is decreased by half after co-incubating cells with
miRNA mimic (miR-143)-loaded exosomes.

similar abilities for exosomes to cross the blood—brain barrier and
affect brain functions (Zhuang et al. 2011; Ridder et al.
2014; Haney et al. 2015).

Currently there are several methods of exosomal loading (i.e.
incorporation of molecules into an intact exosome vesicle).
These involve sonication, incubation, electroporation, blue
light and chemical-based methodologies (Sun et al. 2010;
Kim ef al. 2016; Yim et al. 2016; Qu et al. 2017). Luan et al.
(2017) suggested that passive loading via incubation may be less
disruptive to exosomes; however, electroporation has proven
successful in several studies and seems to be more widespread in
its use (Alvarez-Erviti et al. 2011; Luan et al. 2017). To enable
detection of loaded exosomes after delivery in in vivo models,
fluorescent dyes labelling the exosome membrane are employed
(Zhuang et al. 2011). DiO, DiR and PKH lipophilic dyes are
commonly used in both in vitro and in vivo studies, as they have
an affinity for the exosome membranes (Zhuang et al. 2011;
Ohno et al. 2013; Tian et al. 2014).

We recently evaluated the possibility of loading miRNA into
milk exosomes (Fig. 2). The miRNA chosen was miR 143 due to
its ability to inhibit the action of cyclooxygenase (COX-2;
also known as prostaglandin-endoperoxide synthase 2,
prostaglandin H synthase; Ochs et al. 2011). COX-2 is an
enzyme that catalyses the conversion of arachidonic acid to
prostaglandins (e.g. PGE, and PGF,,), which are crucial for
the initiation and maintenance of pregnancy. Therefore, it serves
as a potential miRNA of choice for loading into exosomes as a
therapeutic agent for drug delivery, to improve reproductive
function. The incubation methodology evaluated for the loading
of mil43 and its inhibitor (specifically inhibit miR 143 function)
was thatof 1 hat37°C, as described by (Johnsen et al. 2014). The
miR143 and miR143 inhibitor-loaded exosomes were co-
incubated with bovine endometrial epithelial cells. Media was
collected after 24 h of incubation and PGE, production
measured. The production of PGE, by bovine endometrial
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epithelial cells decreased when treated with loaded miR143
milk exosomes. This inhibitory effect on PG production is in
line with the expected result, as miR 143 has been documented to
supress Cox2 (Ochs et al. 2011). Still to be evaluated is the
gene and protein expression of COX-2 in these cells. These
results are promising and, with further development, the
technique could be a potential candidate as a therapeutic agent
to improve reproductive function.

The limitations currently arising in exosome applications
are due to the infancy of this research field. As yet, the
mechanisms by which exosomes target other cells (i.e.
selectively deliver their content) are largely unknown.
Another limitation is identifying the cell site of origin. By
better understanding these two issues, both the sensitivity in
diagnostics and therapeutics can be improved. Recent
publications have shown an improvement in the ‘signal to
noise ratio’ of knowing the cell site of origin, with examples
being the use of cell-surface marker Glypican-1 for exosomes of
cancer-cell origin, placental alkaline phosphatase for exosome
from placental origin and Interferon tau for exosomes of
bovine conceptus origin (Sarker ef al. 2014; Melo et al. 2015;
Nakamura et al. 2016). Several publications have also described
ways of modifying the surface of an exosome in an attempt
to target their delivery. These include both covalent and non-
covalent strategies for the incorporation of target molecules on
the surface of pre-isolated exosomes (Smyth ez al. 2014; Wang
et al. 2014; Nakase and Futaki 2015; Hood 2016; Armstrong
et al. 2017; Luan et al. 2017) as well as using transfection to
generate exosomes with targets on their surface. Through
further development of methodologies to identify cells of
origin and incorporate target structures, the potential of exosomes
in diagnostics and therapeutics will greatly improve.

Conclusions and implications

The discovery of long-distance, inter-cellular nanoparticle
messengers has provided a potential diagnostic and therapeutic
technology. There is increasing evidence indicating that
tissues differentially populate exosomal cargo, depending on
their health status and functional state, providing a potential
diagnostic platform for diseases that, historically, could have
been detected only via invasive procedures, such as operations
or biopsies. Furthermore, understanding the role of these
molecular cargo components could provide new therapeutic
drugs, but, more importantly, the exosome itself provides
a vehicle for drug delivery that is targeted, long-lived, and,
importantly, not prone to negative host reactions. As the
physical technology that allows the measurement of exosomal
cargo develops, such that it is easier, faster and less expensive
to measure the contents of the exosomal cargo, it is plausible
that in the next decade cow-side tests for the most common or
important diseases and therapeutic solutions will be developed.
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