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ABSTRACT

Context. Ground baiting is a strategic method for reducing vertebrate pest populations. Best
practice involves maximising bait availability to the target species, although sustaining this
availability is resource intensive because baits need to be replaced each time they are taken. This
study focused on improving pest population management through the novel baiting technique
outlined in this manuscript, although there is potential use across other species and applications
(e.g. disease management). Aims. To develop and test an automated, intelligent, and semi-
permanent, multi-bait dispenser that detects target species before distributing baits and provides
another bait when a target species revisits the site. Methods. We designed and field tested the
Sentinel Bait Station, which comprises a camera trap with in-built species-recognition capacity,
wireless communication and a dispenser with the capacity for five baits. A proof-of-concept
prototype was developed and validated via laboratory simulation with images collected by the
camera. The prototype was then evaluated in the field under real-world conditions with wild-living
canids, using non-toxic baits. Key results. Field testing achieved 19 automatically offered baits with
seven bait removals by canids. The underlying image recognition algorithm yielded an accuracy of
90%, precision of 83%, sensitivity of 68% and a specificity of 96% throughout field testing.
The response time of the system, from the point of motion detection (within 6–10 m and the
field-of-view of the camera) to a bait being offered to a target species, was 9.81 ± 2.63 s.
Conclusion. The Sentinel Bait Station was able to distinguish target species from non-target
species. Consequently, baits were successfully deployed to target species and withheld from
non-target species. Therefore, this proof-of-concept device is able to successfully provide baits
to successive targets from secure on-board storage, thereby overcoming the need for daily bait
replacement. Implications. The proof-of-concept Sentinel Bait Station design, together with
the findings and observations from field trials, confirmed the system can deliver multiple baits
and increase the specificity in which baits are presented to the target species using artificial
intelligence. With further refinement and operational field trials, this device will provide another
tool for practitioners to utilise in pest management programs.
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Introduction

Vertebrate pests such as feral cats (Felis catus), European red foxes (Vulpes vulpes), feral pigs 
(Sus scrofa) and wild dogs (Canis familiaris) cause major negative impacts to agriculture 
and the environment (Braysher 1993; Fleming et al. 2017). Controlling introduced pests 
requires the integration of methods such as aerial and ground baiting to distribute toxic 
baits (Newsome 1990; Fleming et al. 2014; Ballard et al. 2020), trapping (Meek et al. 
1995; Fleming et al. 1998; Meek et al. 2022) and the use of other devices (e.g. Canid 
Pest Ejectors (CPE’s); Busana et al. 1998; Marks et al. 1999; Marks and Wilson 2005) to  
achieve reductions in abundance that exceed the pest population’s ability to increase 
(Hone 1994). Ground poison-baiting can mitigate negative impacts but can be costly, 
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and sustaining the level of control necessary to overcome 
population increase can be operationally demanding. 
Consequently, ongoing improvement of existing methods via 
technological innovation (Meek et al. 2020) is a useful 
objective. 

A study on the effectiveness of controlling the reinvasion 
of a peninsula by foxes (Vulpes vulpes) highlighted the 
challenges associated with maintaining predators at low levels 
(Dexter et al. 2007). Invasion by foxes across a narrow isthmus 
provided an opportunity to increase the encounter rate with 
toxic baits. However, traditional bait stations can hold only 
single baits, so maximising availability to targets required 
daily replacement of baits (Fleming 1996, 1997). Time spent 
replacing baits in situations such as this comes at the cost of 
other operational imperatives, and demonstrates the need for 
a baiting system that can deliver toxin to successive targets 
with a reduced reliance on people to frequently replenish baits. 

Non-target species add to the demand on bait replenish-
ment by consuming, moving and/or degrading baits. 
Behavioural means of discriminating between targets and 
non-targets is already utilised in some control technologies 
(e.g. CPEs), but arguably reduces the likelihood of targets 
consuming toxin. Advances in image recognition, especially 
by our research group (Falzon et al. 2012; Falzon et al. 2020; 
Shepley et al. 2021a, 2021b), on incorporating such tech-
nology into a baiting device, show potential for creating 
target specific baiting that both protects vulnerable non-
target species and reduces the removal of baits intended for 
pests by unaffected non-target vertebrates and invertebrates. 

With the technological advances in computer science and 
engineering, designing automated toxin delivery devices 
specific to target species is now achievable (Meek et al. 2020; 
Moseby et al. 2020; Ross et al. 2020; Corva et al. 2022). We 
aimed to provide a reliable means of automatically replenish-
ing baits while minimising undesirable bait loss (e.g. removal 
by non-targets) to increase the number of a target species 
encountering baits per unit of human effort. We designed, 
built and tested a proof-of-concept prototype to evaluate 
the potential to automatically and repeatedly deliver a bait 
to target pest species (such as wild dogs and foxes) using 
image recognition technology. 

Methods

Overview

A prototype Sentinel Bait Station (SBS) was developed by 
integrating camera trap technology with a machine-vision-
equipped single-board computer to provide the capacity to 
run species recognition algorithms on board a relatively 
small device. Low-power wireless connections between the 
camera and a bait-dispensing carousel (able to hold up to 
five baits) enabled a bait to be deployed only when the camera 
trap detected a species of interest. Both the camera and 

ground unit were able to stay active in the field for more than 
7 days when using a custom-designed 120 Wh lithium–polymer 
battery pack. Initial target species for the SBS were wild dogs 
and foxes (hereafter referred to as ‘targets’). The study 
described below comprised four phases: (1) development; 
(2) collection of simulation images; (3) simulation testing; 
and (4) field testing. 

Study sites

Development of the system and all laboratory testing was 
conducted at the University of New England campus in 
Armidale, New South Wales, Australia. Simulation images 
were collected across two distinct environments: Tablelands – 
University of New England, Armidale, New South Wales, 
Australia, and Coastal Eucalypt forest – Redhill Flora Reserve, 
Coffs Harbour, New South Wales, Australia. Field testing was 
undertaken during 2020 at two sites in the Cooper Basin, 
South Australia, Australia. Field trials involving animals were 
conducted under animal ethics approval permit number 
AEC19-026. 

Development

Development involved designing and integrating two main 
components: the smart camera trap (Fig. 1a) and the bait-
dispensing unit (Fig. 1b). The fundamental concept was to 
transform a standard camera trap into an intelligent cyber– 
physical system that could reliably and automatically dispense 
baits to animals of target species by using recent advances in 
machine learning. The design specifications were to build a 
system that could be placed in the field unattended for 
extended periods of time (e.g. multiple weeks or until all 
baits are taken). 

The intelligent camera consisted of a single-board 
computer, a combined passive infrared and microwave heat-
in-motion sensing module and camera module (consisting of 
camera, dynamic near infrared filter and flash module outside 
of the visual range). This setup enabled the camera to auto-
matically detect animal movement (day or night) at a range 
up to 15 m from the camera, photograph the animal and process 
the image to determine whether it was a target or non-target. 

The SBS software system is an event-driven, finite state 
machine design equipped with machine vision, logic and 
wireless communication modules to provide advanced func-
tionality. When the system is awaiting the presence of a 
target, the single board computer (Raspberry Pi 3B+, 
Raspberry Pi Foundation, Cambridge, UK) remains in idle 
mode until receiving an interrupt from the heat-in-motion 
sensing module. When heat-in-motion is sensed, the camera 
captures images that are processed by the species 
recognition algorithm. The species recognition algorithm 
was trained according to the location invariance methodology 
presented in Shepley et al. (2021b). During inference, the 
algorithm assigns a classification confidence score to detected 
objects (0–100%), with a higher score denoting a higher 
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Fig. 1. Sentinel Bait Station (SBS) camera trap: (a) smart camera trap (220 × 120 × 100 mm) and (b)
bait-dispensing unit (180ø × 150 mm).

internal confidence by the algorithm that the target species is 
present in the image. A confidence threshold can be adjusted 
to the specific use case, as the main tuneable variable for 
determining whether the model favours false positives or 
false negatives. For this study, a confidence value of 5% 
was chosen (i.e. any image where the algorithm confidence 
value was more than 5% confident of a target species being 
present resulted in a positive detection). This value was 
chosen during development and early testing of the system 
to maintain a higher sensitivity to target species. The image 
detection model utilised within this design is MobileNet v1 
model, which is a deep convolutional neural network (CNN) 
optimised for embedded system computer vision applications 
(Howard et al. 2017). The dataset used to train the model 
comprised of both publicly available images of target and 
non-target species sourced from FlickR and iNaturalist, 
along with an infusion dataset of camera trap images featuring 
strong similarities to those used in this study. The model was 
trained using transfer learning in accordance with the 
location invariance method to maximise robustness to 
unfamiliar camera trap settings. Importantly, none of these 
images were part of the simulation dataset mentioned below. 

Once a target is detected, the computer communicates 
wirelessly (Fig. 2) to the bait-dispensing unit to offer a bait 
to the target animal. Two-way wireless communication 
between the single-board computer within the camera and 
the microprocessor (ESP32, Espressif Systems, Shanghai, 
China) within the bait-dispensing unit used the Message 
Queuing Telemetry Transport (MQTT) protocol over a wireless 
local area network (WLAN). 

The rotating carousel within the bait-dispensing unit 
presents either an empty or baited compartment (Fig. 3) as  
required. During development, the carousel was designed 
to house five standard-sized manufactured dog baits (60 g 
each), but capacity could be increased. A stepper motor 
operates the carousel and a locking pin is used to maintain 

Camera 

Raspberry Pi 

ESP32 

Motion 
sensor 

Motor 

Lock 
mechanism 

Bat presense 
sensor 

Fig. 2. The system component diagram representing the ‘Smart
Camera Trap’ equipped with a Raspberry Pi single-board computer
coupled to heat-in-motion and camera units detecting the presence
of a target predator and activating the bait dispenser via wireless
communication to an ESP32 microprocessor.

the desired position when the motor is inactive. An infrared 
light beam sensor (outside the visible range for canids) is 
used to determine if a bait is present or absent from the 
currently available compartment; this allows the SBS to ensure 
baits are presented to target animals, and if not consumed, 
enclosed for safe-keeping until the next detection occurs. 
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Fig. 3. Computer-aided design (CAD) image of the bait dispenser
showing the internal carousal design (the square structures within
each triangle segment are the bait chambers and the empty segment
is the starting point).

The field-tested design enabled the following operating 
scenario: the SBS camera is deployed with the bait dispenser 
approximately 5 m away, within the field of detection (Fig. 4). 
When the camera detects heat-in-motion it takes a pre-
programmed number of photographs (e.g. for this study, 10 
images at 1-s intervals). The on-board computer then rapidly 
performs image recognition to identify whether the animal is 
a target species or not. When a target is recognised, the 
computer instructs the bait-dispensing unit to offer a bait 
by turning the carousel to an open position. If the bait is 
not removed after 120 s, the carousel closes and awaits a 
new target detection. Alternatively, if the bait is removed, 

Fig. 4. Field deployment involved positioning of the SBS camera unit
at 1 m height and 4–5 m distant from the ground dispenser unit.

the device recognises this and will not expose another bait 
until 120 s has passed and another target is detected. 

Collection and testing of simulation images

The images (n = 250) used for simulation testing were 
extracted from images collected by the camera during the 
development of the system. Images of ‘targets’ were only 
dogs or foxes (day: n = 100 images; night: n = 25 images), 
and ‘non-target’ images included people, cars, buildings and 
livestock (day: n = 100 images; night: n = 25 images). These 
images were not used in the training of the recognition 
algorithm to ensure a true ‘out of sample’ test. The data 
collection sites provided two habitat classes of high relevance 
for predator control: (1) Tablelands, which contained the 
presence of people, cars and livestock; and (2) Coastal 
Eucalypt forest, which contained a high biodiversity of 
mammals and birds. All sites included the target species 
(i.e. dogs and foxes) as well as non-target species and objects 
(i.e. birds, people, cars, building and other mammals). The 
prototype camera was deployed for periods of up to 14 days 
to collect images used in the simulation testing. 

Field testing

The Cooper Basin desert dune system was used for field trials 
because wild dogs are locally abundant (Meek and Brown 
2017). Birds such as the Australian raven (Corvus coronoides), 
Torresian crow (Corvus orru), wedge-tailed eagle (Aquila 
audax) and brown falcon (Falco berigora) are also locally 
common, regularly detected on camera traps and renowned 
for interfering with baits intended for mammalian pests 
(Allen et al. 1989). Field testing was undertaken to assess 
the performance of the end-to-end system based on encounters 
with real animals. Importantly, this was designed to assess 
whether the end-to-end system would offer bait to targets 
and withhold bait from non-targets, and whether animals 
offered baits would remove a bait made available to them. 
Two non-toxic bait types (approximately 50 × 50 × 40 mm) 
were used in the trial; manufactured 60 g Doggone® 

(Animal Control Technologies (Australia) Pty Ltd. Somerton, 
Vic., Australia) and fresh beef pieces (~60 gm) were used 
throughout the field trial. It was observed by one of the 
authors (PM) that there was little interest by the targets in 
consuming Doggone®. To gain a sense of attractiveness of 
Doggone® to the target species at this site, non-toxic baits 
were thrown to targets to observe their interest in consuming 
the bait. Because of the lack of interest in the Doggone®, the 
bait was changed over to beef pieces during the trial to 
increase the likelihood that baits would be removed/taken 
by the target species and confirm that the bait chamber design 
was big enough for a target species muzzle to access the bait. 

The prototype housings for both modules were three-
dimensionally (3D) printed using acrylonitrile butadiene 
styrene (ABS) to ensure a sufficiently robust system for proof-
of-concept testing. The SBS camera was positioned approximately 
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1 m above ground on a post beside a well-used animal track. 
The bait-dispensing unit was partially buried and secured 
using tent pegs. The bait-dispensing unit was deployed 
approximately 4–5 m away from and in centre view of the 
camera. A battery power-pack was connected to the bait 
dispenser by a cable and buried so that animals could not 
interfere with it. 

The system described above was left to operate in situ for 
8 days at two sites in the Cooper Basin. Two commercial 
camera traps (Reconyx Ultrafire Reconyx, Inc. Holmen, 
Wisconsin, USA) were used to monitor the field-testing area 
(one positioned immediately below the SBS camera and a 
second facing along the animal track to detect fauna). 

Statistical analysis

System performance was evaluated under daylight (natural 
illumination), night (infrared flash illumination) and for 
overall performance irrespective of illumination. Within the 
laboratory-based testing, each image was visually distinct 
and therefore evaluated as independent events, providing 
an understanding of model performance on a per image 
basis across environments. In field testing, an animal could 
enter the SBS camera detection zone, trigger the heat-in-
motion sensor, and generate sets of multiple images (10 images 
at 1-s intervals). Combined, this full set of images was the 
detection event, because the first metric of interest was 
whether or not the SBS dispensed a bait when encountered 
by the target animal. 

To quantify image data, each event was manually reviewed 
and then categorised as one of the following: (1) a true 
positive (TP), where a target was present and the system 
offered a bait; (2) a true negative (TN), where a target was 
not present and the system did not offer a bait; (3) a false 
positive (FP), where a target was not present and the system 
offered a bait; or (4) a false negative (FN), where a target was 
present and the system did not offer a bait. 

Based on these categorisations, the system’s performance 
was determined by calculating values for accuracy, sensi-
tivity, precision and specificity-balanced accuracy. Accuracy 
was calculated as the ratio of correctly predicted events 
(TP + TN) to the total number of events. Sensitivity was 
calculated as the ratio of true positives to the number of 
events with a target present (TP/(TP + FN)). Precision was 
calculated as the ratio of true positives to the number of 
events where the system predicted a target was present 
(TP/(TP + FP)). Specificity was calculated as the ratio of 
true negatives to events without targets present (TN/(TN + FP)). 
Balanced accuracy was calculated as the arithmetic mean of 
the sensitivity and specificity. The use of balanced accuracy 
addresses bias (inflated performance estimates) resulting 
from the imbalanced data classes encountered in field 
conditions (e.g. an unequal number of images with a target 
species present compared to the number of images with a 
target species not being present). Each of these values are 

presented as a ratio between 0 and 1, where a higher value 
represents higher performance. 

Lastly, the time taken from a trigger to the single board 
computer analysing the picture and the bait being offered was 
also analysed using the system log files, which had milli-
second precision. These values are presented as mean time 
period ± standard deviation. 

Results

Simulation testing

Overall, 55% of the image recognitions were accurately 
identified, due mainly to the high proportion of false negative 
events (sensitivity: 0.11). However, the precision of the 
algorithm was 0.93 (day: 0.90; night; 1.00), with just one 
false positive event occurring within the day dataset. The 
sensitivity of 0.11 indicates that the system offered a bait in 
11% of events where a target was present (day: 0.09; night: 
0.20). Finally, the specificity was 0.99, meaning that the bait 
was withheld when a target was not present, but an image was 
captured on 99% of occasions (day: 0.99; night: 1.00). 

The response from the bait-dispensing unit aligned 100% 
with the algorithm. No miscommunication was observed 
throughout testing. The response time of the system was 
9.81 ± 2.63 s to dispense a bait (day: 9.53 ± 2.50 s; night: 
10.35 ± 3.11 s; Table 1). 

Field testing

Although both wild dogs and foxes were potential targets, no 
foxes were detected during field testing. Camera traps used to 
monitor the SBS system and immediate area recorded target 
and non-target species displaying interest in the SBS bait 
dispenser (Fig. 5). The SBS machine vision recognition 
module was able to detect the target species under a wide 
range of conditions; however, some false detections still 
occurred (Fig. 6d, f ). During field testing, the accuracy of 
the system was 0.90 (day: 0.96; night: 0.69; Table 2). The 
balanced accuracy was 0.82 (day: 0.85; night: 0.73; Table 2), 
indicating a drop in performance due to class imbalance but 
the classifier still maintained average–good per event classifi-
cation performance. The precision value of 0.83 indicates that 
the system offered a bait when there was a target present 
in 83% of events (day: 0.71; night; 0.88), with four false 
positive events occurring throughout the trial. The sensitivity 
value of 0.68 indicates that a bait was offered in 68% of events 
where a target was present (day: 0.71; night: 0.61), and the 
specificity value of 0.96 indicates that bait was withheld in 
96% of events when a target was not present (day: 0.98; 
night: 0.85). 

From 19 bait offerings made to targets, seven were 
removed from the device by a target species. When using the 
Doggone® baits, 2 of 8 baits that were offered were taken, but 
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Table 1. Detection data from the laboratory-based simulation testing of the sentinel bait station.

Time Total True True False False Accuracy Balanced Precision Sensitivity Specificity
of day events positive negative positive negative (ratio) accuracy (ratio) (ratio) (ratio)

(count) (count) (count) (count) (count) (ratio)

Day 200 9 99 1 91 0.54 0.54 0.90 0.09 0.99

Night 50 5 25 0 20 0.60 0.60 1.00 0.20 1.00

Overall 250 14 124 1 111 0.55 0.55 0.93 0.11 0.99

Fig. 5. The SBS bait dispenser attracted attention from both (a) target and (b) non-target species.

after switching to fresh beef pieces, 5 of 13 baits that were 
offered were taken. There were four false positive events, 
where the image recognition falsely detected non-targets as 
a target. The misclassified objects were the bait-dispensing 
unit (n = 2), vegetation (n = 1) and a person (n = 1). There 
were 11 false negative events (day: n = 2; night: n = 9) 
where a target was present, but a bait was not offered due 
to misclassification. 

Discussion

To the authors’ knowledge, the SBS is a world-first solution 
comprising a camera trap with in-built species recognition 
capacity and wireless communication to a multiple bait 
delivery unit. Laboratory and field testing of this prototype 
device has yielded proof-of-concept evidence that the SBS 
can detect a target and present a bait (i.e. the system can 
detect heat-in-motion, rapidly capture and process a series 
of images to determine the presence of the target species 
and transmit a message to the carousel to offer a bait). 

The response time of the system was similar for images 
taken during the day or night. The images were able to be 
processed in less than 2 s (i.e. the time taken from a motion 
trigger to the single-board computer analysing the picture) 
with the system completing the bait dispensing in approxi-
mately 10 s (i.e. the time taken from a motion trigger to the 
bait being offered). Therefore, on average, an 8-s delay was 
observed in offering the bait due to both the time taken for 
the actuators to move the bait into the open position and 

power saving methods with the wireless interface required 
to reduce the power consumption of the ground unit. This 
is likely adequate time for bait presentation prior to a target 
leaving the immediate area; additional testing could assess 
this. 

It is highly likely the software can be optimised to further 
improve system performance. During the field testing, just 
over a third of bait offerings resulted in a bait being taken 
by the target. This was despite targets at the site having a 
ready supply of fresh food, possibly reducing their interested 
in baits when compared with targets under greater food stress 
or elsewhere. It was also possible that the manufactured baits 
were not attractive to dogs at the study site. As outlined in the 
methods, during the field trial the bait was changed over to 
beef pieces to increase the palatability and attractiveness of 
the bait to the target species. Although the change in bait 
increased the proportion of baits being taken when offered, 
the purpose of this study was to review the ability of the target 
species (in this example, wild dogs) to take baits from the bait-
dispensing device rather than the baits' palatability. Therefore, 
the authors assert that the change in bait type has little bearing 
on the results or findings. 

Based on the simulation data, the sensitivity of the system 
was slightly better at night when using the infrared illumi-
nation to take photos in low-light scenarios. Specifically, 
the sensitivity (0.20) for night-time images indicates that 
for every five images of a target species taken at night-time, 
one of these images will result in a true positive event 
and is therefore a bait being offered to the target species. 
Conversely, the sensitivity for images taken during the day 
(0.09) suggests that 10 images would be required for one 
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Fig. 6. Detection events as recorded by the SBS camera module. Successful detections occurred under a range of challenging conditions
including: (a) multiple target species present; (b) motion blur due to fast moving target species; (c) both target species and non-target
(human) within the same image; and (d) camera trap illumination obscuring target species (note shadow of target species within
image). In some circumstances, such as (e), both a true positive and false positive detection occurred simultaneously, and in other
situations, such as (f ), a false positive detection (the bait dispenser was incorrectly detected as the target species) occurred.

Table 2. Detection data from the Cooper Basin field trials of the sentinel bait station.

Time
of day

True
positive
(count)

Baits
taken
(count)

True
negative
(count)

False
positive
(count)

False
negative
(count)

Accuracy
(ratio)

Balanced
accuracy
(ratio)

Precision
(ratio)

Sensitivity
(ratio)

Specificity
(ratio)

Day 5 3 90 2 2 0.96 0.85 0.71 0.71 0.98

Night 14 4 11 2 9 0.69 0.73 0.88 0.61 0.85

Overall 19 7 101 4 11 0.90 0.82 0.83 0.68 0.96

true positive event to occur and a bait to be offered to the within the field testing, 10 images were taken in succession 
target species. During field testing, the difference between after motion was detected, which increased the likelihood 
day and night events was not evident, and this is largely of a correct image recognition during each event and reduced 
attributed to how an event was considered. Specifically, the limitation of low sensitivity shown in the simulation. This 

7

www.publish.csiro.au/wr


G. Charlton et al. Wildlife Research 51 (2024) WR22183

system design decision was based on practical observations, 
where the target species investigated the bait dispenser, 
permitting multiple images to be collected in succession. 
This set of images can be rapidly processed by the machine 
vision module, with a high likelihood that at least some of 
the images within the batch will register detection of the 
target species. By utilising this algorithm design, it was 
feasible to incorporate a detection algorithm of lower compu-
tational complexity and hence more rapid processing times 
and lower power usage (at a cost of slightly reduced detection 
accuracy per image). The overall sensitivity during field 
testing (0.68) would indicate that approximately four out of 
five times (that a target entered the field of view of the 
camera) a bait was offered. 

The low sensitivity observed in the simulations, which 
resulted in a low accuracy value, was due to the high number 
of false negative events. Such low sensitivity, and therefore 
accuracy, was not as prevalent during the field testing due 
to taking multiple images in succession when heat-in-
motion was detected. The field testing showed that when a 
target was present near the system, a bait was offered in 
68% of circumstances. This was slightly higher during the 
day (71%) than during the night (61%). Laboratory testing 
also involved a wider range of environments than field 
testing, which provides a challenging scenario for machine 
vision systems (Shepley et al. 2021b). Evaluations on a per 
image basis across a broad range of environments could have 
contributed substantially to the number of false negatives. 
Optimising model performance across diverse environments 
needs further investigation. Finally, due to the low number 
of false positive events compared with true negative events, 
the system demonstrated a very high specificity value for 
both the laboratory simulations (0.99) and field testing (0.96). 

Overall, the system was better at detecting when a target 
species was not present within an image as opposed to 
identifying that there was a target species within the image. 
This aspect was a component of the machine vision algorithm 
design: detection thresholds were set to be conservative to 
minimise the number of bait offerings to non-target species. 
From a practical perspective for the specific use case field 
tested, a low false positive rate is more favourable because 
it is preferable to withhold a bait from a target species than 
to offer a bait to a non-target species, as currently occurs in 
most baiting situations. Additional development of the 
identification algorithms could be undertaken to further 
improve the accurate identification of target and non-target 
species (e.g. more images from the camera and environments 
used for deployment within the training dataset would likely 
improve the overall specifies recognition performance). To 
incorporate the SBS in other applications, it could be more 
effective to tune the algorithm to improve the false negative 
rate at the expense of the false positive rate, depending on the 
risk to other species if they were to access a bait. 

There were four images where a non-target was incorrectly 
recognised as a target. The bait-dispensing unit was not highly 

represented in the training data and this may have contri-
buted to the bait-dispensing unit being incorrectly recognised 
as a target species on two occasions. To avoid such false 
positives in the future, it would be important to include the 
bait-dispensing unit within further training images. Interestingly, 
in the other two instances a bush and a person at the outer 
edge of the field of view were misidentified. All objects 
detected as false positives had a low confidence value com-
pared with that of most true positive events. This supports 
further adjustments to the algorithm detection threshold, 
requiring multiple target detections per SBS unit trigger, 
iterative training revisions and improvements to the algorithm 
(e.g. the inclusion of more negative samples such as images 
with people close to the border would make the algorithm 
more robust to those variations, thus reducing false positives). 

Overall, we sought to offer baits to targets, rather than non-
targets, and automatically replace these baits, so that more 
targets could be baited per unit of human effort. With this 
considered, the most important metric for the performance 
of the system is the precision value (i.e. the number of baits 
offered to a target in comparison with all baiting events). 
During field testing, precision was relatively high (0.83) 
due to the low false positive event count. Compared with 
current practice, this would significantly reduce the number 
of baits available to non-targets. Further model improve-
ments could enable the precision of the system to be 
improved through the modification of the confidence value 
(5% used in this trial). The precision could be increased by 
increasing the target confidence threshold (e.g. only dispense 
baits where the algorithm is 50% certain that a target is 
present). However, there is a trade-off between avoiding 
dispensing a bait to non-targets and dispensing a sufficiently 
high number of baits to targets. Further algorithm training 
would allow for a higher confidence value to be used 
within the model and therefore reduce the number of false 
positive events without significantly reducing the sensitivity 
of the system. In contrast to unconcealed baits (the current 
practice), the SBS only permitted bait availability for 2 min. 
Critically, the SBS permitted access to baits in circumstances 
where there was a high likelihood that the target species was 
present. 

Future development of the SBS could be centred upon 
improving algorithm performance to detect target species 
across environmental conditions, which would translate to 
higher precision and sensitivity. Also, broader field tests are 
required to understand SBS performance under different 
contact rates with target and non-target species. Fortunately, 
the modular design of the machine vision component of the 
software permits model substitution, so the SBS could be 
trained to offer baits to a broader range of target species, 
such as rodents, feral pigs or feral cats. 

The MobileNet v1 Convolutional Neural Network was state 
of the art at the time of development, integration and testing 
of the SBS. The fast pace of machine vision research has 
offered additional innovations and increase in performance 
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that could be included in future algorithms. Options could 
include: extreme learning machine architectures that are 
optimised for drones and field robotics (Sadgrove et al. 2018); 
modifications and improvements to the MobileNet architec-
ture (Ayi and El-Sharkawy 2020; Kavyashree and El-Sharkawy 
2021); or modifications to improve the robustness of object 
detection algorithms (Shepley et al. 2020). The development 
of a more specific and extensive dataset for model training 
would also be very useful. Due to the prototype nature of the 
SBS, very limited image data were available to develop the 
machine vision model. Empirical evaluations of camera trap-
specific CNN algorithm performance indicate that substantially 
more data could be required per class across environments to 
optimise performance (Shahinfar et al. 2020). Inclusion of 
negative classes that are known (from field trials) to trigger 
false positive detections (such as the bait dispenser) in further 
model training will permit further model refinement. 

The engineering design of the bait-dispensing system could 
also be modified to increase its robustness and ability to 
securely store more baits. Further, to be able to use toxic baits 
during field trials and ultimately in practice, the system would 
be required to address legislative requirements for storing and 
distributing multiple baits in a single location. Although not 
observed within the field trials, it is the opinion of the authors 
that refinements to the mechanical design of the system to 
reduce noise associated with the bait-dispensing unit when 
opening and closing may help to limit the associated startle 
behaviours by the target species in response to unnatural 
noises (Meek et al. 2016). 

Conclusion

Laboratory testing found the SBS was able to recognise target 
species (i.e. dogs and foxes) and dispense baits to them. Field 
testing was highly target specific, and target species were 
willing to take baits from the bait-dispensing unit when 
offered. The performance indicates that the SBS system could 
be developed for use in real-world control programs to reduce 
both non-target uptake and human effort required to provide 
baits to multiple target species. 
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