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Context. Artificial intelligence algorithms are beneficial for automating the monitoring of
threatened species. Devil facial tumour disease (DFTD) is an endemic disease threatening Australia’s
Tasmanian devil. The disease is a cancer that can be transmitted from one devil to another during
social interactions. Cameras and trapping techniques have been employed to monitor the spread of
the disease in the wild. The use of cameras allows for more frequent monitoring of devils than does
trapping, but differentiating wounds from tumours in images is challenging, and this requires time and
expertise. Aim. The purpose of this work is to develop a computer vision system to assist in the
monitoring of DFTD spread. Method. We propose a system that involves image segmentation,
feature extraction, and classification steps. U-net architecture, global average pooling layer of
pre-trained Resnet-18, and support vector machine (SVM) classifiers were employed for these
purposes, respectively. In total, 1250 images of 961 healthy and 289 diseased (DFTD) devils were
separated into training, validation, and testing sets. Results. The proposed algorithm achieved
92.4% classification accuracy for the differentiation of healthy devils from those with DFTD.
Conclusion. The high classification accuracy means that our method can help field workers with
monitoring devils. Implications. The proposed approach will allow for more frequent analysis of
devils while reducing the workload of field staff. Ultimately, this automation could be expanded to
other species for simultaneous monitoring at shorter intervals to facilitate broadened ecological
assessments.
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Devil facial tumour disease (DFTD) is a cancer that can transmit from one Tasmanian devil 
to another by biting during social interactions (Fraik et al. 2020). Cancerous tumours may 
be visible on the face, oral cavity and neck (Woods et al. 2018). Images of devils with DFTD 
were first captured unintentionally by an amateur photographer in 1996 (Hawkins et al. 
2006). Development of diagnostic laboratory techniques and histopathological examination 
of historic samples confirmed the first case of DFTD from a sample collected in 1997 (Loh 
et al. 2006). 

The Tasmanian devil population has declined by 80% since the discovery of DFTD 
(Woods et al. 2020). This decline has led to changes in the species’ ecosystem as feral cat 
populations have increased and quoll populations have decreased (Drawert et al. 2022). 
However, contrary to predictions, local extinction of devils has not occurred (Farquharson 
et al. 2022), and a natural immune response has been observed in some individuals (Woods 
et al. 2020). However, it is yet to be determined if this resistance will be sufficient to enable 
the wild population to recover to its pre-DFTD levels (Farquharson et al. 2022). As part of 
the conservation program, wild monitoring activities are undertaken, and an isolated 
insurance population has been established to keep healthy devils separate from those 
with DFTD and protect these populations from disease transmission (Rout et al. 2018). 
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Two methods have been employed to monitor populations 
and the effects of DFTD within them. The first involves the use 
of traps to gather health and population demographic infor-
mation, including tissue collection of suspected DFTD tumours 
for histopathological confirmation (Save the Tasmanian Devil 
Program 2018). The second method utilises cameras placed to 
cover a predefined area, using bait and/or lure canisters to 
attract devils. Although it is not possible to confirm DFTD 
histologically via this method, it does enable visual confirma-
tion of the presence of tumours, which likely indicate the 
presence of DFTD. The advantage of using camera traps is 
that they are more likely to observe a larger number of 
Tasmanian devils than are other methods (Woods et al. 
2018). The biggest challenge with this method is that it can 
be difficult to differentiate a DFTD tumour from fresh 
lumpy wounds and old wounds from scar tissue in the images 
analysed. This may even be impossible when the tumour is in 
the oral cavity (Woods et al. 2018). The detection of Tasmanian 
devils with DTFD by any method remains a challenge, 
considering that not all devils in a specific area are sampled 
(Bode et al. 2009). 

Computer vision applications have been employed in 
ecology for various descriptive, identification, and counting 
tasks (Weinstein 2018). For example, Marburg and Bigham 
(2016) used images captured on the Pacific continental shelf 
to identify classes of microfauna present using three convolu-
tional neural network (CNN) models, and Willi et al. (2019) 
used two CNN models to distinguish images that included 
an animal from empty images and then identify the animal 
species in given images. In addition to identifying species 
in the Snapshot Serengeti database, which has 3.2 million 
images of 48 species, Norouzzadeh et al. (2018) used the 
images to analyse the counts and behaviour of animals. Deep 
learning models employed to detect symptoms of human 
disease have been adapted to ecological problems (Christin 
et al. 2019). For example, in a study by Kälin et al. (2019), 
tree defoliation was predicted using a regression CNN model 
that treated defoliation as a continuous variable. Corresponding 
defoliation values were assessed by experts in images of 
defoliated trees to train the CNN. Another study used dynamic 
background modelling to generate regional proposals for an 
object of interest in an image, with cross-frames applied to 
reduce the number of proposals. This was coupled with a 
CNN model to reduce computational complexity (Yousif et al. 
2017). Moreover, two CNN architectures were employed by 
Miao et al. (2019) to identify 20 African wildlife species 
based on a set of classification features. This analysis revealed 
that although CNN could localise animals in most images, it 
was difficult to find features that distinguished species and 
thus achieve high accuracy. CNN architectures have also 
been employed to identify individuals. For example, Shi et al. 
proposed a nine-layer CNN architecture to identify individual 
tigers based on their stripes (Shi et al. 2020). Rather than 
using algorithmic localisation, they cropped some images using 
a predefined rectangle, and some manually. In another study, 

Shi et al. (2023)  localised different parts of tigers and leopards 
with a CNN-based object detector. Later, they used CNNs and 
multi-layer perceptron (MLP) models to classify individual 
tigers and leopards (Shi et al. 2023). 

In this study, we followed a two-stage pipeline, which is 
common in the literature. First, devils were isolated from 
the background in images using a segmentation step to remove 
irrelevant details via the U-net architecture (Ronneberger et al. 
2015). Second, a feature extractor combined with a classifier 
was used to classify devils as healthy or suffering from DFTD. 
Thus, the classification task employed a CNN as a feature 
extractor combined with a support vector machine (SVM) after 
segmentation. This approach is especially beneficial in the case 
of a small number of samples; for example, it was employed to 
classify COVID-19 in 306 chest X-ray images (Novitasari et al. 
2020). 

We chose these steps because of the nature of our data. 
Images used in this study were captured at night, when devils 
are active, and objects may easily blend into each other. 
Therefore, we first had to isolate devils from the background. 
In the segmentation step, all data could be used for this 
purpose regardless of the devil’s health situation. We had more 
images of healthy devils than those with DFTD. Second, we 
chose a feature extractor combined with a shallow learning 
classifier to allow us to use fewer samples because we had a 
class imbalance problem. In this way, we were able to 
equalise the number of images of classes by using an equal 
number of healthy devils and those with DFTD. 

We propose an automated detection system based on 
machine learning systems. With the help of automated classifi-
cation, the labour required for reviewing and cataloguing 
images can be reduced, and more images can be analysed. This 
will enable monitoring frequency to be increased, which will 
improve the monitoring of devils and the disease. 

Material and methods

The proposed algorithm involves the segmentation of devils 
followed by the classification of devils according to their 
DFTD status. The U-net architecture was implemented in 
Google Colab for segmentation purposes. A training set was 
used to train the U-net model, and a validation set was used 
to monitor accuracy and prevent overfitting. The model was 
used to segment devils from test images. Later, the Resnet-18 
pre-trained network was utilised as a feature extractor to 
extract image features from segmented devils. Extracted 
features for a total of 250 devils were used to train several 
SVM classifiers. Matlab 2020a was employed for pre-trained 
feature extractor and SVM classifiers. 

Dataset

The 1250 mages used in this study were captured by the Save 
the Tasmanian Devil Program from many locations across 
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mainland Tasmania and the Forestier Peninsula. Excess meat 
or whole animal carcasses obtained to feed captive devils is 
occasionally used by monitoring staff as bait to attract wild 
devils to camera locations. This material is sourced from 
professional shooters operating under crop-protection laws; 
therefore, animal ethics approval was not required. 

Images were captured using Sony DSC-W190 and Sony 
DSC-W55 cameras with a size of 4000 × 3000 and 3072 × 2304 
pixels, respectively. Images of healthy devils (n = 961) were 
from the depopulated and reintroduced disease-free population 
on the Forestier Peninsula (Rout et al. 2018). Those of devils 
with DTFD (n = 289) were identified by Save the Tasmanian 
Devil Program staff following visual classification from 
images captured in mainland locations. 

For our analysis, all original images were resized to 
256 × 256 pixels in grayscale format and separated into 
800, 200, and 250 images for the training, validation, and 
testing sets, respectively. Testing data consisted of 125 healthy 
and 125 diseased devils. These healthy and diseased devil 
testing images were arbitrarily picked from the label to 
which they belonged and were separated initially, and 
training and validation images were randomly shuffled at 
every training. Later, data augmentation techniques were 
applied to the training and validation set while the testing 
set remained untouched. 

Segmentation

The first step of the algorithm employs a deep learning 
architecture to segment Tasmanian devils from the image 
background. Input images and their corresponding output 
labels were used to train the network. The output label is the 
mask where the Tasmanian devil is labelled as foreground and 
the remaining objects as background. 

U-net architecture
This architecture is composed of two parts: a contracting 

and an expansive path. There is symmetry between layers of 
contracting and expansive paths. The contracting path has a 
series of convolutional layers and pooling to downsample 
feature maps while increasing the number of feature maps. 
The expansive path has a series of upsampling and convolu-
tional layers. The contracting and expansive paths are 
connected to each other by skip connections. The expansive 
path repeatedly increases resolution while acquiring high-
resolution features from the contracting path with skip connec-
tions. The output is a mask that separates the Tasmanian devil 
from the background once a model is trained (Ronneberger 
et al. 2015). The architecture is illustrated in Fig. 1. 

Data augmentation
Data augmentation is a complementary step in the case of a 

small number of samples where it teaches desired invariance 

Fig. 1. The architecture of U-net (Nurçin and Imanov 2021).
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and robustness to the model. A small number of samples can 
also result from the difficulty of labelling, which might be a 
time-consuming task. For the U-net segmentation part, several 
augmentation techniques were applied to training and valida-
tion images as shear, zoom, rotation, and horizontal flip. 
These augmentation techniques were applied to the input 
image and its corresponding output mask. 

Parameters of U-net architecture
The model was trained with a batch size of 128 for 4000 

epochs. ‘Adam’ was employed as an optimiser, with a learning 
rate of 0.001 (Kingma and Ba 2015). 

Feature extraction

Resnet-18 is a residual network with a depth of 18 layers. The 
pre-trained version is trained with more than a million images 
corresponding to 1000 categories on the ImageNet database 
(Krizhevsky et al. 2017). The simplified architecture of 
Resnet-18 (Pre-trained network) is illustrated in Fig. 2. The 
batch normalisation is repeated after each convolution and 
before applying the rectified linear unit (ReLU) activation 
function. A series of convolutional layers and shortcut connec-
tions constitute the residual part of the network. The network 
ends with the global average pooling layer followed by a fully 
connected layer for 1000 classes, softmax, and a classification 
layer (He et al. 2016). 

We used the network’s global average pooling layer to 
extract features from segmented Tasmanian devil images – 
512 features for each image from a total of 250 images. The 
average 2D pooling layer of Resnet-50 was also used for 
comparative purposes; it produced 2048 features (He et al. 
2016), which were also used to train SVM classifiers. 

Dimension reduction and feature selection

Principal component analysis (PCA) and feature selection 
methods were employed to reduce the number of features 
(Abdi and Williams 2010). Univariate feature ranking using 
chi-square tests and neighbourhood component analysis 
was used for feature selection (Yang et al. 2012; Laborda 
and Ryoo 2021). 

The chi-square tests were used to rank the 512 features, 
as illustrated in Fig. 3. Features above the ‘10’ predictor 
importance score were selected, resulting in 31 features. 
A neighbourhood component analysis was also employed to 
weigh the features. Features with weights of more than 0.005 
were chosen, resulting in 47 features. All the features and 
their weights are shown in Fig. 4. Finally, PCA was employed 
as a dimension reduction method, with 95% explained 
variance, and the number of features reduced to 91. 

Classifier

The SVM binary learner is a very popular machine-learning 
algorithm with a variety of kernels. The error-correcting 
output codes (ECOC) model extends its ability to multi-class 
problems (Escalera et al. 2010). SVM is employed in the 
proposed work for classification purposes because of the high 
number of features (512) and because it is robust when there 
is a higher number of features than samples (Pisner and 
Schnyer 2020). 

SVM classifiers with cubic, linear, and quadratic kernels 
were used to classify devils as DFTD or healthy. The perfor-
mance of SVM classifiers was evaluated by 10-fold cross-
validation. We also separated the data into 150 and 100 
images for training and testing the ECOC model using SVM, 
respectively. 

Fig. 2. The architecture of the pre-trained network on top and the global average pooling.
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Fig. 3. The chi-square tests; predictor importance score on y-axis and
predictor rank on x-axis.

Fig. 4. Neighbourhood component analysis; Feature weight on y-axis
and feature index on x-axis.

Evaluation

Segmentation was evaluated using the Jaccard similarity 
index, otherwise known as intersection over union. The similarity 
between the predicted segmentation and ground truth is 
computed as: 

jA ∩ Bj jA ∩ Bj
Jaccard ðA, BÞ = = ,jA ∪ Bj jAj + jBj − jA ∩ Bj 

where A and B denote the predicted image and the ground 
truth, respectively. The goal of segmentation is pixel classifi-
cation. Therefore, a common loss function for binary classifi-
cation, binary cross-entropy, was employed. 

The Jaccard similarity index and binary cross-entropy loss 
function can be combined to generalise the loss function. In 
this way, the minimisation of loss maximises the probability 
of the right pixels being predicted (Iglovikov and Shvets 
2018). 

Results

The network reached the best validation loss at the 3545th 
epoch over 4000 with a value of 0.01448. The model achieved 
an 88.28% Jaccard similarity index on 250 testing images. 
The segmentation results are shown in Fig. 5. The classifica-
tion results with no feature reduction/selection are illustrated 
in Table 1. Cubic SVM achieved the highest accuracy with a 
value of 91.6%. 

Classifiers trained with fewer features with the use of PCA, 
neighbourhood component analysis, and univariate feature 
ranking using chi-square tests are illustrated in Tables 2, 3, 
and 4, respectively. Here, neighbourhood component analysis 
combined with medium Gaussian SVM yielded the highest 
accuracy, at 92.4%. The confusion matrix for this model is 
illustrated in Fig. 6. The area under the receiver operator 
characteristic (ROC) curve (AUC) was used to further validate 
the performance of the model, which resulted in 0.96 AUC, as 
shown in Fig. 7. 

Comparison with an end-to-end CNN
architecture

End-to-end CNN models utilised for classification usually 
require more than 1000 images. In our case, we had images 
of 961 healthy and 289 diseased (DFTD) devils, which 
introduced a class imbalance problem. We mitigated this by 
using 125 healthy and 125 diseased devil features in the 
classification task, because SVM classifiers perform well with 
a relatively small number of samples. For comparison, we also 
used an end-to-end CNN model (Xception) with all data 
available and separated as 70%, 15%, and 15% for training, 
validation, and testing, respectively (Chollet 2017). Additionally, 
random flip, random rotation, and random zoom were applied 
to training and validation images. Note that by using all data 
available, we had a class imbalance problem. Therefore, the 
AUC was used as a metric for training the model, as is common 
for class-imbalanced tasks. Furthermore, Keras-tuner was 
used to determine the learning rate, which was found to be 
0.0001 automatically. The model was trained for 100 epochs, 
and the best validation AUC was achieved at the 85th epoch. 
The model achieved 0.94 AUC on the testing set, and the 
proposed algorithm achieved 0.96 AUC. 

Comparison with different feature extractor
replacement

For comparative purposes, we replaced the Resnet-18 feature 
extractor with the Resnet-50 feature extractor and fed the 
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Fig. 5. (a, b) Segmentation of a devil with DFTD at the top left and right. (c, d) Segmentation of devils with no
visible symptom at the bottom left and right.

Table 1. Comparison of SVM classifiers.

Classifier Accuracy (%)

Linear SVM 85.6

Cubic SVM 91.6

Quadratic SVM 89.6

Medium Gaussian SVM 88.8

ECOC model using SVM 89.0

Table 2. Comparison of PCA + SVM classifiers.

Classifier Accuracy (%)

Linear SVM 81.2

Cubic SVM 86.0

Quadratic SVM 85.2

Medium Gaussian SVM 85.6

Table 3. Comparison of Neighbourhood Component analysis + 
SVM classifiers.

Classifier Accuracy (%)

Linear SVM 80.4

Cubic SVM 90.4

Quadratic SVM 89.6

Medium Gaussian SVM 92.4

features into SVM classifiers. The highest accuracy among 
these SVM classifiers was achieved with the cubic SVM. 
The Resnet-50 feature extractor combined with the cubic 
SVM classifier achieved 90.08% accuracy. This performed 

Table 4. Comparison of univariate feature ranking using chi-square
tests + SVM classifiers.

Classifier Accuracy (%)

Linear SVM 80.0

Cubic SVM 86.8

Quadratic SVM 87.2

Medium Gaussian SVM 83.2

Fig. 6. Confusion matrix of the best model where TD indicates
healthy Tasmanian devils and DFTD indicates Tasmanian devils with
facial tumours.
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Fig. 7. The area under the ROC of the best model.

less well than the Resnet-18 with cubic SVM classifier, which 
performed with 91.6% accuracy. 

Discussion

An automated approach to devil classification may allow for 
increased capacity to analyse devil images with a reduced 
workload and time commitment from field monitoring staff. 
To this end, we proposed a two-stage pipeline composed of 
segmentation and classification steps. 

The proposed segmentation algorithm achieved an 88.28% 
Jaccard similarity index. The segmentation results show that 
whole carcasses of wallaby or possum utilised as bait – which 
can resemble devils because they are fur covered – were seg-
mented as part of the background, as were other irrelevant 
objects such as trees, leaves, and ground litter. 

Medium Gaussian SVM combined with the neighbourhood 
component analysis feature selection method yielded the 
highest accuracy (92.4%) among the tested SVM classifiers. 
The ECOC model using SVM achieved 89.0% accuracy. Even 
though the ECOC model did not achieve the best accuracy 

among the SVM classifiers, it should be considered in future 
studies because it enables multi-class classification. For example, 
it could be used for assessment of the severity of DFTD. It 
could also be used for wider classification tasks, including the 
classification of multiple species captured by these cameras. 

The training and validation of U-net were not affected by 
having an unbalanced number of images (961 healthy and 
289 diseased (DFTD) devils), because the task for the segment-
ation model was to learn how to distinguish devils from the 
background regardless of their health condition. However, 
the testing data consisted of 125 healthy and 125 diseases 
devils to provide balanced data for the classifier. The 
availability of more data will enable the use of state-of-the-
art transfer learning models, which usually perform better on 
larger datasets. Although we segmented the whole body of 
devils for the classification of DFTD, just the head could be 
segmented in future studies because this is where the disease 
is primarily evident. Such research would enable assessment 
of the possibility of improved accuracy. 

Individual identification of devils can also be explored in 
future work to enable counting individuals from images, resulting 
in a population estimate (Weinstein 2018; Shi et al. 2023). Devils 
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tend to have a unique combination of white pelage markings on 
their chest, shoulders and rump area, which makes individual 
identification possible, although 13% of devils are completely 
black (Pemberton and Renouf 1993). Further development of 
automated classification to identify individuals via pelage 
markings would be beneficial. 

In this study, we focused on monitoring Tasmanian devils. 
However, other species captured during the devil camera 
monitoring program may be listed as threatened under the 
Tasmanian Threatened Species Protection Act 1995 and/or 
Federal Environment Protection and Biodiversity Conservation 
Act 1999. These include the spotted-tailed quoll, eastern quoll, 
wedge-tailed eagle and white-bellied sea eagle (Department 
of Natural Resources and Environment 2023). Camera trap 
image data for these species, as well as devils, could be 
used to create a wider dataset to train computer vision systems 
to monitor multiple species simultaneously. This will enable 
population and density trends in the various species to be 
monitored more easily and enable prompt conservation 
action to address any population declines identified. 

Conclusions

In this study, images taken from the Save the Tasmanian Devil 
Program were used to train U-net architecture for segmen-
tation. Data augmentation methods were employed for the 
relatively small number of samples. Once training was 
completed, the model was used on testing data to segment 
images of devils, distinguishing them from the background. 
The pre-trained Resnet-18 was used to extract features from 
the segmented images. These features were used in SVM for 
classification, with 92.4% accuracy. It was shown that the 
proposed approach was able to identify devils presenting 
with the physical manifestations of DFTD with a very high 
accuracy. To the best of our knowledge, this is the first work 
to classify DFTD using camera images in an automated way. 
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