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ABSTRACT

Context. Carrion is a high-energy and nutrient-rich resource that attracts a diverse group of
vertebrate scavengers. However, despite the carrion pool being highly seasonal in its availability,
there is little understanding of how scavengers utilise carcasses across all four seasons. Aim. To
assess how season influences carcass-detection times by vertebrate scavengers and their rates of
scavenging. Methods. We used remote cameras to monitor vertebrate scavenging at 15 eastern
grey kangaroo (Macropus giganteus) carcasses in four consecutive seasons (summer, autumn,
winter, and spring; total 58 carcasses) in the Australian Alps. Key results. In total, 745 599
remote-camera images were captured, within which 34 vertebrate species were identified, nine
of which were recorded to actively scavenge. Time to first detection of carcasses by vertebrate
scavengers was 5.3 and 9.6 times longer during summer (average 144 h) than during spring
(average 34 h) and winter (average 24 h) respectively. Rates of vertebrate scavenging were
highest in winter and spring, with brushtail possums (Trichosurus vulpecula) accounting for 78% of
all scavenging events during winter, and ravens (Corvus spp.) accounting for 73% during spring.
High rates of carcass use by these mesoscavengers may reflect a scarcity of other food sources,
the demands of their breeding season, or a relative absence of scavenging by larger dominant species
such as dingoes (Canis dingo) and wedge-tailed eagles (Aquila audax). Conclusions. These findings
demonstrate the highly seasonal nature of vertebrate scavenging dynamics in an alpine
ecosystem, and that mesoscavengers, not apex scavengers, can dominate the use of carcasses.
Implications. Accounting for the effects of season is integral to understanding the way animals
utilise carcasses in alpine and other strongly seasonal environments; and for developing further
our knowledge of ecosystem processes linked to decomposition.

Keywords: alps, apex scavenger, breeding, brushtail possum, carrion, food source, mesoscavenger,
raven, scavenger guild.

Introduction

Carrion is a valuable ecosystem resource, which in contrast to plant-based detritus, is high 
in energy and nutrient rich (Barton et al. 2013). Although carrion is spatially and temporally 
patchy (Carter et al. 2007; Wilson and Wolkovich 2011), it is exploited by species that have 
evolved to scavenge. Historically, scavengers have been viewed as ‘bottom-feeders’, owing 
to associations with rotting matter, disease, and death (DeVault et al. 2003). However, 
scavenging is present in many taxa, from obligate and facultative large vertebrate 
scavengers capable of consuming a whole carcass in one feeding event (Mateo-Tomás 
et al. 2017), to invertebrate scavengers that can aggregate around carrion in the 
thousands (Forbes and Carter 2015). Together, these species form scavenger guilds 
which, in addition to acting as ‘natures clean-up crew’ (Grilli et al. 2019), also support 
critical linkages, structure, and stability in food webs (Wilson and Wolkovich 2011); 
distribute nutrients within and among ecosystems; and provide economic and human 
health benefits related to carcass disposal and sanitary measures (Beasley et al. 2019). 
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Carrion biomass within an ecosystem fluctuates in 
response to key modes of death such as predation, but also 
in response to environmental factors (Forbes and Carter 
2015; Moleón et al. 2019). Seasons are one of the strongest 
governing environmental factors, and can dictate the life 
histories of many herbivorous and/or migratory species 
that form a major component of the carrion pool (Skellam 
1967; Boyce 1979; Forbes and Carter 2015; Moleón et al. 
2019). This is because, in highly seasonal environments, 
carrion biomass can become cyclically pulsed towards the 
ends of harsh and/or prolonged seasons when such species 
incur increased mortality rates (Moleón et al. 2014). This 
is evident in tropical and subtropical Africa following wet-
and dry-season cycles (Knight 1995; Dudley et al. 2003; 
Jones et al. 2015). For example, each year over 1 million 
wildebeest (Connochaetes taurins) migrate through the 
Serengeti Mara ecosystem (Hopcraft et al. 2015), including 
through the Mara River, where mass wildebeest drownings 
occur during its crossing (Subalusky et al. 2017, 2020). 
This sudden annual influx of carrion provides many terrestrial 
and aquatic scavengers with an abundance of available energy 
and nutrients (Handler et al. 2021). Similar trends are also 
common in the higher northern latitudes where many 
ungulate species face increased mortality rates towards the 
ends of harsh northern winters (Clutton-Brock et al. 1997; 
Wilmers et al. 2003; Flint et al. 2010), or in arid Australia 
where drought can cause food shortages resulting in rapid 
declines in kangaroo populations (~40%; Caughley et al. 
1985; Robertson 1986). 

In response to seasonal fluctuations in the availability of 
carrion, scavengers have adapted and evolved to exploit 
food resources when they are in abundance. Facultative scav-
engers have considerable flexibility in their diets regarding 
both the relative contribution of predated and scavenged 
food, but also of meat, compared with other food sources 
(Pereira et al. 2014). For example, the Białowież Forest 
(Poland) scavenger guild increased scavenging rates during 
winter in response to greater energy expenditure (i.e. keeping 
warm, traversing snow), carcass availability, and lack of other 
food sources (Jedrzejewska and Jedrzejewski 1998; Selva 
et al. 2003, 2005). These dynamics can become even more 
complex when considering the contrasting seasonality in 
the life histories of each scavenger species. For instance, 
during peak chick-rearing season, the energy requirements 
of herring gulls (Larus argentatus) and lesser black-backed 
gulls (Larus fuscus) are inherently greater. Consequently, both 
species are less selective of fish species when scavenging 
fishery discards (Sotillo et al. 2014). A plethora of other 
environmental, life-history, and inter/intra specific factors 
can also affect species specific scavenging and, thus, add 
further complexities to scavenging dynamics (Rahmstorf 
and Coumou 2011). 

Despite the obvious potential for seasonal trends in 
scavenging dynamics, the experimental designs of field-
based scavenging studies often overlook the impact of all 

four seasons (Schoenly et al. 2015). Indeed, it is common to 
monitor scavenging dynamics surrounding carrion only 
during two seasons of interest (i.e. hot and cold, or wet and 
dry, or breeding and non-breeding; Read and Wilson 2004; 
López-López et al. 2013; Forsyth et al. 2014; Turner et al. 
2017; Pardo-Barquín et al. 2019; Sebastián-González et al. 
2019; Inagaki et al. 2020; Rød-Eriksen et al. 2020; Enari 
and Enari 2021). However, such an approach potentially 
oversimplifies the ways in which the various dimensions of 
scavenging can change not only between each of the 
seasons, but over the course of a year, and even among 
years (López-López et al. 2013). For instance, season, along 
with daily temperatures, humidity, and moisture levels can 
influence carrion persistence rates via the effects they have 
on regulating microbial and insect activity (Matuszewski 
et al. 2010; Turner et al. 2017; Barton and Bump 2019). 
Moreover, some studies completely ignore seasonal effects 
by monitoring scavenging dynamics only during one season 
(Peisley et al. 2017; Bingham et al. 2018; Cunningham et al. 
2018; Rees et al. 2020; Fielding et al. 2022). Therefore, we 
acknowledge that although the successful design of any 
robust field study in scavenging ecology is underpinned by 
temporal aspects (i.e. diel, seasonal, yearly), spatial aspects 
(i.e. representative of ecosystem, spatially independent), 
and sample size (Schoenly et al. 2015), in conjunction 
with a suite of other considerations (i.e. carcass size and 
weight; Moleón et al. 2015; Sebastián-González et al. 2019), 
seasonal aspects arguably have the most potential to 
consistently affect scavenging dynamics. 

Here, we exploited the highly seasonal nature of the 
Australian Alps to monitor the use of carcasses by vertebrate 
scavengers. We undertook carcass monitoring across four 
seasons to test hypotheses related to (1) scavenger species 
richness/composition; (2) the time to first detection and 
scavenging at a carcass; (3) scavenger activity (i.e. probability 
of a scavenger investigating versus scavenging a carcass); and 
(4) the time spent investigating and scavenging a carcass. 
Accelerated decomposition of carrion during summer as a 
product of increased invertebrate and microbial activity is 
known to produce stronger carcass-linked odours (Cammack 
et al. 2015). Consequently, we predicted that increased 
olfactory cues during summer would result in greater 
detectability of carrion by vertebrate scavengers and, thus, 
shorter time to first arrival and scavenging at carcasses. 
Conversely, despite carrion being less detectible during 
winter, it was predicted that the probability of vertebrate 
scavenging would increase, and time spent scavenging 
would be longest. This hypothesis was based on vertebrate 
scavengers potentially being more heavily reliant on carrion 
during winter when other food resources are scarce 
(Jedrzejewska and Jedrzejewski 1998; Selva et al. 2003, 
2005). Last, we predicted that our findings would highlight 
the importance of undertaking field-based scavenging 
studies across all four seasons, so as to fully understand the 
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complexities of scavenging dynamics and the interactions that 
take place surrounding carrion. 

Materials and methods

Study site

This study was conducted in Kosciuszko National Park, in 
southern New South Wales, Australia. This region includes 
many of Australia’s highest peaks and ranges, including the 
highest peak, Mount Kosciuszko (2228 m asl). The landscape 
is delineated into three altitudinally distinct ecological 
communities, namely, montane (500–1500 m), subalpine 
(1500–1850 m), and alpine (1850–2228 m) (Bear et al. 2006). 
Each of these communities are highly seasonal, with the 
temperatures experienced throughout the course of a year 
differing by up to 50°C (−10 to 40°C). During winter much 
of the landscape can be covered in snow, but by the 
following summer the same landscape can experience intense 
bushfires (Ward et al. 2020). This work was undertaken 
within the montane zone (between approximately 1000– 
1500 m) which is characterised by forest stands dominated 
by snow gums (Eucalyptus pauciflora) and various other 
Eucalyptus species. 

Ethics and permits

Ethics approvals (Project number: 2019/1640, The University 
of Sydney) and scientific permits (Licence number: Sl102334, 
New South Wales Office of Environment and Heritage) were 
obtained to undertake the fieldwork. Carcasses of eastern grey 
kangaroos (Macropus giganteus) were sourced fresh and 
locally from legally approved shooting operations that are 
conducted to control or harvest overabundant kangaroo 
populations. 

Fieldwork

A 15 km transect was established through Kosciuszko 
National Park, along which all carcass monitoring took 
place (Fig. 1). This transect ran from north-east to south-
west and was selected because of its accessibility (i.e. road 
access), because it is an undisturbed area with little 
human activity, and because consistent vegetative structure 
allowed carcass-monitoring sites with similar canopy cover 
(~75%) to be established along the transect. 

Monitoring periods coincided with the four seasons: 
March–May 2020 (autumn, average min/max: 1°C/13°C); 
July–September 2020 (winter, average min/max: −3°C/8°C); 
September–November 2020 (spring, average min/max: 
2°C/15°C); January–March 2021 (summer, average min/max: 
6°C/21°C). During each season, 15 sites were established along 
the transect, separated by approximately 1 km from the nearest 
sites monitored within the same season, and approximately 

Fig. 1. Location of the monitoring transect, along which all 60 carcass
sites were established within Kosciuszko National Park.

250 m from the nearest sites monitored during other seasons 
(60 different sites in total; Fig. 1). The separation of sites 
ensured a level of spatial independence, and it prevented 
habituation of scavengers to a carrion source location 
(Inagaki et al. 2020; Spencer and Newsome 2021; Spencer 
et al. 2021; Newsome and Spencer 2022). 

Within each season, one fresh eastern grey kangaroo 
carcass was placed at each carcass-monitoring site (15 in 
total). The carcasses ranged in weight from 12 kg to 70 kg 
and, on average, were 28.3 kg (±1.498 standard deviation; 
Supplementary material Table S1). Each carcass was secured, 
using wire ties, to star pickets driven into the ground to ensure 
that they remained in situ (methods used were as per Spencer 
and Newsome 2021; Spencer et al. 2021; Newsome and 
Spencer 2022). 

Vertebrate scavenger activity was monitored at each site 
for 60 days by using a Reconyx PC800 Hyperfire™ remote 
camera. Each camera was placed on a free-standing star 
picket 3 m north of the carcass; the southern aspect of the 
cameras decreased exposure to direct sunlight, which 
would otherwise reduce image quality. The cameras were 
calibrated to take photographs continuously (approximately 
one image per second) when triggered by thermal movement 
(i.e. rapid-fire, no wait period). These approaches and 
methods follow those previously used in field-based scav-
enging research (Kostecke et al. 2001; King et al. 2006; 
Flint et al. 2010; Inagaki et al. 2020; Rød-Eriksen et al. 
2020; Spencer and Newsome 2021; Spencer et al. 2021; 
Newsome and Spencer 2022). 

Analyses

Remote-camera images were analysed for species presence 
and the number of individuals of a species present. An 
‘event’ was characterised as a visitation by a species that 
occurred more than 10 min after the last visitation by that 
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same species (methods as per Spencer and Newsome 2021; 
Bragato et al. 2022; Newsome and Spencer 2022). Only 
species-specific events could be characterised because identi-
fication of individuals for most species was not possible. An 
event was characterised as a ‘scavenging event’ if the species 
present scavenged on the monitored carcass in at least one of 
the remote-camera images consisting of that event, otherwise 
the event was characterised as an ‘investigation event’. Data  
from species recorded to have scavenged at least once were 
included in the statistical analyses. 

The R statistical environment (R Core Team, ver. 4.2.1; 
Vienna, Austria; https://www.R-project.org/) was used for all 
statistical analyses. To determine whether species composi-
tion differed among the seasons, we used a permutational 
multivariate analysis of variance (PERMANOVA) within the 
R Package ‘vegan’ (Oksanen et al. 2022). The PERMANOVA 
was used in conjunction with an analysis of similarities 
(ANOSIM; also within R Package ‘vegan’; Oksanen et al. 
2022) to also test whether the magnitude of difference among 
seasons was greater than that within seasons (Somerfield et al. 
2021). To determine which scavenger species were driving 
any differences in species composition between the seasons, 
a similarity percentages (SIMPER) analysis was used, also 
within the R Package ‘vegan’ (Oksanen et al. 2022). 

To characterise the seasonal nature of scavenging, the 
following four response variables were considered: scavenger 
species richness (Conway–Maxwell Poisson distribution); time 
to first detection of and scavenging at a carcass (in hours; 
gamma distribution); scavenger activity (i.e. probability 
of a scavenger investigating vs scavenging a carcass; 
binomial distribution); and investigation and scavenging 
event duration (in minutes; gamma distribution). Each of the 
response variables was modelled against the explanatory 
variables of season, altitude, and carcass weight. 

Models were constructed using either generalised linear 
models (GLM) within the R Package ‘lme4’ (Bates et al. 
2015), or using generalised linear mixed models (GLMM) 
within the R Package ‘glmmTMB’ (Brooks et al. 2017). We 
utilised GLMs when modelling response variables that 
consisted of only one measurement at each independent 
carcass-monitoring site, namely, scavenger species richness 
and time to first detection/scavenging. GLMMs were used 
for response variables that yielded repeat measurements at 
each independent carcass-monitoring site (i.e. scavenger 
activity and event duration) to account for the random 
effect of site. Model assumptions were checked using 
residual diagnostics within the R Package ‘DHARMa’ 
(Hartig and Hartig 2017). This also included testing model 
residuals for spatial autocorrelation. If detected, a spatial 
autocorrelation covariate was created using the R Package 
‘spdep’ (Bivand et al. 2013) and subsequently included as 
an explanatory variable in the model (Dormann et al. 
2007). These models were constructed twice, once using 
only investigation events and once using only scavenging 
events. Only one model was constructed for scavenger 

activity because it is a binomial response variable (either 
investigation (0); or scavenging (1)) designed specifically to 
determine the probability of either an investigation event 
or scavenging event. 

To determine the most parsimonious model(s), corrected 
Akaike information criterion (AICc; Sakamoto et al. 1986) 
was used to consider the different combinations of explanatory 
variables (i.e. combinations of season, altitude, and carcass 
weight; with a ΔAICc level of significance <2). Model 
selection was facilitated by the dredge function within the R 
Package ‘MuMIn’ (Bartoń 2022). 

Significance testing (level of significance P < 0.05) was 
undertaken using the base model (i.e. where the scavenging 
response variable was modelled against all three explanatory 
variables, namely, season, altitude, and carcass weight). This 
determined which explanatory variables (season, altitude, 
and/or carcass weight) and/or their levels (with autumn 
used as the reference level) were important in explaining 
the scavenging response variable. Finally, a Tukey’s honest 
significance test within the R Package ‘emmeans’ was used 
to determine which seasons were significantly different from 
one another regarding the modelled scavenging response 
variable (Lenth 2016). This pair-wise test approach 
could not be used when modelling species richness because 
it followed a Conway–Maxwell–Poisson distribution, which 
does not support post hoc analyses. 

Results

Of the 60 carcass sites monitored, remote-camera data was 
gathered for 58; remote-camera data for two sites (one 
during winter and one during summer) were lost due to 
theft and camera failure. The remote cameras took 745 599 
images of 34 different species including both scavengers 
and non-scavengers. Of these taxa, nine were considered 
scavenger species on the basis of recorded scavenging of the 
monitored carcasses (Fig. 2). These were spotted-tail quoll 
(Dasyurus maculatus), feral cat (Felis catus), dingo (Canis 
dingo), pied currawong (Strepera graculina), wedge-tailed 
eagle (Aquila audax), brushtail possum (Trichosurus 
vulpecula), raven spp. (Australian raven (Corvus coronoides) 
and little raven (Corvus mellori), which were indistinguish-
able from one another in the remote camera images, and so 
were grouped together as ‘raven(s)), red fox (Vulpes vulpes), 
and feral pig (Sus scrofa; Fig. 3). 

In total, 6857 distinct events were recorded, of which, 
2680 were investigation events and 4177 scavenging events 
(Fig. 4a). Brushtail possums and ravens accounted for 88% 
of the total recorded events, whereas spotted-tail quolls 
accounted for the fewest events (Fig. 4b). 

There were weak differences in species composition among 
seasons for both investigation events (pseudo-F = 2.898, 
d.f. = 57, residual d.f. = 54, P = 0.002, nperm = 999) and 
scavenging events (pseudo-F = 2.991, d.f. = 53, residual 
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Fig. 2. The total number of carcass sites visited by each scavenger species per season. Carcass-monitoring sites where scavenging was
recorded (solid fill) are distinguished from those that were only investigated (shaded fill).

d.f. = 50, P = 0.004, nperm = 999; Table S2). Species compo-
sition for investigation events was significantly different 
between autumn and spring (P = 0.030) and between spring 
and winter (P = 0.018; Table S3). Whereas for scavenging 
events, species composition was significantly different 
between autumn and winter (P = 0.036) and between 
spring and winter (P = 0.012; Table S3). Additionally, there 
was very little difference when comparing within-season 
species composition with between-season species composi-
tion for both investigation events (R = 0.109, P = 0.001, 
nperm = 999) and scavenging events (R = 0.109, 
P = 0.002, nperm = 999). Brushtail possums and ravens were 
found to be the primary drivers of the observed differences in 
species composition among the seasons (Fig. 5, Tables S4, S5). 

Scavenger species richness

Seven models demonstrated equivalent levels of support 
(ΔAICc < 2) for explaining the variation in scavenger 
species richness during investigation events (Table S6). 
Scavenger species richness was affected by season, with 
summer (P = 0.023) and spring (P = 0.038) being signifi-
cantly different from autumn, the reference level (Table S7). 
Four models demonstrated equivalent levels of support 
(ΔAICc < 2) for explaining the variation in scavenger 

species richness during scavenging events (Table S6), but 
the base model was not significant (Table S7). 

Time to first detection and scavenging of
carcasses

Spatial autocorrelation was detected in the model residuals 
for time to first detection; therefore, a spatial autocorre-
lation covariate (SACC) was included. Three models 
demonstrated equivalent levels of support (ΔAICc < 2) for 
explaining the variation in time to first detection of 
carcasses (Table S8). The time to first detection of carcasses 
was affected by season (Table S9). Specifically, time to first 
detection of carcasses (in hours) was 5.344 and 9.622 times 
longer during summer than during spring (P = 0.012) and 
winter (P = 0.001) respectively (Fig. 6; Table S10). 

Three models demonstrated equivalent levels of support 
(ΔAICc < 2) for explaining the variation in time to first 
scavenging of carcasses (Table S8), but the base model was 
not significant (Table S9). 

Scavenger activity

Three models demonstrated equivalent levels of support 
(ΔAICc < 2) for explaining the variation in scavenger 
activity (Table S11). Scavenger activity was affected by 
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Fig. 3. Remote camera images for each of the members of the Australian alpine scavenger guild, determined by recorded scavenging of
carcasses in Kosciuszko National Park. (a) Spotted-tail quoll (Dasyurus maculatus), (b) feral cat (Felis catus), (c) dingo (Canis dingo), (d) pied
currawong (Strepera graculina), (e) wedge-tailed eagle (Aquila audax), (f ) brushtail possum (Trichosurus vulpecula), (g) raven spp. (Australian
raven (Corvus coronoides) and little raven (Corvus mellori), indistinguishable from one another in the remote camera images), (h) red fox (Vulpes
vulpes), and (i) feral pig (Sus scrofa).

season (Table S12). Specifically, scavenging was 2.186 and 
3.086 times more likely than investigation during spring 
than during autumn (P = 0.014) and summer (P ≤ 0.001) 
respectively, and 2.683 times more likely during winter 
than during summer (P = 0.002; Table S13). 

Duration of investigation and scavenging events

Four models demonstrated equivalent levels of support 
(ΔAICc < 2) for explaining the variation in the duration of 
investigation events (Table S14). The duration of investi-
gation events was affected by carcass weight, whereby 
larger carcasses were investigated for shorter durations 
(P = 0.031; Fig. S1, Table S15). Four models demonstrated 
equivalent levels of support (ΔAICc < 2) for explaining the 
variation in the duration of scavenging events (Table S14). 
The duration of scavenging events was affected by season 
(Table S15). Specifically, the duration of scavenging events 
(in minutes) was 1.916 and 1.556 times shorter during 

spring than during autumn (P = 0.001) and winter 
(P = 0.027) respectively (Fig. 7; Table S16). 

Discussion

In this study, we investigated how seasons affect vertebrate 
scavenging dynamics in an alpine environment. Our findings 
demonstrated that scavenging dynamics were highly 
seasonal, and this trend was consistent (i.e. did not signifi-
cantly change) across an altitudinal gradient for carcasses 
of all weights. Australia has no strictly obligate vertebrate 
scavenger, but our study recorded carcass use by nine 
species of facultative scavenging vertebrates. Scavenging 
rates by these species should be highly seasonal, linked to 
factors such as fluctuations in carrion biomass within the 
landscape, availability of other food sources, and/or the 
life histories of the scavenger species (Knight 1995; 
Jedrzejewska and Jedrzejewski 1998; Dudley et al. 2003; 
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Fig. 4. (a) The total number of events per season and (b) the
percentage of total events attributed to each scavenger species
where brushtail possums accounted for 61%, raven spp. 27%, pied
currawongs 5%, and all other species <2% each.

Selva et al. 2003, 2005; Wilmers et al. 2003; Wilmers and 
Getz 2004; Selva and Fortuna 2007; White 2011; Pereira 
et al. 2014; Jones et al. 2015). Such observations were made 
in this study, but the trends uncovered were overwhelm-
ingly dictated by the scavenging rates and activities of 
mesoscavengers, specifically brushtail possums and ravens. 
Together, these species accounted for 88% of all recorded 
events. The scavenging rates observed by ravens were not 
unusual, with many studies both within Australia and globally 
describing raven species as prolific scavengers (Selva et al. 
2003; O’Brien et al. 2010a; Mateo-Tomás et al. 2015; Spencer 
et al. 2021; Bragato et al. 2022; Newsome and Spencer 2022). 
However, the brushtail possum has received little recognition 
as a regular scavenger (but see Brown et al. 1993; Heinsohn 
and Barker 2006; O’Brien et al. 2010b). 

Scavenging dynamics surrounding carrion are not 
typically dictated by the species-specific scavenging rates of 
mesoscavengers, but that of larger apex scavenger species 

(Wilmers et al. 2003; Wilmers and Post 2006; Krofel et al. 
2012; Allen et al. 2014). This is because larger species are 
generally more competitively dominant surrounding carrion 
(Moleón et al. 2014; Pereira et al. 2014; Inagaki et al. 2020), 
and are able to open up carcasses, and, thus, provide access 
to smaller scavengers unable to do so (Selva et al. 2003, 
2019; Moleón et al. 2015). However, in this study, larger 
scavengers such as dingoes, wedge-tailed eagles, and 
feral pigs accounted for only 5% of all recorded events, 
suggesting that they were either not abundant during the 
study period or were not scavenging frequently. Notably, in 
one case, a dingo was observed to have consumed an entire 
kangaroo carcass within a 24-h period. The relative absence 
of dingoes at carcass sites, along with similarly low rates 
of scavenging by red foxes and feral cats, is likely to have 
especially influenced the use of carcasses by brushtail 
possums who regularly feature in the diets of these three 
predators (Jones and Coman 1981; Newsome et al. 1983; 
Dickman 1996; Vernes et al. 2001; Kinnear et al. 2002; 
Brook and Kutt 2011; Pascoe et al. 2012; McComb et al. 
2018; Fleming et al. 2021; Moseby et al. 2021). Further 
still, recent findings in Australia have demonstrated that 
ravens, in the absence of top scavengers, scavenged across 
all four seasons and not only during the cooler months 
when other resources were low (Fielding et al. 2021). 
Therefore, whether the relative absence of larger scavengers 
at carcass sites in this study aided mesoscavenger access to the 
food source is unknown; however, it could be reasonably 
expected if this resulted in reduced predation risk for the 
mesoscavengers and/or less competition for the food source. 

The time it takes scavengers to detect a carcass, and 
subsequently scavenge it, is intrinsically linked with carcass 
decomposition rates and persistence within the ecosystem 
(Santos et al. 2016). Carcass detection by scavengers 
is dependent on a number of factors including olfactory 
cues, visual cues, inter/intra specific cues, and search effort 
(López-López et al. 2013; Cortés-Avizanda et al. 2014; 
Cammack et al. 2015). We, therefore, expected that olfactory 
cues would be the primary mode of detection, given that 
closed-canopy forested ecosystems, such as the montane 
zone of Kosciuszko National Park, make visual detection 
and certain forms of inter/intra specific cues difficult 
(Barton and Bump 2019; Moleón et al. 2019). Consequently, 
it was predicted that, during summer, greater olfactory cues 
owing to increased temperatures, and increased invertebrate 
and microbial scavenging activity, would facilitate shorter 
time to first detection of carcasses than during the other 
seasons (Mann et al. 1990; Carter et al. 2007; Forbes and 
Carter 2015; Barton and Evans 2017; Barton and Bump 2019). 
However, there was no evidence to support this hypothesis 
and, instead, carcasses took longer to be detected during 
summer, especially when compared with spring and winter. 

It is possible that the same mechanism as that expected to 
facilitate shorter time to first detection of carcasses, 
invertebrate and microbial scavenger activity, in fact, 
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Fig. 5. The percentage contribution of each scavenger species (contributed most to least, top to bottom of each respective
legend) to the observed differences in species composition between each of the seasons (summer, sun; autumn, leaf; winter,
snowflake; spring, flower) for (a) investigation events and (b) scavenging events. The percentage contribution was adapted
from the SIMPER analyses cumulative sum results (CUMSUM; Tables S4, S5).

hindered detection of carcasses by the vertebrate scavengers. Anderson et al. 2019; Evans et al. 2020). The intense 
scavenging activity that follows accelerates carcass decay 
through the different stages of decomposition, potentially at 
such a rate that vertebrate scavengers were given too little 
time to detect carcasses; i.e. the invertebrate scavengers 

During summer (warmer months), carcasses are rapidly 
colonised (within minutes) en masse by invertebrates and a 
plethora of microorganisms (Ray et al. 2014; Crippen et al. 
2015; Merritt and De Jong 2015; Barton and Evans 2017; 
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Fig. 6. The time to first detection (hours) of monitored carcasses by vertebrate scavengers during each of the seasons (mean is
indicated by a cross).

outcompeted vertebrate scavengers (Ray et al. 2014; Barton 
and Evans 2017; Evans et al. 2020). Indeed, previous 
observations of carcass persistence rates within the study 
site have indicated that eastern grey kangaroo carcasses 
take at least twice as long to reach complete consumption/ 
decomposition (only skin and bones remaining) in cool 
compared with warmer periods (Spencer and Newsome 
2021). During the winter monitoring period, we observed that 
some carcasses had not reached complete consumption/ 
decomposition, even after 60 days. 

Many global studies have demonstrated that vertebrate 
scavenging rates are lowest during summer when other 
food sources are more abundant, and vice versa during 
winter (Jedrzejewska and Jedrzejewski 1998; Selva et al. 
2003, 2005). In our study, brushtail possums accounted 
for 81% of all recorded events during winter when they 
scavenged three times more often than during summer. 
Generally, the diet of brushtail possums consists of leaves, 
flowers, fruit (Eucalyptus and Acacia) and insects (Evans 
1992; How and Hillcox 2000; Wiggins et al. 2003), most of 
which are only seasonally available during warmer months. 
Therefore, this marsupial may be exhibiting a greater 
dependence on carrion during winter that is similar to that 
of other scavengers in the northern hemisphere (Jedrzejewska 
and Jedrzejewski 1998; Selva et al. 2003, 2005). This greater 

dependence on carrion by the brushtail possum during winter 
is likely to have influenced our analyses of the ‘scavenger 
activity’ response variable, which recorded scavenging to 
be 2.683 times more likely than investigation of carcasses 
during winter than in summer. This may also explain why 
carcasses took six times longer to be detected during 
summer (144 h; 6 days) than during winter (24 h), a 
finding that was contrary to our prediction that time to first 
arrival would be shortest in summer. Collectively, during 
autumn, winter, and spring, 93% of the first detections of 
a carcass were by either brushtail possums or ravens. 
Conversely, during summer, only 57% of the first detections 
of a carcass were by either brushtail possums or ravens. 
Therefore, it is possible that the brushtail possums and 
ravens may have a disproportionately greater bearing on 
the time it takes the collective scavenger guild to first 
detect a carcass. 

The species-specific breeding seasons of scavengers can 
also have profound impacts on their respective scavenging 
behaviours (Camphuysen 1995; O’Brien et al. 2010a; White 
2011; Coppola et al. 2020). The Australian raven and little 
raven breed from late winter into spring (Moon 2005; 
Whisson et al. 2015; Ekanayake et al. 2018). Initially, nest 
construction is prioritised in this early breeding season, and 
the associated activities are characterised by frequent and 
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Fig. 7. The average duration of scavenging events (minutes) by vertebrate scavengers for each carcass monitored during each
of the seasons (mean is indicated by a cross).

short visitations between the nest and sources of nesting 
material (Moreno-Opo and Margalida 2013). In our study, 
during the spring monitoring period, numerous remote-
camera images captured ravens collecting fur from the 
kangaroo carcasses, presumably for nest construction (Fig. 8). 

Following nest construction, chick rearing often requires 
breeding pairs to divide time between foraging, feeding 
chicks, and being vigilant and protective of the nest 
(O’Brien et al. 2010a). Inherently, during this time, ravens 
incur greater energy costs associated with these activities, 
and, thus, must supplement their diets with protein-rich 
sources and/or greater quantities of food, such as carrion 
(Camphuysen 1995; O’Brien et al. 2010a). Of all recorded 
raven scavenging events during this study, 67% were during 
spring, and this suggests that ravens may heavily rely on 
carrion to supplement their diet, and/or that of their chicks, 
during the breeding season (O’Brien et al. 2010a). Further 
still, this flurry of raven scavenging during spring (a 170% 
increase on the average of annual raven scavenging events) 
accounted for 73% of all scavenging events for the collective 
scavenger guild. Therefore, given their dominance during 
spring, it is likely that the frequent but brief scavenging 
events, characteristic of the raven breeding season (i.e. 
breeding pairs frequently flying back and forth between the 
nest and nesting materials and/or food sources), were also 

Fig. 8. A raven sp. (Corvus coronoides or Corvus mellori) breeding pair
collecting fur from an eastern grey kangaroo (Macropus giganteus)
carcass during the spring monitoring period, presumably for nest
construction.

deterministic of the shorter scavenging event duration 
recorded for the collective scavenger guild during spring. 

The findings here regarding ravens are also indirectly 
linked to our initial prediction for longer scavenging-
event duration during winter; our models indicated that 
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scavenging-event duration during winter was 1.556 times 
longer than during spring. Although raven scavenging 
behaviours during their breeding seasons (spring) are 
likely to have determined this result and supported our 
prediction, it is juxtaposed to the evidence we initially used 
to form our hypotheses. That being, previous studies in the 
northern hemisphere demonstrating scavenging rates to 
increase during winter in response to a lack of other available 
food sources (Jedrzejewska and Jedrzejewski 1998; Selva 
et al. 2003, 2005). This raises several questions that need 
be addressed regarding the degree to which the Australian 
alpine winter affects food sources, species diets, and 
associated flow-on effects to scavenging dynamics versus 
other alpine areas in the world, and indeed non-alpine 
ecosystems that experience harsh winters. 

Conclusions and future directions

Scavenging dynamics in this study were highly seasonal but 
were dictated by the scavenging activities and behaviours 
of mesoscavengers, namely, the brushtail possum and ravens. 
The high rate of scavenging by these species drove the 
seasonal trends in scavenging dynamics, but the direction 
in which the seasonal effects affected the scavenging response 
variables was not always as we predicted. This exemplifies the 
unexpected influence that seasons can have on ecological 
processes linked to scavenging and highlights the need for 
seasonally replicated experimental approaches in field-
based scavenging research. 

Although carcass weight was demonstrated to have a 
significant effect on the duration of investigation events, it 
is possible that this result was skewed by four carcass-
weight outliers (55 kg, 55 kg, 57 kg, and 70 kg, compared with 
an average of 28.3 kg; Table S1). A cursory look at these four 
carcasses demonstrated relatively short investigation-event 
durations when compared with all other carcasses, resulting 
in an instance where potential statistical outliers represent 
an ‘extreme’ in the response variable (Supplementary 
material Fig. S1). The removal of said ‘outliers’ from the 
dataset was considered, but residual analyses did not 
demonstrate any significant outliers in the model, and, 
therefore, doing so could have potentially introduced bias. 
For exploratory purposes and transparency, we re-ran the 
model removing only the furthest outlier (carcass site 42; 
carcass weight 70 kg; Table S1) and this returned a model 
in which carcass weight was not significant (Table S17). 
It remains unknown if this trend was indeed a real ecologi-
cal finding, or outlier skew as predicted. We, therefore, 
recommend that further research is needed to explore the 
relationship between carcass weight and event duration. 

More generally, the methods used herein can be utilised to 
monitor scavenging dynamics surrounding carrion, and even 
be further developed to improve field-based designs and yield 

additional ecological information. Such improvements could 
include utilising a remote-camera grid in tandem with the 
carcass monitoring to determine the activity and diversity 
of scavenger species in the given study region. This direct 
comparison of scavenger species at carcasses and more 
generally in the landscape would allow for more informed 
conclusions surrounding scavenging dynamics, such as, for 
example, whether species-specific scavenging rates are a 
product of scavenging behaviour or species density in the study 
region. Additionally, comprehensive altitudinal gradients 
that may detect elevational differences in scavenging dynamics 
could lead to particularly novel findings, insights missed by 
this study given the small altitudinal gradient used (500 m). 
This is especially important in scavenging studies that experi-
ence much higher altitudes than those present in Australia. 
Because of geographic limitations, in this study, we were 
restricted to only 15 carcass-monitoring sites per season. An 
improved sampling design that includes more within-season 
replications, multiple transects, and replicated studies over 
multiple years may help detect more subtle seasonal differ-
ences missed by this study, as well as account for within-site 
(i.e. more representative of the ecosystem) and annual 
variability (Schoenly et al. 2015). 

Our observations of frequent scavenging by the brushtail 
possum are highly novel, given that they mainly feed 
on leaves, flowers, and fruit (Eucalyptus and Acacia) and 
are commonly considered generalist herbivores/folivores 
(Evans 1992; Owen and Norton 1995; How and Hillcox 2000; 
Cochrane et al. 2003; Wiggins et al. 2003; Sweetapple et al. 
2004). The results of this study, at the most, suggest that 
the high rates of brushtail possum scavenging were 
facilitated by reduced predations risk from, and competition 
with, larger dominant scavengers. Notably, brushtail possums 
have been previously observed to, on occasion, eat insects, 
raid birds’ nests, and scavenge on carrion (Brown et al. 
1993; Nugent et al. 2000). Therefore, it is also possible that 
other factors characteristic of the alpine environment, 
(i.e. less alternative food sources, harsher winters) in which 
this study was undertaken, resulted in our unique findings 
regarding brushtail possum scavenging. With this in mind, 
we recommend that more in-depth dietary studies are 
undertaken that specifically compare the diets of brushtail 
possums in the Australian Alps with those of brushtail 
possums in other Australian ecosystems. This will help 
quantify the amount of carrion brushtail possums consume 
compared with other food sources and provide further 
insights into the ecosystem factors that determine such 
dietary shifts. 

We also observed that ravens were somewhat dependent 
on carrion both as a source of energy, and nesting material 
during the breeding season. Very little work has been 
conducted to determine how carrion biomass within an 
ecosystem (year to year) may affect the breeding success of 
facultative scavengers (Beasley et al. 2019). This is an area 
that warrants future attention, given the results of this 
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study and also those elsewhere regarding ravens (O’Brien 
et al. 2010a). 

Lastly, quantifying carrion biomass in the broader 
landscape would help determine whether it is a limited 
resource, or in abundance (Barton et al. 2019). Understanding 
scavenging dynamics in relation to the availability of carrion 
would help explain how scavengers react to changes in food 
supplies and, thus, further develop our knowledge of the role 
of carrion in supporting biodiversity and ecosystem function. 

Supplementary material

Supplementary material is available online. 
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