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ABSTRACT

Context. The introduction of the cat (Felis catus) to Australia has been a key driver of the decline
and extinction of the continent’s endemic mammals. Currently, there is no clear long-term solution
to controlling feral populations of cats at a landscape scale. As such, understanding how
environmental conditions and habitat attributes can mediate the coexistence between
introduced predators and native mammals can improve management outcomes for threatened
species. Aim. We sought to compare the differences in habitat use by feral cats and a remnant
population of the endangered northern quoll (Dasyurus hallucatus) to understand what
environmental variables allow these two mesopredators to coexist in tropical savanna of Cape
York Peninsula, Queensland. Methods. We deployed grids of motion-activated cameras three
times per year over a 3-year period, across Eucalyptus tetrodonta-dominated plateaux known to
be inhabited by feral cats and northern quolls. We modelled the spatial variation in the
frequencies of detection of feral cats and northern quolls (referred to as ‘habitat use’), as a function
of biotic and abiotic environmental variables by using a generalised linear model for consistent
variables and a generalised linear mixed-effect model for fluctuating variables. Key results. Habitat
use by feral cats was most frequent in areas with high fire frequencies and low tree basal area,
whereas habitat use by northern quolls was most frequent in areas of high basal area of
E. tetrodonta (a commonly used den tree species), topographic ruggedness, and long-unburnt
savanna. Conclusions. Frequent fires in tropical savanna promote habitat use by feral cats and
can result in a reduction of critical habitat for northern quolls. Implications. We postulate that
remnant populations of northern quolls on Cape York Peninsula occur in less frequently burnt
refugia, primarily on top of plateaux that support high-biomass tropical savanna dominated
by E. tetrodonta. Our findings highlighted that threatened mammals can persist alongside
introduced predators in tropical savanna but are dependent on the maintenance of structurally
complex habitat.

Keywords: conservation, ecology, environment, habitat use, introduced species, invasive species,
predator–prey interactions, threatened species, wildlife management.

Introduction

Invasive predators are a serious threat to biodiversity globally (Blackburn et al. 2004; 
Doherty et al. 2016; Due ̃nas et al. 2021). Some of the most important ways predators 
can affect ecological communities are by killing prey species and suppressing and/or 
excluding sympatric predators (Tannerfeldt et al. 2002; Cáceres et al. 2009). These 
impacts can be strongly accentuated when native species exhibit naivety towards 
invasive predators, typically through a lack of shared evolutionary history (Sih et al. 
2010). As a result, 142 terrestrial species have become extinct through the impacts of 
invasive mammalian predators, with a further ~600 species still being threatened 
globally (Doherty et al. 2016). 

Many invasive mammal species have benefited from human-assisted migration and are 
now firmly established across the globe (Long 2003; Clout et al. 2008). The introduction of 
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the cat (Felis catus) to Australia by Europeans in the late 
18th Century has had a catastrophic impact on native 
wildlife (Abbott 2008; Doherty et al. 2017). Taking advantage 
of naïve native prey, the proliferation of introduced prey 
species, and the paucity of large, native predators, cats 
quickly dispersed across the continent, with feral popula-
tions becoming established in all of Australia’s bioregions 
(Abbott 2008; Doherty et al. 2014; Legge et al. 2020). The 
extinction of at least 26 of Australia’s native mammal 
species has been associated with cat predation, with a further 
~75 native mammal species being currently threatened 
(Woinarski et al. 2019). Invasive predators, such as the cat, 
are still a significant threat to many native mammal species, 
posing an urgent need to curtail their impact on threatened 
species. 

Efforts to control feral cat populations are often limited by 
scale, effort, and cost (Campbell et al. 2011; Parkes et al. 2014; 
Baker and Bode 2016). Complete eradication of invasive 
predators is seen as the most beneficial, long-term solution 
to conserving threatened fauna (Jones et al. 2016; Holmes 
et al. 2019), but to do so often requires extensive monitoring 
to ensure success, can be cost prohibitive at large scale 
and, even when conducted using best practices, can have 
negative, unintended outcomes (Bodey et al. 2011; Lazenby 
et al. 2014; Holmes et al. 2019). Successful eradications 
have occurred on off-shore islands up to 630 km2 in area 
(Campbell et al. 2011) and in increasingly large, predator-
free fenced reserves (Legge et al. 2018). However, open 
landscape-scale control programs are often hampered by 
the continual immigration of cats into areas with cat control 
(Doherty et al. 2017). These challenges mean eradication may 
not always be a viable or appropriate solution to conserving 
native wildlife threatened by invasive species. 

Instead of eradication, manipulation of ecological factors 
that limit feral cat populations may be a more feasible and 
cost-effective approach to control cats (Doherty et al. 2015; 
Miritis et al. 2020). For example, research suggests that in 
northern Australia’s savanna landscapes cats have a strong 
association with frequently burnt habitat and open, heavily 
grazed areas, because the reduced vegetation cover in both 
cases may improve hunting success (McGregor et al. 2014, 
2015; Davies et al. 2020). Australia’s only mammalian apex 
predator, the dingo (Canis familiaris), has been found to 
consume cats (Doherty et al. 2019), suggesting a degree of 
top–down predation pressure on feral cat activity. Although, 
the role dingoes play in suppressing cat activity is heavily 
debated (Letnic et al. 2012; Fancourt et al. 2019; Kreplins 
et al. 2021), with experimental removal of dingoes not having 
been found to increase feral cat abundances in response 
(Letnic et al. 2009; Castle et al. 2021). As such, this poses a 
need to identify how environmental factors limit cat 
activity and what potential landscape solutions can reduce 
the impact cat predation has on threatened mammals. 

In this study, we investigated the spatial patterns of habitat 
use by cats and a coexisting native mesopredator, the northern 

quoll (Dasyurus hallucatus), in tropical savanna at Weipa on 
Cape York Peninsula, Queensland. The northern quoll is the 
largest native mammalian mesopredator across northern 
Australia, and the smallest member of the genus Dasyurus, 
weighing between ~400 and 1200 g (Van Dyck and Strahan 
2008). The current distribution of the northern quoll extends 
patchily across monsoonal northern Australia (Moore et al. 
2022; Fig. 1). Despite the northern quoll’s widespread 
distribution, it has suffered significant population declines 
in recent decades (Braithwaite and Griffiths 1994; Moore 
et al. 2019), and is considered Endangered (Oakwood et al. 
2016). One of the major drivers of the decline of the 
northern quoll, especially in higher-rainfall regions, is 
poisoning following ingestion of the toxic and invasive cane 
toad (Rhinella marina; Covacevich and Archer 1975; Burnett 
1997). However, other drivers of the decline of the northern 
quoll are thought to include predation by feral cats, high 
fire frequencies and habitat degradation by introduced 
herbivores (Braithwaite and Griffiths 1994; Moore et al. 
2022). Lowland savanna populations of northern quolls seem 
to be the most severely affected by these threats, whereas 
high-rainfall regions and topographically rugged habitat 
harbour the largest remnant populations (Braithwaite and 
Griffiths 1994; Oakwood 2000; Moore et al. 2019). Despite 
these observed trends, our study population of northern 
quolls has been found to reside in tropical savanna that 
lacks extensive topographical ruggedness and is inhabited 
by both cats and cane toads. As such, this remnant northern 
quoll population provides an excellent model system to 
understand how environmental conditions and habitat 
attributes can contribute to the persistence of native mammals 
alongside cats and will assist in developing appropriate 
strategies for managing habitat that facilitates coexistence. 

To infer how cats and northern quolls can coexist within 
tropical savanna, we aimed to identify the environmental 
variables that were the strongest drivers of cat and northern 
quoll habitat use. We investigated a range of ground-based 
and satellite-derived variables that have been previously 
identified as influencing spatial patterns of cats and native 
small mammals across the northern Australia, including fire 
regimes (Woinarski et al. 2010; Griffiths et al. 2015; McGregor 
et al. 2016; Davies et al. 2020), vegetation structure 
(Hernandez-Santin et al. 2016; Stobo-Wilson et al. 2020a, 
2020b), water proximity (McGregor et al. 2016; Moore 
et al. 2019) and topographical attributes (Hernandez-Santin 
et al. 2016; Moore et al. 2019; McDonald et al. 2020). On 
the basis of these previous findings and the conditions of the 
plateau environment, we predicted that the environmental 
conditions and attributes found atop the plateaux would be 
most frequently used by northern quolls, whereas the 
environmental conditions and attributes found in low-lying 
savannas surrounding the plateaux would be most frequently 
used by cats. 
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Fig. 1. Camera-trap grids across (a) the northern plateau and (b) the southern plateau with respect to
elevation nearWeipa on theCape York Peninsula, Queensland.White circles represent individual camera-
trap sites. Black lines represent the plateau vegetation community. The inset map shows the current and
former range of the northern quoll (Moore et al. 2022).

Materials and methods

Study species

The northern quoll is a highly adaptable, generalist 
mesopredator that occurs in a variety of habitats, including 
tropical savanna, monsoon rainforest, and rocky outcrops 
(Moore et al. 2022). As a generalist omnivore, the northern 
quoll consumes a varied diet consisting of fruits, seeds, and 
live prey such as rodents, reptiles and invertebrates 
(Dunlop et al. 2017). It also uses a wide variety of denning 
resources such as tree hollows, fallen logs, rock crevices 
and termite mounds, depending on the availability of 
hollow resources in the landscape (Oakwood 1997). 

The northern quoll was once common across Cape York 
Peninsula (Fig. 1), inhabiting both the savannas of the 
western coast and the rainforests of the eastern coast 
(Braithwaite and Griffiths 1994). It is believed that the 
spread of the cane toad throughout Cape York Peninsula by 
the 1980s resulted in a widespread extirpation of northern 
quoll populations (Burnett 1997). The cane toad was first 
introduced to Australia in 1935, to control the native cane 
beetle (Dermolepida albohirtum); however, the cane toad 
also secrets potent poisons, collectively termed bufotoxin, 

that is lethal on ingestion by the northern quoll (Ujvari 
et al. 2013). Despite this prominent threat, the northern 
quoll was observed to be in decline prior to cane toad 
arrival and is currently in decline in regions where the cane 
toad is yet to colonise, such as in the Pilbara region of 
Western Australia (Braithwaite and Griffiths 1994; Woinarski 
et al. 2011; Moore et al. 2022). The remnant population of 
northern quolls on which our study focuses was discovered 
in 2013, on bauxite plateaux near the town of Weipa 
(Fig. 1). Prior to that, the northern quoll had not been 
recorded in the Weipa region since 1985 (Winter and 
Atherton 1985). The area of occupancy and number of 
northern quoll populations elsewhere across Cape York 
Peninsula are not known. 

Study area

The study area is located on the north-western coast of Cape 
York Peninsula in north-eastern Australia, east of the town of 
Weipa. The region has a tropical monsoonal climate, with 
90% of the mean annual rainfall of 1700 mm typically 
falling in the summer wet season (December–April; Australian 
Bureau of Meteorology 2021). The landscape is characterised 
by elevated bauxite plateaux, dominated by tall, dense 
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savanna, interspersed between low-lying plains, dominated 
by open savanna, and river tributaries. The bauxite plateaux 
absorb large quantities of water during the wet season, which 
gets slowly released through springheads during the dry 
season, flowing down channels into the surrounding 
landscape (Specht et al. 1977; Leblanc et al. 2015). This 
hydrology allows for the formation of tall savannas with 
high tree biomass and a dense understorey (Bowman and 
Fensham 1991). 

The study was undertaken across two bauxite plateaux 
known to be inhabited by both cats and northern quolls. 
Each plateau is approximately 45 km2 in area, with elevations 
of 20 m and 100 m respectively, above the surrounding low-
lying, open savanna. The vegetation of both plateaux consists 
of a sparse canopy dominated by Eucalyptus tetrodonta 
25–35 m in height, with subdominant trees Corymbia 
nesophila, C. stockeri and Erythrophleum chlorostachys. Fruit-
bearing trees such as Pandanus spiralis, Livistona muelleri, 
Parinari nonda, Xylomelum scottianum and Planchonia 
careya dominate the mid-storey, and the ground layer is 
dominated by annual and perennial grasses such as Sarga 
plumosum, Heteropogon triticeus, Alloteropsis semialata and 
Eulalia mackinlayi. Large termite mounds and hollow trees, 
both of which are known to be used for denning by the 
northern quoll, are common. Each plateau has some rugged, 
pronounced edges, but most of the plateau boundaries are 
gentle inclines with extensive ecotonal areas of intergrading 
vegetation communities. Neither plateau, nor the surround-
ing habitat, has significant areas of exposed rock. 

The plateaux are characterised by reduced fire frequencies 
compared with the surrounding low-lying savanna 
(~0.6 fires year−1 for plateaux vs 0.9 fires year−1 for the 
surrounding low-lying savanna over a 20-year period; 
North Australian Fire Information 2021). Hazard-reduction 
burns are undertaken at the northern plateau (Fig. 1a) 
during the early dry season (May–July), but no such burns 
occur on the southern plateau (Fig. 1b). High-intensity 
wildfires occasionally occur, typically in the late dry season 
(August–November). 

Camera surveys

Camera grids, targeting northern quolls, were established 
across both plateaux and immediately adjacent areas in 
2018, and surveyed annually to 2020 (i.e. 2018, 2019 and 
2020). Each camera grid consisted of 143 motion-activated 
cameras (PC800 Hyperfire Professional IR; Reconyx Inc., 
Holmen, WI, USA) at a grid spacing of 500 m × 500 m 
(Fig. 1). Each camera was attached to a tree with a bracket 
1.5 m above the ground. Each camera faced straight down 
at a bait tube containing dried chicken meat. Cameras were 
active continuously (i.e. 24 h each day), and programmed 
to capture three images per trigger, with a high sensitivity. 
Cameras were deployed for a minimum of 10 nights in 
April–May of each year, to coincide with the northern quoll 

breeding season, when individuals are most numerous and 
active. All 143 cameras deployed within each plateau grid 
were operated simultaneously. Between plateau grids, there 
were slight differences in camera operation times due to 
the time restraints of deployment. In total, 12 599 trap 
nights were sampled over 3 years, from 286 camera sites 
across the two plateaux. 

Camera grids, targeting cats, were established across the 
northern plateau and immediately adjacent areas in 2018 
and then both the north and south plateaux in 2019. No 
targeted cat surveys were undertaken in 2020. All cameras 
deployed within the cat grids were located at a subset of 
northern quoll grid camera locations. Each grid consisted 
of 70 cameras, a mix of HC600 Hyperfire Full Covert 
IR (Reconyx Inc.) and PC800 Hyperfire Professional IR 
(Reconyx Inc.), at a grid spacing of 500 m × 500 m. Each 
camera was attached to a tree at a height of 50 cm above 
the ground. Each camera was pointed towards the same 
point as the baited (northern quoll) cameras, approximately 
2 m away, at an angle of approximately 20° below 
horizontal. Even though these cameras were not specifically 
baited to attract cats, deployments often occurred simultane-
ously with the baited-camera surveys targeting northern 
quolls or had residual scents from prior baiting surveys. 
Previous research has not shown an effect of food odours in 
promoting feral cat visitation (Read et al. 2015; Stokeld 
et al. 2015), with dried meat being a less receptive bait 
option for feral cats (Risbey et al. 1997; Moseby et al. 2011). 
With this consideration, we consider it unlikely that this 
overlap in bait deployment had a significant impact on our 
detection frequency of cats. Cameras were deployed for a 
minimum of 30 days in April–May and October–November 
of each year. All 70 cameras deployed within each plateau 
grid were operated simultaneously. Between plateau grids, 
there were slight differences in camera operation times 
owing to the time restraints of deployment. They were 
programmed to take three image bursts per trigger with 
high sensitivity and 24-h activity. In total, 15 228 trap 
nights were sampled over 2 years from 140 camera sites 
across the two plateaux. 

The placement of each camera grid was targeted atop the 
plateaux to prioritise surveying habitat that was inhabited by 
both species. We aimed to maximise our detections of both 
species across the plateaux to ensure a thorough analysis 
of each species’ use of the habitat conditions present. 
Permission for animal use was authorised by the Charles 
Darwin University Animal Ethics Committee (A18017) and 
the Queensland Department of Environment and Science 
(Scientific Purposes Permit WA0009373). 

Environmental variables

We conducted ground-based vegetation surveys at each 
camera-trap site across the two plateaux in April–May 
2019. We measured the basal area of all living and dead 
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trees with a diameter greater than 15 cm by using a basal-area 
sweep with a rod relascope (Wenger 1984; Oakwood 1997). 
Three sweeps were conducted along a 100-m transect to 
calculate the tree basal area (m2 ha−1) of the stand at each 
camera site. From this dataset, we calculated the total tree 
basal area and the basal area of E. tetrodonta, given that 
E. tetrodonta is the species most frequently used as a den 
tree by the northern quoll (G. J. Trewella, unpubl. data) for 
each camera-trap site. 

We also derived several variables from satellite products. 
To measure the productivity and extent of vegetation, we 
calculated an average normalised-difference vegetation 
index (NDVI) for each camera-trap site by using 3 years 
(2018–2020) of Sentinel-2 satellite imagery collected from 
the months of June and July (European Space Agency 
2021), so as to produce an average value for each site. To 
quantify the the fire regimes of the region, we calculated an 
average annual fire frequency (fire years−1) and time since 
last fire (days) at each camera-trap site by using 4 years of 
high-resolution (20 m) Sentinel-2 satellite imagery (European 
Space Agency 2021) from all useable images since the 
inception of Sentinel-2 in 2015. To measure the prominent 
topographical attributes of the landscape, we calculated 
elevation and a topographic ruggedness index (TRI; Riley 
et al. 1999) from a three arc-second digital elevation model 
(Department of Natural Resources, Mines and Energy 2018a) 
for each camera-trap site. We also calculated the distance 
to the nearest water source from surface hydrology line 
maps (Crossman and Li 2015) and the distance of each 
camera site to the plateau edge, using a vegetation map 
(scale: 1:100 000; Department of Natural Resources, Mines 
and Energy 2018b). In the case of distance to plateau edge, 
if the camera site was on the plateau, it was given a 
positive value, and if the camera site was off the plateau, it 
was given a negative value; hence, the variable ‘distance to 
plateau edge’ ranged from large negative values (far off 
the plateau) to large positive values (close to the centre of 
the plateau). 

Statistical analysis

All statistical analysis was undertaken in R, ver. 3.6.3 (R Core 
Team 2020). We analysed two response variables, namely, the 
frequency of habitat use by (1) cats, and (2) northern quolls. 
The frequency of habitat use was expressed as the proportion 
of nights (i.e. 24-h periods, from midday to midday) in which 
the target species was detected. 

Two modelling approaches were used to assess the extent 
to which frequency of habitat use by cats and northern quolls 
was correlated with environmental variables. Generalised 
linear modelling (GLM) was used to analyse the frequency 
of habitat use across all camera sites, by using all environ-
mental variables apart from time-since-fire. Generalised 
linear mixed-effects modelling (GLMM) was used to analyse 
frequency of habitat use across all camera sites by using 

only time-since-fire, with camera site being included as a 
random effect. Both the GLMs and GLMMs used a binomial 
error family, given that the response variable was a 
proportion (i.e. a two-column variable of nights the target 
species was detected and not detected). All continuous 
variables were centred and standardised prior to analysis, 
and we confirmed that there was not excessive collinearity 
(r ≤ 0.7) among environmental variables (Zuur et al. 2010). 

Generalised linear modelling
For each species, the 3 years of cat and northern quoll 

camera-survey detection histories were pooled to create a 
sole nightly detection/non-detection response variable at 
each camera-trap site. Because of the differences in camera-
survey methods, a nuisance variable termed ‘camera 
index’, derived from the percentage of cat survey (forward-
facing cameras) nights against the total survey nights 
(forward-facing camera nights and downward-facing camera 
nights), was included to account for differences in detection 
probability of each camera-survey method. On the basis of 
previous unpublished surveys in the region, our under-
standing is that northern quolls are largely restricted to the 
bauxite plateaux, whereas cats have been found to move 
throughout the landscape. As such, we selected slightly 
different variables to analyse for each species. To model the 
spatial variation in frequency of cat habitat use, we selected 
a global model that included the following variables: fire 
frequency, total basal area, elevation, distance to plateau 
edge, NDVI, distance to water, topographical ruggedness 
index and camera index. To model the spatial variation in 
frequency of northern quoll habitat use, we selected a 
global model that included the following variables: fire 
frequency, total basal area, E. tetrodonta basal area, distance 
to plateau edge, NDVI, distance to water, topographical 
ruggedness index and camera index. We chose to include 
elevation as a variable for cat habitat use, to identify 
whether there was a general preference for elevated habitat 
(plateau) or low-lying habitat, owing to the observed 
transient behaviour of cats around the plateaux. We also 
chose to include the basal area of E. tetrodonta as a variable 
for northern quoll habitat use because this tree species is a 
primary den tree for northern quoll in the Weipa region 
(G. J. Trewella, unpubl. data) and, therefore, a significant 
environment resource. 

The global GLM models of frequency of habitat use by each 
species were produced using the R package ‘stats’ (R Core 
Team 2020) and all 128 possible models for each species 
were evaluated using the R package ‘MuMIn’ (Bartoń 
2020). Significant overdispersion was present in the global 
models; so, QAICc (quasi-likelihood-corrected Akaike’s 
information criterion) was used to rank models (Burnham 
and Anderson 1998). To account for the overdispersion, each 
model was converted to a quasibinomial error structure to 
estimate model parameters, their standard errors and 95% 
confidence intervals. Following the information-theoretic 
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approach, all models were averaged to produce conditional 
parameter estimations (Burnham and Anderson 1998). The 
sum of Akaike weights for each variable was calculated to 
indicate relative importance (Symonds and Moussalli 2011). 

Generalised linear mixed-effects modelling
For each species, the detection history of each camera-

trap site per survey over the 3-year study period was recorded 
as a nightly detection/non-detection response variable. 
Time-since-fire was calculated from the starting date of 
each survey at each camera-trap site. If a fire occurred 
during a survey period, then an additional datapoint was 
included for that camera-trap site with a time-since-fire value 
of 1 day. For each species, three models were constructed 
using the R package ‘glmmTMB’ (Brooks et al. 2017), 
namely, a null model with a binomial error structure, a 
single variable (time-since-fire) model with a binomial error 
structure and a single-variable (time-since-fire) model with a 
beta-binomial error structure to account for overdispersion. 
All models included camera site as a random effect. The 
best fitting model for each species was selected for using 
the lowest AICc (corrected Akaike’s information criteria). 

Results

Frequency of habitat use by cats

In total, 274 cat detections were recorded across 27 827 trap 
nights over the 3-year period. Detections occurred at least 
once at 135 of 286 camera sites (47%). The mean annual 
naïve occupancy (i.e. the proportion of sites where cats 
were recorded) of the northern plateau was 24%. The mean 
annual naïve occupancy of the southern plateau was 19%. 

The frequency of habitat use by cats was clearly correlated 
with two environmental variables, namely, fire frequency and 
tree basal area (Fig. 2). These were the only variables present 
in all well supported models (ΔQAICc ≤ 2; Table 1). Fire 
frequency had a clear, positive relationship with habitat use 
by cats; at the least frequently burnt sites (0.25 fires year−1, 
i.e. one fire every 4 years), cats were very unlikely to 
be detected (proportion of nights with detection at <0.01 
[CI: 0.003–0.007]); at the most frequently burnt sites 
(1.5 fires year−1, i.e. three fires every 2 years), cats were 
much more likely to be detected (proportion of nights with 
detections at 0.04 [CI: 0.02–0.08]; Fig. 3a). Tree basal area 
had a clear negative relationship with habitat use; at sites 
with the highest basal area (40 m2 ha−1), cats were very 
unlikely to be detected (proportion of nights with detections 
at <0.01 [CI: 0.002–0.009]); at sites with the lowest basal 
area (10 m2 ha−1), cats were modestly more likely to be 
detected (proportion of nights with detections at 0.02 
[CI: 0.01–0.02]; Fig. 3b). 

Fig. 2. Conditional regression coefficients of all predictor variables
for cat and northern quoll habitat use derived from generalised linear
modelling are shown on the left of the solid vertical line, and beta
coefficients of time-since-fire for cat and northern quoll habitat use
derived from generalised linear mixed effect modelling are shown
on the right. Error bars represent the 95% confidence intervals of
each estimated coefficient. The dotted horizontal line represents a
regression coefficient value of 0.

Frequency of habitat use by northern quolls

In total, 615 northern quoll detections were recorded across 
27 827 trap nights over the 3-year period. Detections occurred 
at least once at 139 of 286 camera sites surveyed (49%). The 
average annual naïve occupancy of the northern plateau was 
11%. The average annual naïve occupancy of the southern 
plateau was 38%. 

The frequency of habitat use by northern quolls was 
clearly correlated with five environmental variables, namely, 
E. tetrodonta basal area, total tree basal area, distance to 
plateau edge, topographic ruggedness index and NDVI 
(Fig. 2). These were the variables present in all well supported 
models (ΔQAICc ≤ 2; Table 1). E. tetrodonta basal area had 
a clear positive relationship with habitat use; at sites with 
no E. tetrodonta (0 m2 ha−1), northern quolls were unlikely 
to be detected (proportion of nights with detections 
at <0.01 [CI: 0.003–0.01]); at sites with the highest 
E. tetrodonta basal area (25 m2 ha−1), northern quolls were 
an order of magnitude more likely to be detected (proportion 
of nights with detections at 0.11 [CI: 0.05–0.22]; Fig. 4a). 
Tree basal area (i.e. including all tree species) had a clear 
negative relationship with habitat use; at sites with the 
lowest tree basal area (10 m2 ha−1), northern quolls were 
more likely to be detected (proportion of nights with 
detections at 0.06 [CI: 0.03–0.10]); at sites with the highest 
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Table 1. Parameter inclusion for cat and northern quoll generalised linear models with a ΔQAICc of ≤2.

Cat

Model Fire frequency Total basal area Elevation Distance to plateau edge NDVI Distance to water TRI ΔQAICc

1 + + 0.0

2 + + + 0.4

3 + + + + 1.1

4 + + + 1.7

5 + + + 1.9

6 + + + 1.9

w+ 0.99 0.91 0.48 0.36 0.29 0.28 0.27

Northern quoll

Model Fire frequency Total basal area E. tetrodonta basal area Distance to plateau edge NDVI Distance to water TRI ΔQAICc

1 + + + + + 0.0

2 + + + + + + 1.5

3 + + + + + + 1.6

w+ 0.32 0.99 0.99 0.99 0.90 0.33 0.99

NDVI denotes normalised-difference vegetation index and TRI denotes topographic ruggedness index.ΔQAICc represents the difference between the model QAICc
value and the top-ranking model;+ represents parameter inclusion in the model; w+ represents the relative importance of each parameter using the sum of the Akaike
weights, with bold w+ values indicating highly influential parameters.

Fig. 3. The predicted relationship between the proportion of nights
with detections of cats and the most supported predictor variables
derived from a model averaged generalised linear model: (a) fire
frequency and (b) total basal area. Gray bands represent the 95%
confidence intervals of each prediction.

tree basal area (40 m2 ha−1), northern quolls were very 
unlikely to be detected (proportion of nights with 
detections at 0.002 [CI: 0.001–0.007]; Fig. 4b). Distance to 
plateau edge had a clear positive relationship with habitat 
use; at sites located furthest away from the plateau (1600 m), 
northern quolls were unlikely to be detected (proportion of 
nights with detections at 0.002 [CI: 0.001–0.01]); at sites 
close to the centre of the plateau (1400 m from the plateau 
edge), northern quolls were more likely to be detected 
(proportion of nights with detections at 0.07 [CI: 0.03–0.13]; 
Fig. 4c). Ruggedness had a clear positive relationship 
with habitat use; at flat sites with no ruggedness, northern 
quolls were unlikely to be detected (proportion of nights 
with detections at 0.01 [CI: 0.01–0.02]); at the most rugged 
sites, northern quolls were more likely to be detected 
(proportion of nights with detections at 0.07 [CI: 0.03–0.14]; 
Fig. 4d). NDVI had a clear positive relationship with habitat 
use; at sites with the lowest index value (0.42), northern 
quolls were unlikely to be detected (proportion of nights 
with detections at 0.008 [CI: 0.003–0.02]); at sites with the 
highest index value (0.74), northern quolls were more 
likely to be detected (proportion of nights with detections 
at 0.04 [CI: 0.02–0.07]; Fig. 4e). 

Variation in habitat use by cats and northern
quolls in relation to time-since-fire

Habitat use by cats and northern quolls was best explained by 
beta-binomial models including time-since-fire. For both 
species, the beta-binomial model containing time-since-fire 
had an AICc score >10 less than did the binomial model 
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Fig. 4. The predicted relationship between the proportion of nights with detections of northern quolls
and the most supported predictor variables derived from a model averaged generalised linear model:
(a) E. tetrodonta basal area, (b) total basal area, (c) distance to plateau edge, (d) terrain ruggedness index
and (e) normalised-difference vegetation index. Gray bands represent the 95% confidence intervals of
each prediction. Note that in c, negative numbers denote sites away from the plateau, and positive
numbers denote sites atop of the plateau.

including time-since-fire and the null model. Cats did not 
show a clear relationship with time-since-fire, but trended 
towards a negative relationship (Fig. 2). In comparison, 
northern quolls showed a clear positive relationship with 
time-since-fire (Fig. 2). 

Discussion

Remnant populations of the northern quoll on Cape York 
Peninsula have long been exposed to the main factors 
thought to be threatening small mammals across northern 

Australia. Habitat conditions on the bauxite plateaux where 
these remnant populations occur are likely to have facilitated 
the persistence of northern quolls despite multiple threats, 
particularly predation by feral cats, which are locally 
abundant. Our findings highlighted a nexus among northern 
quolls, cats and fire, whereby naturally occurring fire refugia 
(in this case on the less frequently burnt plateau surfaces) 
benefit northern quolls by promoting structurally complex 
vegetation and, consequently, limiting habitat use by cats. 
This is consistent with a growing body of evidence showing 
that high fire frequency can promote cat activity and 
abundance, resulting in the decline of native mammals 
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susceptible to cat predation (McGregor et al. 2015, 2016; 
Davies et al. 2020; Stobo-Wilson et al. 2020b). 

Cats appear to be associated with frequently burnt and 
structurally simple habitat at our study site. Our modelling 
showed that fire frequency had the strongest influence on 
habitat use by cats, with cats tending to use frequently 
burnt areas. Fires are most frequent in the surrounding low-
lying open savanna, with the vegetation transition along 
the rugged edges of the plateau (from open savanna to 
dense E. tetrodonta savanna) acting as a natural barrier to 
fire (Bowman 1986). Working in the savannas of the 
Kimberley and Cape York Peninsula regions, McGregor 
et al. (2015, 2016) showed that feral cats have improved 
hunting efficiency in open, grassland habitat and actively 
seek out recently burnt habitat, often far outside their 
established home ranges. We found that sites with the 
highest tree basal area had the lowest frequency of habitat 
use by cats. Given the findings of McGregor et al. (2015, 
2016), it seems likely that the dense plateau vegetation 
limits the hunting efficiency of cats and, as a result, the 
suitability of these areas as habitat for cats. In addition to 
the immediate reduction in vegetation cover caused by fire, 
repeated fires at short intervals can reduce the structural 
complexity of tropical savanna communities over the long 
term (Williams et al. 1999; Russell-Smith et al. 2012; 
Woolley et al. 2018). Cats are likely to benefit from fire-
driven reductions in the density and structural complexity 
of understorey vegetation (Davies et al. 2020; Stobo-Wilson 
et al. 2020b) to the detriment of small native mammals 
(Leahy et al. 2015; McDonald et al. 2016). 

In contrast to the use of structurally simple habitat by 
cats, northern quolls most frequently used structurally 
complex, long-unburnt habitat. Our modelling found vegeta-
tion composition, ruggedness and time-since-fire had the 
strongest influence on habitat use by northern quolls. 
Northern quolls most frequently used the central areas of 
the plateaux; E. tetrodonta basal area, NDVI and ruggedness 
were also significant positive predictors of northern quoll 
habitat use. E. tetrodonta is known to be the primary 
den tree used by the northern quoll across the plateaux 
(G. J. Trewella, unpubl. data), and the strong association 
between northern quolls and E. tetrodonta is most likely 
related to the high rate of hollow formation in this tree 
species, compared with other savanna trees (Werner and 
Prior 2007; Woolley et al. 2018). However, habitat use by 
northern quolls was negatively related to total tree basal 
area (i.e. including species other than E. tetrodonta), with 
northern quolls infrequently using areas with high total tree 
basal area. Without considering the proportion of hollow-
bearing trees in the landscape, high tree basal area alone 
may not provide necessary resources such as food and shelter 
to support a northern quoll population in habitat lacking other 
den resources, such as rock crevices. Similar to the findings 
of Moore et al. (2019), vegetation productivity, inferred 
from NDVI, was also correlated with habitat use by 

northern quolls, with the most productive areas being used 
more frequently by northern quolls. The positive relationship 
between habitat use by northern quolls and ruggedness is 
consistent with a continent-wide pattern of remnant northern 
quoll populations being associated with rugged areas (Moore 
et al. 2019). Unlike for cats, we did not find a relationship 
between fire frequency and habitat use by northern quolls, 
but there was a strong association between northern quolls 
and long-unburnt habitat. Long-unburnt habitat in tropical 
savanna is likely to provide a greater cover from predation 
and have increased availability of denning resources such 
as hollow logs (Legge et al. 2008; Shaw et al. 2021), while 
also being avoided by cats (McGregor et al. 2014). These 
observed differences in habitat usage by northern quolls 
and cats highlight the importance of less frequently burnt 
refugia (such as bauxite plateaux on Cape York Peninsula) 
for the northern quoll across northern Australia. 

A resource that appears to be a key determinant of 
persistence of northern quolls is den availability. Northern 
quolls are the largest marsupial that displays partial 
semelparity, with males dying following the annual breeding 
season (Dickman and Braithwaite 1992; Oakwood et al. 
2001). This regular high population turnover means that 
annual recruitment and juvenile survivorship are vital to 
population persistence (Cremona et al. 2017; Moro et al. 
2019). Ample availability of high-quality den resources 
(e.g. rock crevices, hollows in large trees and logs), that 
offer protection from threats during the vital joey-rearing 
phase, are likely to play a critical role in successful 
recruitment, and hence population persistence (Oakwood 
2000). Where there is a choice of den resources, such as 
rock crevices or tree hollows, northern quolls have been 
reported to show a preference for rock crevices (Begg 1981; 
Oakwood 1997). As such, rocky refugia are seen as more 
suitable habitat for northern quoll, which can support 
higher quoll densities than can lowland savanna (Begg 1981; 
Schmitt et al. 1989; Oakwood 2002). However, savannas 
that lack rocky features can still provide sufficient den 
resources if large hollow-bearing trees, particularly hollow-
forming species, such as E. tetrodonta (Woolley et al. 2018), 
are abundant (Thomas et al. 2021). Reducing the frequency 
of high-intensity fires in tropical savannas is likely to 
promote the retention of large, hollow-bearing trees, which 
provide suitable den sites for northern quolls (Williams 
et al. 1999; Edwards et al. 2018; Woolley et al. 2018). Fire 
management strategies should therefore be targeted at main-
taining structurally complex habitat, particularly through 
the retention of large hollow-bearing trees. 

Despite demonstrating links between habitat conditions 
and patterns of habitat use by cats and northern quolls, we 
have not considered how their habitat use is likely to be 
affected by other species, most notably those whose abun-
dances may have changed significantly in recent decades. 
Unfortunately, a lack of historical and contemporary 
surveys of mammals on Cape York Peninsula hinders our 
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ability to identify trends in species distributions and 
abundances in response to changes in land-management 
practices and biotic and abiotic processes through time. For 
example, we have not taken account of the potential role 
dingoes play, as apex predators, in regulating habitat use by 
cats and northern quolls (Glen et al. 2007; Hernandez-Santin 
et al. 2016; Cremona et al. 2017). Dingoes are common 
across the savannas of western Cape York Peninsula (Cairns 
et al. 2018); however, persecution by pastoralists, through 
poisoning and shooting, does occur. Whether this level of 
dingo persecution is enough to release cats from predation 
or competitive pressure, as predicted by mesopredator 
release theory (Ritchie and Johnson 2009; Kennedy et al. 
2012), is worthy of consideration. Similarly, cat activity 
has been found to be highest in savannas where invasive 
herbivores are most abundant (Davies et al. 2020). Cattle 
pastoralism is a key industry on Cape York Peninsula; so, 
the simplification of vegetation through overgrazing is a 
widespread threat (Kutt and Woinarski 2007). Potential 
synergies between cats and livestock (both feral and managed) 
may be an important barrier to mammal conservation across 
Cape York Peninsula and elsewhere in northern Australia 
(Stobo-Wilson et al. 2020a). 

Research over the past few decades has shown that 
northern Australian mammals are rapidly declining in 
response to a variety of threats, particularly predation 
by feral cats (Woinarski et al. 2011; Frank et al. 2014; 
Stobo-Wilson et al. 2020a). Given that the eradication of 
the cat is not currently feasible across unfenced landscapes, 
the maintenance of complex habitat may be one of the few 
ways to mitigate cat impacts on native mammals across 
northern Australia. Fire regimes appear to be a crucial factor 
determining whether populations of small mammals are able 
to persist in the extremely fire-prone savannas of northern 
Australia (Griffiths and Brook 2014; von Takach et al. 2022). 
Reductions in the frequency of fires, especially those of high 
intensity, can promote the persistence of large hollow-bearing 
trees (Williams et al. 1999; Edwards et al. 2018; Woolley 
et al. 2018) and potentially suppress cat activity (Davies 
et al. 2020; Stobo-Wilson et al. 2020b). However, achieving 
long-term reductions in fire frequency and intensity across 
the vast tropical savanna landscapes of northern Australia 
will also be a significant management challenge (Murphy 
and Russell-Smith 2010; Evans and Russell-Smith 2020; 
Russell-Smith et al. 2020). Prescribed burning in the early 
dry season (when fire-weather conditions are relatively 
benign compared to the late dry season) has been shown 
to be effective in reducing fire intensity (Price et al. 2012; 
Duncan et al. 2015; Radford et al. 2020, 2021), but 
typically does not reduce fire frequency. Hence, frequent 
prescribed burning can still negatively affect small mammal 
populations and promote cat activity (Andersen et al. 2005; 
Griffiths et al. 2015). These difficulties in fire management 
further emphasise the significance of bauxite plateaux as 
naturally occurring, less frequently burnt refugia, similar to 

rocky refugia commonly found across northern Australia 
(Oakwood 2000; Hohnen et al. 2016; Moore et al. 2022). 
Despite these challenges, retaining structurally complex vege-
tation and suppressing cat activity through a low-frequency 
fire regime that promotes the retention of long-unburnt 
habitat is likely to have a significant benefit for northern 
quoll and threatened mammals across the tropical savannas 
of northern Australia. 
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