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ABSTRACT

Context. The introduced red fox has driven the decline or extinction of numerous wildlife species
in Australia, yet little information exists on the population densities of foxes in most ecosystems. Fox
monitoring programs will differ widely depending on the goals of management, which, in turn, will
determine whether the appropriate metric is a density estimate, or some proxy thereof, and the
time and resources required. Aims. This study aims to assist wildlife managers to design fit-for-
purpose monitoring programs for foxes by providing a better understanding of the utility and
precision of various monitoring methods. Methods. We surveyed foxes monthly over four
consecutive years in a semi-arid region of Australia by using sand plots, camera traps and GPS
telemetry. The resultant data were used to produce population estimates from one count-based
method, two spatially explicit methods, and two activity indices. Key results. The incorporation
of GPS-collar data into the spatial capture–recapture approaches greatly reduced uncertainty in
estimates of abundance. Activity indices from sand plots were generally higher and more
variable than were indices derived from camera traps, whereas estimates from N-mixture
models appeared to be biased high. Conclusions. Our study indicated that the Allen–Engeman
index derived from camera-trap data provided an accurate reflection of change in the underlying
fox density, even as density declined towards zero following introduction of lethal control. This
method provides an efficient means to detect large shifts in abundance, whether up or down,
which may trigger a change to more laborious, but precise, population monitoring methods. If
accuracy is paramount (e.g. for reintroduction programs) spatially explicit methods augmented
with GPS data provide robust estimates, albeit at a greater cost in resources and expertise
than does an index. Implications. Our study demonstrated that the shorter the survey period
is, the greater is the likelihood that foxes are present but not detected. As such, if limited
resources are available, longer monitoring periods conducted less frequently will provide a more
accurate reflection of the underlying fox population than do shorter monitoring periods
conducted more often.

Keywords: canid pest ejector, fox baiting, mark–resight, N-mixture model, population index,
predator control, sodium fluoroacetate, spatially explicit.

Introduction

Since its introduction to Australia in the 1800s (Rolls 1984), the red fox (‘fox’, Vulpes vulpes) 
has become one of the country’s most destructive mammalian predators. The fox has driven 
the decline or extinction of numerous species of endemic terrestrial mammals (Woinarski 
et al. 2015; Doherty et al. 2016) and is also regarded as a major predator of livestock 
(Saunders et al. 1995; Saunders and McLeod 2007). The most recent economic figures have 
estimated that foxes cost the Australian economy approximately US$500 million annually 
(Bradshaw et al. 2021) through direct loss and damage, as well as for management 
interventions. Nevertheless, despite the impact of foxes in Australia, in most ecosystems, 
little information exists on their population densities. 
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The specific objectives of a fox monitoring program 
will differ widely depending on the goals of management, 
which, in turn, will influence the time and resources that 
monitoring efforts demand. For instance, a predator eradica-
tion program conducted inside a fenced reserve prior to the 
reintroduction of endangered wildlife species (e.g. Legge et al. 
2018; Ruykys and Carter 2019) will demand greater resources 
than do short-term fox control programs (cf. Greentree et al. 
2000; Gentle 2005). For the former, accuracy is imperative 
as density approaches zero, and elimination of predators 
from the control area, whereas for the latter, a trend model 
may suffice as evidence of the expected decline. Irrespective 
of the objectives, an underlying assumption of all population 
monitoring programs is that the methods used are a true 
reflection of the underlying population parameter of interest. 

Direct estimates of population abundance and/or density 
are generally most desirable (Porteus et al. 2019), although 
they typically require more costly and labour-intensive 
field methods (Sadlier et al. 2004; Jones 2011) and high 
levels of precision may not be needed for the management 
objectives. As an alternative to direct population estimates, 
ecologists often make inferences about populations across 
space and time by using indices as proxies for population 
abundance and/or density (Schwarz and Seber 1999; 
Sollmann et al. 2013a; Stephens et al. 2015; Falcy et al. 2016). 
Indices can be any measure of animals, or their signs, that 
are expected to vary directly with population size (Caughley 
1977). However, their use is contentious because the 
assumption of a direct and constant relationship between 
the index and true abundance/density is rarely verified 
(Pollock et al. 2002; Stephens et al. 2015). Consequently, 
there is long-standing discussion in the ecological literature 
about the use, and misuse, of indices (e.g. Edwards 1998; 
Anderson 2001; Johnson 2008; Gopalaswamy et al. 2015; 
Falcy et al. 2016). Yet, despite this considerable uncertainty, 
indices remain the most commonly implemented method for 
monitoring fox populations (e.g. Thompson and Fleming 
1994; Thomson et al. 2000; Sharp et al. 2001; Gentle et al. 
2004; Olsson et al. 2005; Moseby and Hill 2011; Bengsen 
2014; Robley et al. 2014; Benshemesh et al. 2020). Noting 
that developments in scat genotyping is bridging the gap 
between the simplicity of using sign and the marking of 
individuals to estimate density (Piggott et al. 2008). 

In this study, we compare two commonly applied activity 
indices and one count-based method with two spatially 
explicit methods for monitoring the abundance of red fox. 
This research was conducted in a semi-arid region of 
Australia over four consecutive years. Our primary objectives 
were to (1) determine whether activity indices show direct 
and/or constant correlations with fox population abundance 
estimates over time, and (2) evaluate the precision of the 
various methods for detecting change in fox abundance. 
Midway through the study, we introduced lethal control to 
reduce the abundance of foxes and we expected to observe a 
concomitant decline in the subsequent indices and population 

estimates. Our findings will assist wildlife managers to 
design fit-for-purpose fox monitoring programs to guide local 
decision-making and species-based management (sensu 
Jennelle et al. 2002), while also having broad application 
for monitoring other wildlife species with non-distinct 
pelage and/or similar behaviour. 

Materials and methods

Study area

Our study was conducted at Scotia Wildlife Sanctuary, a 
64 659 ha private conservation reserve in south-western 
New South Wales, Australia (−33.15°S, 141.06°E; Fig. 1), 
owned and managed by Australian Wildlife Conservancy. 
Approximately 8000 ha of the sanctuary is surrounded by 
an electrified conservation fence, to establish two adjacent 
4000 ha exclosures, from which foxes (and feral cats) have 
been excluded since 2004 (Stage 1) and 2007 (Stage 2), 
and to which five threatened mammal species have been 
reintroduced successfully (Roshier et al. 2020). The climate 
is semi-arid with low and highly variable rainfall (spatially 
and temporally) that averages 230 mm per year with high 
evapotranspiration (1500 mm per year) and low relative 
humidity (average: 20%) (Australian Wildlife Conservancy, 
unpubl. data). Cool winters (average maximum temperature: 
17°C) and hot summers (average maximum temperature: 
30°C) characterise the site, with annual temperature extremes 
ranging from −6°C to 48°C. The landscape features stable 
east–west sand dunes of red sand and sandy solonised 
brown soil over clay (Westbrooke et al. 1998). Vegetation 
is predominantly multi-stemmed Eucalyptus spp. (‘mallee’) 
open-shrubland with a Triodia scariosa (‘spinifex’) understorey  
or mixed-shrub understorey (predominantly Senna, Dodonaea 
and Eremophila spp.), and Casuarina pauper woodland on the 
swales and open flats (Westbrooke et al. 1998). Red foxes are 
the largest predator present and their population in the study 
area was not subject to any form of population control during 
the 6 years prior to this study commencing. 

Data collection

Camera traps
During the 4-year study, we monitored fox populations 

by using camera traps with passive-infrared sensors (HC600, 
Reconyx, Holmen, WI, USA) placed at 98 sites across 
14 000 ha (Fig. 1). Sixty-three of these sites were located 
along roads and were monitored for the entirety of the 
study, except when 28 sites were removed during April and 
May 2016 to facilitate camera re-conditioning. An additional 
35 sites were located away from roads and were operational 
for 7 months (July 2017–January 2018). All sites contained a 
single camera, except for nine road sites that had paired 
cameras (i.e. one camera either side of the road) to provide 
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Fig. 1. Location of (a) Scotia Wildlife Sanctuary and (b) camera traps and sand plots across the study area.

information for a related study. Detections from each camera single cameras (i.e. no detections were counted twice). 
pair were pooled together, so that data were comparable with Camera sites were spaced between 750 m and 2000 m 
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apart. Further details on camera placement are provided 
in Carter et al. (2019). We conducted 48 camera-trapping 
sessions at monthly intervals, encompassing the period from 
1 October 2015 until 25 September 2019. Each session 
consisted of 24 consecutive trapping occasions (i.e. 24-h 
periods from 09:00 hours to 08:59 hours), unless problems 
were noted with camera operability, whereby trap usage 
was accounted for in the analysis. 

Cameras were attached to a galvanised steel post driven 
into the ground, with the sensor positioned 0.5 m above 
ground, aimed approximately 4.5 m away. Cameras recorded 
five consecutive images when triggered, with no time delay, 
and highest trigger sensitivity and image quality. Images were 
stamped with date, time and camera location. Cameras 
recorded monochromatic images at night and colour images 
during the day under ambient light. No lures or baits were 
used to attract predators to cameras. 

Sand plots
A sand-plot monitoring program for foxes (and other 

species) had been in place at Scotia for 9 years prior to our 
study commencing (Australian Wildlife Conservancy, unpubl. 
data). Within our study area, this historical program included 
60 sand plots (covering four roads) spaced approximately 
500 m apart. For consistency, we maintained the historical 
survey methods in the current study; however, we considered 
the 500-m spacing to be too close, so we selected a subset of 
17 antecedent sand plots spaced approximately 2000 m apart. 
This spacing was selected to (a) maximise the spatial coverage 
of the sand plots throughout the study area, and (b) increase 
the independence of each sand plot. Sand plots were 
positioned on the existing road network and monitored daily 
for a 4-day period each month, coinciding with camera-
trapping sessions. Sand plots consisted of an area of sand 
(approximately 1.2 m wide) raked smooth across the entire 
width of the road (i.e. gutter to gutter). On the following 
morning, sand plots were inspected for the presence of fox 
footprints by the same experienced operator (J. S.) for the 
entirety of the study. Each plot was then smoothed clean in 
preparation for the following day. In the event that rain 
and/or wind obscured footprints on some plots, all data from 
that day were abandoned and all plots were re-surveyed the 
following day until 4 days of undisturbed data were 
collected. All sand plots were assumed to be independent 
and every set of fox tracks that entered and exited an 
individual plot were treated as independent detections. No 
lures were used and the same sand-plot locations were 
surveyed for the duration of the 4-year study (Fig. 1). 

Fox identification
Because of their uniform pelage, individual red foxes 

cannot be identified reliably from photographs unless marked 
artificially (Guthlin et al. 2014). To identify individuals on 
camera-trap images, we fitted 28 foxes with GPS collars 
(Q4000E, Telemetry Solutions, Concord, CA, USA) over a 

3-year period; seven foxes were caught and collared 
between October 2015 and March 2016, 10 foxes during 
July–December 2016, and 11 foxes during June–September 
2017. Collars operated for approximately 4 months (before 
being programmed to detach from foxes automatically) 
and recorded location fixes at 20-min intervals between 
17:00 hours and 09:00 hours and at 96-min intervals between 
09:00 hours and 17:00 hours (for further details, see Roshier 
and Carter 2021). Individual foxes were identified in camera-
trap images by comparing the image time stamp with 
all available GPS data (additional details are provided in 
Carter et al. 2019). Photographs of known individuals 
recorded ≤60 min apart at the same camera were not 
included in the analysis. Likewise, photographs of unmarked 
foxes recorded ≤60 min apart at the same camera were 
considered to be the same individual, and were not included 
in the analysis, unless body markings enabled clear distinction 
between individuals within this time period, or there was a 
second individual in a photograph. All camera-trap images 
were viewed and classified manually by the same operator 
(A. C.), without the use of machine learning or artificial 
intelligence software (e.g. Norouzzadeh et al. 2018; Tabak 
et al. 2019). 

Fox management
During the first half of the study (October 2015–September 

2017; Sessions 1–24) the fox population was not subject 
to any form of population control. Lethal fox control, 
subsequently, commenced in October 2017 (Session 25), 
and this was maintained constantly until the study ended in 
September 2019 (Session 48). Two control methods were 
implemented, namely, canid pest ejectors (hereafter ‘CPEs’) 
and fresh-meat baits (hereafter ‘baits’), both containing 
3.0 mg of the toxicant sodium fluoroacetate (hereafter 
‘1080’). Because of the nature of fox management, the exact 
number of foxes removed during the study remained 
unknown. 

CPEs are an Australian derivative of the ‘M-44’ or ‘humane 
coyote getter’, as they are known elsewhere (Allen 2019). 
CPEs are mechanical devices that are buried partly in the 
ground, with a baited lure head, containing a sealed toxicant 
capsule, remaining exposed above ground level. When a fox 
attempts to remove the lure by pulling upward, the toxicant 
in the capsule is propelled into its mouth via a spring-
loaded piston. An upward pull force of 1.6–2.7 kg is required 
to activate CPEs (Marks and Wilson 2005), which prevents 
many non-target species from accessing the toxicant. On 
1 October 2017, we distributed 145 CPEs throughout the 
study area, placed at approximately 1-km intervals along 
the existing road network (Fig. 2). A variety of lures was 
used to create bespoke bait heads that contained a 
combination of dried liver, dried chicken, dried red meat, 
manufactured dog cubes, fish meal, and/or dried liver 
soaked in fish oil. These bait types were swapped every 
2–3 months. For the first 4 months, CPE were inspected at 
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Fig. 2. Location of baits and canid pest ejectors (CPEs) at Scotia Wildlife Sanctuary.

2–4-day intervals in an effort to identify triggers made by 
foxes fitted with GPS collars. Thereafter, inspections and 
servicing (lubricating and refreshing bait heads) occurred at 
approximately 1-month intervals. If CPEs had been triggered 
since the previous visit, the toxicant capsule was replaced and 
the lure head refreshed as necessary. 

The use of meat-based baits (chicken wings, red meat) 
impregnated with 1080 is currently the most widespread 
and effective method of fox control in Australia (West and 
Saunders 2007; Mahon 2009). Hence, on 24 October 2017, 
we began supplementing CPEs with fresh chicken wings 
injected with 1080, distributed across 196 bait sites (Fig. 2). 
Nominally, baits were placed at 1-km intervals along the 
existing road network, although preference was given to 
placing baits (rather than CPEs) at road intersections; so, in 
some instances, bait spacing was at approximately 500 m. 
All sites were checked after 3 and 6 days and any baits taken 
were replaced. The final check was made after 8 days, when 

all remaining baits were removed. An additional nine baiting 
programs were implemented (using a combination of chicken 
wings, fresh beef meat, and chicken eggs) throughout the 
remainder of the study, with baits checked at 3-day intervals 
and remaining in place for a maximum of 10 days before being 
removed. When all control sites were combined, most roads 
across the study area contained alternating CPEs and baits 
at 500-m intervals. 

Data analysis

Activity indices
Sand-plot and camera-trap data were analysed to produce 

two separate indices: 

1. the Allen–Engeman (AI) index: the average number of 
tracks per sand plot, per day (or photographs per camera, 
per day). Variance of the AI was estimated following 
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Engeman (2005). First, a linear mixed model was fitted to 
the data of the form: 

xij = μ + Si + Dj + eij 

where xij is the number of tracks (or independent sets of 
photographs) from the ith sand plot/camera site on the 
jth day, μ is the mean number per sand plot/camera site 
per day, Si is the random effect owing to ith sand-plot/ 
camera site, Dj is the random effect owing to the day on 
which the observation was made, and eij is the random 
error term that is assumed to be independent and 
identically distributed, with a mean 0 and variance σ2 

e . 
Variance estimation of the AI index, when all sample 
sizes were equal, was calculated as follows: 

σ2 σ2 σ2 
σ2 s d e+ +AI = 

S D SD 

where S and D are the sample sizes of the sand plots/camera 
sites and days respectively, and σs 

2, σ2 and σ2 are, d e 
respectively, plot-to-plot/site-to-site variability, daily vari-
ability and random observational variability associated 
with each plot/trap each day (Engeman 2005). 

2. the Catling index: the percentage of sand-plot nights with 
fox tracks (or camera-trap nights with independent sets of 
fox photos; following Catling and Burt 1994). 

N-mixture modelling
N-mixture models are a commonly used method to 

estimate abundance by using spatially replicated count 
data, without requiring individual animals to be uniquely 
identifiable. Counts of animals at Site i and Time j (Yij) are 
assumed to be conditionally independent binomial random 
variables, based on the number of individuals actually present 
at Site i and Time j (Nij) during the survey, detected with 
probability pij. That is, Yijjpij ∼ BðNij, pijÞ. 

N-mixture models were run using the pcountOpen function 
in the unmarked package (v. 0.13.1, Fiske and Chandler 2011) 
in R (v. 3.6.1, R Core Team 2018). Given the 4-year duration 
of this study, populations were assumed to be closed within 
the primary survey periods (i.e. monthly sessions), and 
open between the primary periods. The Akaike information 
criterion (AIC, Akaike 1974; Buckland et al. 1997) was used 
to select the mixture distribution (Poisson, zero-inflated 
Poisson or negative binomial), and conduct model selection. 
In addition, we explored the influence of one site-level 
covariate on detectability (whether the trap was set on a 
road), while all other parameters were kept constant. 
Values of K, a parameter required to bound the integration, 
were explored to ensure that they were set large enough, 
such that model estimates were not affected. 

Spatial mark–resight modelling (SMR–MLE)
Spatial capture–recapture (SCR) and spatial mark– 

resight (SMR) methods provide density estimates of marked 

(or partially marked) populations, using the spatial pattern 
of recapture events of marked animals (Borchers and Efford 
2008; Royle et al. 2014). Even though SCR models can be 
fitted to populations without any marked individuals, 
marking a subset of the population is recommended where 
possible (Chandler and Royle 2013). SCR and SMR utilise 
heterogeneity in capture probability caused by the proximity 
of animals’ home-range centres to traps. SMR values of fox 
density at Scotia have been estimated previously within a 
maximum-likelihood framework (i.e. package ‘secr’, Efford 
2019) in  Carter et al. (2019). For brevity, we do not repeat 
the analysis here, but do convert these estimated fox 
densities to abundance in each of the primary survey periods, 
on the basis of all camera-trap data and an effective survey 
area of approximately 57 000 ha. This area was created 
using a 4000-m buffer around the trap locations in each 
survey, with inaccessible habitat removed (i.e. an 8000-ha 
fenced region that excludes foxes; Fig. 1). The choice of a 
4000-m buffer was based on GPS location data (cf. Roshier 
and Carter 2021) that indicated that foxes rarely moved 
beyond this distance. 

Spatial mark–resight modelling augmented with
GPS-collar information (SMR–Bayes + GPS)

Spatial mark–resight analyses augmented with GPS-collar 
data were conducted within a Bayesian framework, following 
the approach of Sollmann et al. (2013b) and Whittington et al. 
(2018). In the context of spatial mark–resight analyses, 
telemetry and GPS-collar data provide additional information 
on individual location and movement. Sollmann et al. (2013b) 
extended spatial mark–resight models to utilise the spatial 
information from GPS-collared racoons to inform model 
parameters on spatial location. We adapted their approach, 
using the GPS-collar data from 28 collared foxes. Because 
GPS collars were not deployed on foxes in every session, 
estimates were available for only a portion of the sessions 
surveyed. We ran two Markov-chain Monte Carlo chains of 
the algorithm, with 100 000 iterations each, discarding 
the first 10 000 iterations as burn-in. To check for chain 
convergence, we calculated the Gelman–Rubin statistic 
R-hat (Gelman and Rubin 1992) by using the R package 
coda (v. 0.19-3, Plummer et al. 2006). Values >1 indicate 
lack of convergence. 

Ethics statement

All work relating to this study was conducted as approved 
by and in accordance with the Animal Care and Ethics 
Committee of the Secretary of NSW Trade and Investment 
(Approval Numbers 13/1344), Animal Care and Ethics 
Committee of the Secretary of NSW Industry, Skills and 
Regional Development (Approval Numbers 13/1344#5, 
16/1354, 16/1354#1) and the Office of Environment and 
Heritage, NSW National Parks and Wildlife Service (Scientific 
License number SL100473). 
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Results

Fox monitoring and management

More than 110 000 camera-trap nights were conducted in 
this study, across the 98 camera-trap sites and 48 primary 
(monthly) sampling sessions. The maximum number of trap 
nights available at a single site was 1152 (i.e. 48 primary 
sessions × 24 secondary occasions), and there were, on 
average, 955 (±233 s.d.) trap nights at each site (35 off-
road sites were trapped for seven primary sessions only). 
Across the duration of the 4-year study, foxes were detected 
by cameras in every survey session except one (Session 42, 
March 2019; Supplementary material Table S1), and 90 of 
98 individual sites had at least one fox detection. 

Sand-plot surveys occurred in 44 of the 48 primary 
sampling sessions, with foxes being detected in 41 of these 
sessions. In 14 sessions, wind and/or rain caused the abandon-
ment of a day’s surveys, which required the addition of one 
extra survey day to obtain data from 4 days. 

The time spent conducting camera-trap surveys and 
processing the resultant data in preparation for analyses 
varied depending on accessibility (Table 1). When on-road and 
off-road cameras were combined, each camera site required 
approximately 16 min work each month (1545 min/ 
98 camera-trap sites). For sand plots, a standard monthly 
4-day survey required an average of 7 h, 35 min. (±1 h,  
10 min s.d.) of person hours in the field to prepare the sand 
and record tracks. That equates to approximately 27 min per 
sand plot per month (455 min/17 plots). However, >31% of 
monthly sand-plot surveys (14/44) required an extra day of 
field work (mean effort 1 h, 53 min, ±17 min s.d.) because a 
day’s data were ruined by inclement weather. 

During the first 24 sessions when there was no fox 
control (October 2015–September 2017), the mean number 
of independent fox detections on cameras per session was 
116 (±68 s.d.), with detections at 64% (±16 s.d.) of sites, 
on average. During the final 24 sessions when fox control 
was implemented (October 2017–September 2019), the 
mean number of fox detections on cameras per session was 
22 (±18 s.d.), with detections at 22% (±13 s.d.) of sites, on 
average. During the final session prior to commencement of 
lethal fox control (Session 24, September 2017), there were 

90 fox detections on cameras. Two months later (Session 
26, November 2017), fox detections on cameras had fallen 
by >50%, and by the following September (Session 36, 
September 2018), camera detections were down by almost 
85% (Table S1). During the final year of our study (Sessions 
37–48, October 2018–September 2019), total camera detec-
tions in several sessions were in single figures and down 
>90% from total detections in Session 24 (September 2017; 
Table S1). 

Detections on sand plots also fell following the 
commencement of fox control. During the 2 years prior to 
control, there was an average of 10 (±6 s.d.) fox detections 
per session, with detections occurring at 36% (±18% s.d.) 
of the 17 sites, on average. During the 2 years of lethal 
control, there was an average of 2 (±2 s.d.) fox detections 
per session, with detections at 12% (±9% s.d.) of the 17 sites, 
on average. During the final year of monitoring, in most 
sessions, fox prints were recorded at one or two sand plots 
only (Table S1). 

Nine of the eleven foxes fitted with GPS collars in 
June–September 2017 were within the study area at the 
commencement of lethal fox control on 1 October 2017. 
For the first 3 weeks of lethal control, only CPEs were 
deployed; none of which was triggered, and no kills of 
collared or unmarked foxes were recorded. Fresh-meat baits 
were first deployed on 24 October, and across the 196 bait 
sites, 24 baits were removed after 3 days, 20 baits were 
removed during Days 4–6, whereas another 21 baits were 
taken from Days 7–8 (Fig. 3). Examining the GPS data from 
collared foxes indicated that three of nine collared foxes 
took baits and died on the third day of the baiting program, 
one fox took a bait and died on Day 7, and three other 
collared foxes died in the same period but their precise 
movements in the day prior to their death could not be 
deduced because the GPS units in their collars malfunctioned. 
Another collared fox is likely to have triggered a CPE and died 
on 31 October 2017, 30 days after CPEs were first activated. 
Only one of nine collared foxes remained alive at the end of 
October 2017, which equates to an 89% reduction in the 
collared population during the first month of baiting. The 
one collared fox that survived (5.4 kg ♂) had access to 
10 CPEs and 13 fresh-bait stations within its home range 
(fox MF366 in Roshier and Carter 2021). This individual 

Table 1. Average monthly person hours (±s.d.) spent on camera-trap surveys.

Item ServicingA Image downloadB Image reviewC Individual identificationD Total

On road (n = 72) 6:21 ± 0:39E 0:43 ± 0:40 2:34 ± 1:21 0:42 ± 0:41 10:20

Off road (n = 35) 13:51 ± 0:18F 0:17 ± 0:16 1:01 ± 0:13 0:16 ± 0:16 15:25

AChange batteries and memory cards in the field.
BFrom camera memory cards to cloud storage server.
CExtract fox images.
DUsing GPS tracking data and image time stamps.
ERequired 131 km of driving.
FRequired 30 km of walking and 101 km of driving.
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Fig. 3. Monthly takes of canine pest ejectors (CPEs) and fresh-meat baits injected with 1080 from October 2017 to September 2019.
Asterisk indicates that no fresh baits were laid.

remained active throughout the study area until 24 November 
2017 when its collar drop-off mechanism activated. CPEs 
continued to be deployed until the end of the study in 
September 2019, and fresh-meat baits were deployed in each 
month (except in December 2017) until February 2018, and at 
3-month intervals thereafter. It was not possible to determine 
whether non-target species removed baits or triggered CPEs. 
No carcasses of unmarked foxes (or non-target species) were 
found in the 2 years of lethal control. 

Estimates of activity from sand plots and
camera traps

The Allen–Engeman and Catling indices were near identical 
for each session (R2 = 0.97) and the Catling index is not 
considered further in this analysis because it provides no 
means to generate confidence limits. In comparing activity 
indices from camera traps and sand plots, the metric from 
sand plots was generally higher and more variable than 
that derived from camera traps (Fig. 4). Although both 
indices recorded a decline in fox activity following introduc-
tion of lethal control, the confidence limits for the camera-
trap data were much narrower in absolute terms than for 
the sand-plot data. 

Estimates of abundance from camera-trap data

The number of marked foxes in a session ranged from 0 to 14, 
so SMR analyses were not possible in every session. Also, 

during Session 7 (April 2016), no marked foxes were 
detected on any cameras, so abundance estimates during 
that session could not be obtained. Following the commence-
ment of lethal control in Session 25 (October 2017), there 
were too few individually marked foxes remaining in the 
survey region to use SMR methods. In sessions with 
high congruence in the estimates between SMR–MLE and 
SMR–Bayes + GPS (i.e. October 2016, November 2016), 
the MLE approach is more uncertain and has wider 
confidence limits (Fig. 5). For the SMR–Bayes + GPS 
analysis, the Gelman–Rubin statistic R-hat for all sessions 
was ≤1, indicating that the chains converged for the 10 
sessions for which this method could be applied. Across 
these 10 sessions, the SMR–Bayes + GPS method produced 
abundance estimates of ~50 animals (range 35–78) in 
the study area (Fig. 5). This compared with an estimate 
of ~80 animals (range 27–230)  for  the same sessions  
using SMR–MLE. The confidence limits associated with 
both SMR methods in this analysis were improved (i.e. 
uncertainty was reduced) by including marked animals 
(pID) that were known to be on the grid in any particular 
session but were not detected. 

Both the SMR–MLE and SMR–Bayes + GPS methods 
produced similar estimates when there were sufficient 
marked foxes on the grid to be detected (Fig. 5, also see 
Carter et al. 2019). As the number of marked foxes detected 
on cameras declined, SMR–Bayes + GPS models failed to 
converge, and the point estimates and confidence limits 
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Fig. 4. Fox activity (±95% CI) as measured using the Allen–Engeman index. The dashed vertical line signifies commencement of lethal fox
control. Note; camera-trap data presented here are for four occasions per session only, to align with sand-plot sampling periods.
Supplementary material Fig. S1 provides a comparison of indices derived from cameras, using 4 and 24 occasions per session. No
sand-plot surveys occurred in October 2016, April 2017, May 2018, or August 2019, and no foxes were detected on cameras in
March 2019.

inflated for SMR–MLE models, or failed if no marked foxes 
were detected, as in Session 7 (April 2016). 

The best-fitting N-mixture model (i.e. that with the lowest 
AIC) using the camera-trap data was a Poisson mixture, which 
had no covariates on the detection probability. As expected, 
since our camera-trap sites were not independent, estimates 
from N-mixture models appear biased high (i.e. higher than 
SMR-methods). In comparing the camera-trap N-mixture 
with the camera-trap Allen–Engeman index, which is the 
only other method we applied that does not require marked 
animals, the confidence intervals are much narrower for the 
Allen–Engeman index method (Fig. 6). We were unable to 
generate a plausible N-mixture model using the sand-plot 
data because the models failed to converge (see Discussion). 

Discussion

The primary goal of our study was to assist wildlife managers 
design fit-for-purpose monitoring programs by providing 
a better understanding of the utility of various methods 
available for monitoring foxes. Because a subset of our fox 
population was fitted with GPS collars, we had a unique 
opportunity to compare a statistical method that is considered 
‘best-practice’ for estimating population density (i.e. spatial 

capture–recapture using both MLE and Bayesian frame-
works) with methods that are less arduous in terms of data 
collection, processing and analysis (i.e. simple counts of 
detection events expressed as the Allen–Engeman index and 
N-mixture models). Our comparison of these methods was 
made in terms of uncertainty and utility. 

Abundance estimate methods

We found that the incorporation of GPS-collar data into the 
spatial capture–recapture approaches (i.e. SMR–Bayes + GPS 
vs SMR–MLE) greatly reduced uncertainty in estimates of 
abundance (Fig. 5). This was expected, given that the 
Bayesian approach can incorporate data from GPS collars 
to better estimate the distribution of individual activity 
centres (see Gerber and Parmenter 2015), whereas the 
maximum-likelihood approach cannot. In general, these 
two SMR approaches provided similar estimates of 
abundance, except in situations where marked detection 
events were sparse (e.g. Sessions 1–3, October–December 
2015). Further, in sessions where there were few marked 
animals resighted, the SMR–Bayes + GPS models did not 
converge, and although SMR–MLE models could provide 
estimates in these instances, they were unrealistic and 
had wide confidence limits (e.g. Sessions 18–20, March– 
May 2017). 
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Fig. 5. Comparison of abundance estimates using spatial mark–resight methods, namely, spatial mark–resight modelling augmented
with GPS-collar information (SMR–Bayes + GPS) and spatial mark–resight modelling using maximum-likelihood estimation (SMR–MLE).
Density estimates are converted to abundance and presented with ±95% CI. The dashed vertical line signifies commencement of
lethal fox control.
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Fig. 6. Comparison of abundance estimates (±95% CI) derived from counts, namely N-mixture model (LHS) and the Allen–Engemen
index (RHS), using camera-trap data (24 occasions each session).
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We acknowledge that obtaining uniquely marked animals 
is not often feasible in studies of fox populations and 
that additional methods not implemented here have been 
used successfully to measure fox abundance elsewhere. For 
instance, several studies have used non-invasive genetic 
sampling to demonstrate changes in fox abundance following 
lethal control programs (e.g. Piggott et al. 2008; Berry et al. 
2012, 2013), but inclusion of such methods was beyond 
the scope of our study. Instead, in addition to SMR analyses, 
we also analysed our data using count-based indices and 
N-mixture modelling. N-mixture models typically assume 
that the population is demographically closed (but extensions 
exist), individuals are not counted at more than one site, and 
all individuals have the same probability of being detected 
(Royle 2004). Our results showed that N-mixture estimates 
were comparable to those from SMR methods but the 
uncertainty was much greater (compare Figs 5 and 6). 
Here, camera traps were specifically placed to ensure that 
SMR methodology could be used (i.e. individually marked 
animals detected across multiple sites), violating an assump-
tion of N-mixtures. Given that sites were not independent, 
although the total number of animals using each site remains 
unbiased, abundance estimates for the survey region are 
biased positively because animals moving between sites are 
double counted (Keever et al. 2017). In addition, in many 
situations, N-mixture models did not converge. Barker et al. 
(2018) found that when p is low or highly variable, N can 
be unidentifiable (Barker et al. 2018; Link et al. 2018). In 
our study, estimates of p were very small (mean = 0.006, 
var = 0.003) and this is likely to explain why many sessions 
did not converge. In recent times, the density of unmarked 
populations has been estimated elsewhere with numerous 
other statistical approaches (e.g. FMP Formula, Stephens 
et al. 2006; REM, Rowcliffe et al. 2008; SPA Model, Ramsey 
et al. 2015; REST Model, Nakashima et al. 2018; see also 
SPIM Model, Augustine et al. 2018; Royle et al. 2014, 
Chapter 18; Chandler and Royle 2013) and these may 
warrant further investigation for estimating fox abundance 
in future studies. 

Following the introduction of lethal control, foxes fitted 
with GPS collars did not survive long enough to enable 
density estimates to be produced using spatial capture– 
recapture approaches. Nevertheless, during the first month 
of baiting, we observed an 89% reduction in the collared-
fox population, and, as anticipated, we observed considerable 
declines in the subsequent indices and abundance estimates 
using count methods. Values for the Allen–Engeman index 
from camera-trap data were 85% lower, on average, during 
the 2 years of lethal control than the pre-control values, 
whereas the same metric using sand-plot data was 75% 
lower, on average, during the lethal control period. Estimates 
of fox abundance using N-mixture modelling from camera-
trap data were likewise lower, ranging from 101 to 258 
foxes per session, pre-control, compared with 43–130 foxes 
per session, when fox control was implemented. We were 

unable to generate abundance estimates using N-mixture 
modelling from sand-plot data because models would not 
converge (as discussed above). Combined, these results align 
with studies published previously that have demonstrated 
that broad-scale 1080 baiting can be effective at reducing 
fox abundance (e.g. Thomson et al. 2000; Berry et al. 2012, 
2013; Marlow et al. 2015, 2016), and contrast some studies 
that concluded that baiting did not produce a clear decline 
in fox activity or abundance (e.g. Towerton et al. 2011; 
Bengsen 2014). 

Broadly speaking, when undertaking population monitor-
ing, we advocate for obtaining some marked animals, at least 
for a subset of sessions. If robust estimates of abundance are 
available at more than one point in time, they can be used 
to scale an index of activity if it changes in the same 
direction as the underlying population density. In this study, 
prior to the introduction of lethal control, changes in 
abundance were detected by using methods based on 
robust methods of density estimation (i.e. spatial mark– 
resight modelling augmented with GPS-collar information 
(SMR–Bayes + GPS)) and simple data collection and analyses 
(i.e. Allen–Engeman index; Fig. 7). Scaling both data sets 
showed a measure of agreement and we are confident, that 
after the introduction of lethal control, zero on the index 
was at or near zero population density. 

Little published information exists on the time demands 
of camera trapping and sand-plot surveys. In our study, 
when the two methods were compared on a time-per-unit 
basis, an individual camera trap (on- and off-road combined) 
required approximately 60% of the person-hours each month 
of those that a sand plot did. This is noteworthy given the 
richness of data that camera traps can provide. Compared 
with sand plots, cameras can collect meaningful data in all 
types of weather, they are less dependent on observer skill 
(Ruykys and Carter 2019), they can operate for extended 
periods (months) with no human intervention, and they can 
facilitate estimation of population density (cf. Rovero and 
Zimmermann 2016). Moreover, in our study, all camera-
trap images were viewed and classified manually. As machine 
learning and artificial intelligence software become more 
readily available (e.g. Norouzzadeh et al. 2018; Tabak et al. 
2019), the time required to review large quantities of 
camera-trap images will decrease considerably, leading to 
further increases in the efficiency of camera-trap surveys. 

Fox control

During the first 23 days of our lethal control program, we 
deployed only canid pest ejectors (CPEs), at an average 
density of 1.03 devices per km2 (Fig. 2). During this period, 
each of the nine foxes fitted with GPS collars had access to 
multiple CPEs within their home range (range = 4–17), yet 
no CPEs were triggered. This prompted us to introduce 
buried fresh-meat baits (mean density = 1.4 baits per km2), 
which delivered an immediate impact, with four of the nine 
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Fig. 7. Comparison of abundance estimates (±95% CI) from spatial mark–resight modelling augmented with GPS-collar information
(SMR–Bayes + GPS) and the Allen–Engemen index (per trap night) derived from cameras (24 occasions per session).

collared foxes succumbing to baits within 7 days of baiting 
commencing. A further three collared foxes died in the 
same period and we suspect they too consumed fresh baits, 
but GPS-collar malfunction prevented confirmation. The 
high mortality rate of radio-collared foxes during the baiting 
program supports the findings of two previous studies. In 
coastal New South Wales, 100% of collared foxes (n = 6) 
died within 10 days of baiting commencing (Dexter and Meek 
1998), whereas in semi-arid Western Australia, mortality 
rates were 60% (of 45 collared foxes) within 3 days and 100% 
within 44 days following 1080 baiting (Thomson et al. 2000). 
Conflicting results were obtained from two other Australian 
studies that found that most foxes collared survived 1080 
baiting programs in mixed farmland (Carter et al. 2011; 
Bengsen 2014). In our study, one collared fox survived 
54 days of the CPE program and a 9-day baiting campaign 
(at which point its collar released). 

Results from field-based trials on the effectiveness of CPEs 
against foxes in Australia are limited. Of the published data 
that are available, the success rate of CPEs on foxes (i.e. 
percentage of ‘CPE nights’ with triggers) is relatively low, 
ranging from 0 (from 810 nights; Kreplins et al. 2018) to  
2.3% (Gil-Fernández et al. 2021). Our study is, by far, the 
largest published study at present and delivered a success 
rate of 0.01% (i.e. 15 triggers from 105 705 CPE nights) 
across a 2-year period. Our results follow those of Moseby 
and Read (2014) in semi-arid South Australia, who also 
found CPEs to be less efficacious than 1080 baits. The low 

success rate of CPEs may stem from the fox’s neophobic 
behaviour, which is supported by observational studies at 
CPE sites (Moseby and Read 2014; Gil-Fernández et al. 
2021). Considerable interference with CPEs by non-target 
species has also been noted (see Kreplins et al. 2018) and 
this too may influence the low success rate by limiting 
access to, or reducing the appeal of, attractants. The choice 
of attractants will also certainly influence the efficacy of 
CPEs, and further investigation into this issue is required, 
as are evaluations into the overall usefulness of CPEs as a 
method of fox control (Kreplins et al. 2018). 

Management implications

Despite the vast impact of foxes in Australia, the development 
and implementation of fit-for-purpose monitoring programs 
over large areas remain a challenge (Marlow et al. 2015) 
and, as such, little information exists on fox population 
densities or abundance in most ecosystems. The results 
from our study showed that the Allen–Engeman index 
derived from camera-trap data appears to provide an 
accurate reflection of change in the underlying fox density. 
This method provides land managers with an efficient means 
to detect large shifts in abundance, whether up or down, 
which may trigger a shift to more precise population monitor-
ing methods. If accuracy is paramount (e.g. for reintroduc-
tion programs), then SMR–GPS using a Bayesian framework 
provides robust estimates, noting that this method is 
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computationally demanding and requires more expertise 
and resources than an index. Alternatively, within a similar 
analytical framework, rapidly developing genotyping methods 
mentioned above can provide density estimates without the 
need for managers or researchers to have expertise in genetics. 

Regardless of the method chosen, our study has provided 
empirical data to demonstrate that the shorter the survey 
period is, the greater the likelihood of false absences (i.e. 
the target species is present, but not detected; cf. Field et al. 
2005). From an operational standpoint, if short-term surveys 
are used to inform assessments of predation pressure, for 
instance, this could result in adverse outcomes (e.g. Hayward 
et al. 2012). If limited resources are available, we encourage 
land managers to prioritise survey duration over survey 
frequency. In other words, longer surveys conducted less 
frequently will provide a more accurate reflection of the 
underlying population than do shorter surveys conducted 
more often. These findings will help wildlife managers 
design fit-for-purpose monitoring programs for red foxes 
and other species with non-distinct pelage or similar 
behaviour patterns. 

Supplementary material

Supplementary material is available online. 
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