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ABSTRACT 

Context. To mitigate conservation conflicts, some jurisdictions translocate large carnivores into 
novel environments where they have no previous experience. Behavioural responses of these 
individuals are not typically monitored to evaluate the impacts of this management approach on 
the animals or populations. Aims. We examined how grizzly bears (Ursus arctos) involved in 
conservation conflict responded to novel environments after translocation. Methods. We used 
GPS location data to compare grizzly bears translocated to a novel environment (n = 12) with 
bears resident within the new area (n = 12). Our analyses investigated differences between these 
groups in relation to exploration behaviour, habitat use and response to human-caused mortality 
risk. Key results. Translocated bears had higher movement rates, greater daily displacement and 
revisited areas less frequently than did resident bears. They spent more time in poor-quality 
habitat and the habitat used was of even lower quality in the second year after translocation. 
Translocated bears selected for agricultural lands and active oil and gas wellsites. They also spent 
more time in areas with higher potential mortality risk than resident bears. However, translo
cated bears avoided residential areas, which resident bears selected, and crossed roads at the 
same rate as did resident bears. Both groups avoided campgrounds and recreation sites. Only 
25% of bears engaged in further conflict behaviour after translocation and 67% of translocated 
bears survived over the 2-year monitoring period. Conclusions. This work found differences in 
exploration behaviour and habitat use between translocated and resident bears, and showed that 
translocated bears can survive without reoffending during the critical few years following 
translocation. Implications. Managers and the public should recognise potential impacts for 
translocating grizzly bears. Translocated bears require time to explore and learn within their new 
environment, a process that can occur without repeating conflict. When conflict behaviour does 
re-occur, it should be viewed as a part of animal learning and not immediately as failure. On the 
basis of the amount of time translocated bears spent near humans and anthropogenic features, 
our findings suggest that translocated bears do not pose a greater threat to humans than do 
resident bears.  

Keywords: habitat use, human dimensions, outcome assessment, population management, 
radio telemetry, survival, threatened species, wildlife management. 

Introduction 

The growth of human populations and their activities in wildlife habitats are expected to 
increase over time, which is likely to result in a rise in conservation conflicts (Ripple et al. 
2014) and possible impacts on animal behaviour (Champagnon et al. 2012; Gaynor et al. 
2018). There is a long history in wildlife management that utilises aversive conditioning, 
lethal control, or translocation when wildlife comes into conflict with human activities, 
particularly agriculture, ranching and industrial development (Minteer and Collins 
2010). Translocating wildlife is a global phenomenon that has been applied to many 
species (Seddon et al. 2012). However, animals are not only translocated because of 
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conflict with humans, but are also moved to unfamiliar 
(hereafter novel) environments as a part of species 
reintroduction or population augmentation projects 
(Nichols and Williams 2006; Seddon et al. 2012; Berger- 
Tal and Saltz 2014). Translocation is a commonly used 
management practice (Treves and Karanth 2003); however, 
it comes with another set of impacts to the animal involved. 
To establish a home range and integrate with the resident 
populations of both people and conspecifics, translocated 
animals need to adapt to their new environment through 
exploration (Burns 2005). Animals in a novel environment 
will need to locate food and other resources (Frair et al. 
2007), and may encounter higher mortality risk as a part of 
the learning process during exploration (Berger-Tal and 
Saltz 2014). Although the use of these wildlife management 
approaches is common practice, the consequences of these 
actions on animal behaviour are rarely monitored or studied 
(Fischer and Lindenmayer 2000). Whether for 
reintroduction or conservation conflict management, the 
common theme is that individual animals are moved into 
novel environments where they do not have knowledge of 
the resources available or anthropogenic features that could 
threaten their survival (e.g. roads and human settlements). 

When conservation conflicts arise, mitigation strategies 
often seek to prevent further interactions by determining the 
cause of wildlife presence or attraction and then reducing, 
eliminating or securing the source of the attraction (e.g. 
garbage or livestock). Wildlife managers involved in the 
conflict situation often mistakenly expect an immediate 
cessation of conflict behaviours following the removal of 
attractants. These conflict behaviours may have developed 
after a single event, over a longer period, or as a result of 
social learning (i.e. female bears passing on conflict beha
viours to their offspring during the cub rearing period;  
Morehouse et al. 2016), prior to management intervention. 
The lack of an immediate response by conflict animals 
following attractant removal, along with possible continued 
risk to humans and/or their property, commonly results in 
the decision to translocate or take lethal control action. In 
conservation conflict situations, destruction of the animal is 
the least preferred management option because of direct and 
immediate population consequences, and this approach 
often results in negative feedback from the public (Dubois 
et al. 2017; Lewis et al. 2019), which is of greater concern 
when the species involved is listed as threatened or endan
gered. In conflict instances involving species-at-risk, there is 
a strong preference to either attempt aversive conditioning 
practices or to capture and translocate the animal (Spencer 
et al. 2007). Scientists and managers are often faced with 
questions related to the translocation of wildlife covering 
topics such as return and survival rates, continuation of 
conflict behaviour in new areas, and risk to humans from 
a translocated bear. Therefore, data are needed to assist 
wildlife management professionals in gaining a greater 
understanding of how translocated animals respond to a 

novel environment, and that can be useful for sharing with 
the public when and where translocation events occur. 

Grizzly bears (Ursus arctos) have been a candidate for a 
large number of translocation events because of public 
safety or property damage, coupled with how they are 
viewed by the public relative to conservation and their 
limited distribution on the landscape (Linnell et al. 1999;  
Massei et al. 2010). Several authors have investigated trans
location success of grizzly bears, but how success is defined 
varies among studies (Riley et al. 1994; Blanchard and 
Knight 1995; Miller et al. 1999; Milligan et al. 2018). 
Studies have shown that the survival rate of translocated 
grizzly bears is much lower than that of bears not translo
cated within a population (Brannon 1987; Blanchard and 
Knight 1995). Translocated bears may return to the capture 
or conflict site (i.e. homing) in a short time period; however, 
in general, the further the translocation distance, the lower 
the return rate and probability of reoffending in their new 
environment (Brannon 1987; Blanchard and Knight 1995;  
Clark et al. 2002; Milligan et al. 2018). Moving a grizzly 
bear, or any animal, into a novel environment presents 
many challenges to the individual; food resources may be 
different, unfamiliar mortality risks may exist and social 
dynamics among conspecifics need to be established. How 
translocated animals behave in a new environment is likely 
to play an important role in their eventual fate. When bears 
are translocated and further conflict (i.e. a reoffence) is not 
reported, the event is typically recorded as successful. The 
focus of most translocation management actions, which are 
not commonly monitored, is on outcomes of success or 
failure, with little attention on the consequences to the 
individual animal. In particular, there remains a lack of 
knowledge on the individual behavioural response of trans
located animals in a novel environment (Pinter-Wollman 
et al. 2009). Understanding individual animal responses 
may play an important role in wildlife management 
decision-making, improve translocation outcomes and sup
port science-based conservation. 

This study was undertaken to determine the influence of 
translocation on individual grizzly bears involved in conser
vation conflicts in Alberta, Canada, between 2016 and 2019. 
Grizzly bears have been listed as a threatened species in 
Alberta since 2010 (Festa-Bianchet 2010) and bears 
involved in conflict situations are translocated as part of 
regular management actions. We predicted that translocated 
bears move, use habitat and respond differently in relation 
to modelled mortality risk from bears already present on the 
landscape and hypothesised that translocations influence 
the way bears respond to a novel landscape. To test our 
hypothesis, we investigated how translocated bears (in rela
tion to resident bears) respond to a novel landscape by 
examining: (1) their exploration (movement rates and beha
viour); (2) habitat use (time spent in and revisits to high-/ 
low-quality habitat); and (3) response to human-caused 
mortality risk (hereafter mortality risk) factors (time spent 
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near and selection of anthropogenic features and habitat 
mortality risk, risk at site revisits, road crossings and road 
area use). Previous research has shown increased explora
tion when animals are moved to a novel environment, rep
resented by movement behaviours (rate and displacement;  
Seddon et al. 2012; Berger-Tal and Saltz 2014; Hertel et al. 
2019). These changes in movement behaviour can lead to 
increased energy expenditure (Carnahan et al. 2021) and, in 
combination with the use of low-quality and/or risky habi
tat, can result in poor body condition or low survival 
(Boulanger and Stenhouse 2014; Bourbonnais et al. 2014). 
This research will improve our understanding of trans
location effects and, more broadly, will provide needed 
information to managers that translocate bears to address 

conflict situations or support conservation and population 
recovery efforts. 

Materials and methods 

Study area 

Our study was conducted within two provincial bear- 
management areas (BMAs), the Yellowhead (28 774 km2; 
BMA 3) and Clearwater (17 709 km2; BMA 4), in west- 
central Alberta, Canada (Fig. 1). The western extent of the 
study area is mountainous and contains a large network of 
protected areas managed under national and provincial 
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Fig. 1. Map of the Yellowhead bear- 
management area (BMA 3) and sur
rounding BMAs, indicating the origin 
and number of translocations in BMA 
3, and GPS collar locations of translo
cated and resident grizzly bears in west- 
central Alberta, Canada, from 2016 to 
2019. AGrizzly bear translocations from 
north to south within BMA 3.   
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jurisdiction. From west to east, the area transitions along an 
elevational gradient into rolling foothills characteristic of 
the boreal forest. At the eastern extent is a mixture of public 
and private agricultural lands. Portions of the study area 
outside of the protected areas have varying degrees of natu
ral resource extraction activities (e.g. forestry, oil and gas, 
mining), which are dependent on an extensive network of 
gravel roads (Boulanger and Stenhouse 2014). Recreation in 
the area includes hiking, camping, fishing, hunting and off- 
highway vehicle use. 

The study area includes four natural subregions, including 
alpine, subalpine, and upper and lower foothills, which are 
distinguished by variations in vegetation, climate, elevation 
and latitudinal or physiographic differences (Achuff 1994). 
The most widespread tree species is lodgepole pine (Pinus 
contorta), with other species such as black spruce (Picea 
mariana), white spruce (P. glauca), trembling aspen 
(Populus tremuloides), balsam poplar (P. balsamifera) and 
balsam fir (Abies balsamea) occurring at lower densities 
and elevations. Several ungulate species are present in the 
study area and known to be consumed by grizzly bears, 
including moose (Alces alces), elk (Cervus canadensis), 
white-tailed deer (Odocoileus virginianus), mule deer 
(O. hemionus) and bighorn sheep (Ovis canadensis). A variety 
of plants also important for grizzly bears are seasonally 
available (Munro et al. 2006), such as alpine sweet-vetch 
(Hedysarum alpinium), graminoids and forbs such as clover 
(Trifolium spp.), cowparsnip (Heracleum lanatum), dande
lion (Taraxacum officiale) and horsetail (Equisetum spp.). 
Berry-producing shrub species include blueberry 
(Vaccinium myrtiloides), huckleberry (V. membranaceum) 
and buffaloberry (Shepherdia canadensis), which are also 
commonly found and tend to be available during late sum
mer and early fall (Munro et al. 2006; Larsen et al. 2019). 

Study animals 

We performed all grizzly bear capture and handling follow
ing established procedures (Cattet et al. 2008), which mini
mised the time bears were held prior to release. We captured 
resident bears by using either remote drug delivery from a 
helicopter or ground-based capture with culvert traps. 
Translocated bears were captured solely with culvert traps 
(Cattet et al. 2008). Grizzly bears were fitted with Followit 
(Lindesberg, Sweden) satellite GPS collars that provided 
locations every 30 or 60 min. We performed external physi
cal examinations, recorded morphological measures (length, 
girth and weight), collected hair, blood and tissue samples, 
as well as a premolar tooth to determine the age and overall 
physical condition of each individual (Cattet et al. 2003). 
Capture and handling protocols were undertaken in accord
ance with the Canada Council of Animal Care and approved 
by the University of Saskatchewan Animal Care Committee 
(Approval 20010016). 

Between 2016 and 2019, we collared and translocated 12 
grizzly bears (six females and six males; Supplementary 
Table S1) involved in conservation conflicts. Translocations 
were a result of three types of conflictual interactions, 
namely, livestock depredation (eight bears), accessing 
human food sources (e.g. garbage; two bears) and proximity 
to people (two bears; Table 1). Conflict events were identi
fied when officially reported to the government management 
agency. Following investigation, provincial enforcement staff 
captured and, in collaboration with the research team, 
handled, sampled and transported these animals in a culvert 
trap by truck to remote sites. Release sites were based on 
suitable habitat characteristics represented by high resource 
selection function (RSF) scores (Boyce et al. 2002), low levels 
of human use as identified by Milligan et al. (2018), and 
logistics in the interest of animal health and welfare. RSF 
scores were calculated by identifying a disproportionate use 
of resources (e.g. habitat, landscape), by using a 'used' and 
'available' design in logistic models (wherein 1 means used 
and 0 means available). Translocated bears were moved 
either to a different location within BMA 3 or from another 
BMA into BMA 3 (Fig. 1). We classified bears into the follow
ing two categories depicting the distance between the cap
ture and translocation site: short moves (<100 km; i.e. 
relocation; see Graham and Stenhouse 2014) and long 
moves (>100 km; i.e. translocation; Milligan et al. 2018). 
Bears were translocated, on average, 284 km from the cap
ture site (from 32 to 449 km). Nine (75%) and three (25%) 
bears were translocated long and short distances respectively 
(Table 1). 

We selected 12 resident bears (six females and six males) 
from a long-term dataset of collared grizzly bears in west- 
central Alberta. To establish a comparable sample group, we 
limited our selection to resident bears within the same 
management unit and with data during the same years as 
translocated bear GPS location data from 2016 to 2018 (no 
resident bear collar data were available in BMA 3 during 
2019; Table S1). We selected resident bears with GPS loca
tion data across seasons (spring to fall) for bears with multi
ple years of data when possible. Resident bears were 
constrained to those that lived in subregions similar to 
those where translocated bears were released (i.e. the foot
hills rather than alpine and subalpine regions within 
national parks). Our final criterium was to select resident 
bears that matched translocated bears according to age 
(subadult/adult) and sex classes (female/male; Table S1). 
All translocated and resident bears appeared to be in good 
health on the basis of morphological measures when cap
tured, with no visible injuries or diseases being detected 
through blood sample analysis. 

GPS location data analysis 

We partitioned GPS location data into three seasons 
according to grizzly bear feeding behaviour in Alberta 
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Table 1. Detailed information prior to, and post, grizzly bear translocations in west-central Alberta, Canada, between 2016 and 2019.            

Bear ID Sex Age at 
translocation 

Cubs at 
translocation 

Date 
translocated 

Conflict detail 
related to 
translocation 

Distance 
moved (km) 

Conflicts prior to 
translocation 

Conflicts post 
translocation 

Fate   

G162 F 4 2 yrlsA 26 May 2015 Livestock – cow 421 No No Alive 

G163 F 7 2 coy 25 Sep. 2018 Livestock – chickens 64 No No Alive 

G172 M 4  14 Apr. 2017 Human – foods 32 No No Alive 

G174 F 3  13 Aug. 2016 Livestock – cow 449 YesB No Alive 

G176 F 14 2 coy 11 Aug. 2017 Livestock – cow 353 No No Alive 

G177 M 3  25 Aug. 2017 Livestock – cow 439 No No Alive 

G180 F 6 2 yrls 30 Sep. 2017 Livestock – cow 242 No No Alive 

G182 M 2  25 Sep. 2017 Close to people 420 YesC Yes Dead 

G183 F 2  8 Aug. 2018 Human – foods 59 No No Alive 

G175 M 6  21 July 2017 Livestock – cow 421 No Yes Dead 

G179 M 4  29 Sep. 2017 Close to people 254 No Yes Dead 

G185 M 1  31 Aug. 2018 Livestock – pigs 256 No No Dead 

Conflicts are those officially reported to the government management agency. Fate is alive until the end of collar life or the last recorded event (e.g. from DNA inventories) when not reported or found 
dead. Sex includes female (F) and male (M) bears. Cubs include yearlings (yrls) and cubs of the year (coy). 
ALikely not G162’s own cubs because of her young age.  
BMoved from BMA 6 for killing cattle and relocated to BMA 2. 
CMoved twice near Field, British Columbia, for being too close to people and residences.  
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(Nielsen et al. 2004c; Munro et al. 2006). Seasons were 
defined as spring (1 May to 15 June), summer (16 June to 
31 July), and fall (1 August to 15 October). Grizzly bear GPS 
locations for both translocated and resident bears were 
resampled at hourly intervals. We categorised hourly GPS 
locations by time of day (day, night, twilight morning, or 
twilight night) on the basis of sunrise and sunset tables for 
the study area (National Research Council of Canada 2015). 
Collar life, and hence GPS location data, varied among 
bears, with the number of days of data obtained following 
translocation averaging 413 days (from 256 to 797 days; 
Table S1). We further classified translocated and resident 
bears (hereafter, bear class), age class (subadults, i.e. bears 
less than 5 years of age, or adults), sex (males and females) 
and female reproductive status (females moved with cub(s) 
of the year or yearlings). We analysed GPS location data by 
using R statistical software (R version 3.6.0; R Core Team 
2019, R: a language and environment for statistical comput
ing, available at http://www.rproject.org/) to determine 
whether translocated and resident grizzly bears differed in 
use (e.g. time spent and site revisits) and selection of fea
tures within their novel environment. For simple compari
sons, means for each exploration behaviour and response to 
mortality risk were compared between translocated and 
resident bears, by using either a Student’s t-test if the data 
were normally distributed (daily distance travelled and 
daily displacement) or a Wilcoxon signed-rank test if the 
data were not normally distributed (road crossings and road 
area use). To determine selection, we created RSF models 
for anthropogenic features and mortality risk. RSF models 
were fitted using used locations and generated available 
location data and GLMMs (glmer function, lme4 package 
version 1.1.27; Bates et al. 2016, Package ‘lme4’, 1–113, 
available at https://cran.r-project.org/web/packages/lme4/ 
lme4.pdf). We removed bears with fewer than 60 locations 
or if locations occurred over fewer than 30 consecutive days 
in a given year. We then used the adehabitatHR package 
version 0.4.19 (Calenge 2006) to calculate areas that bears 
reside, by using 95% minimum convex polygons (MCP), 
where only 95% of locations were used to account for out
liers. We generated five random available locations per 
square kilometre for each individual MCP (Nielsen et al. 
2004c; Roever et al. 2008). GPS location data were used 
for the following analyses and reported as mean ± standard 
deviation (s.d.), with statistical significance at P < 0.05. 

Exploration of novel landscapes 

Movement rates 
We performed analyses to determine the relationship 

between grizzly bear movement rates and the explanatory 
variables, distinguishing resident and translocated bears, age, 
sex and reproductive class, year, day of the year, hour and 
location coordinates. We calculated movement rates by using 
the distance travelled between GPS location points, 

standardising our data to 30 and 60 min intervals (as.ltraj 
function, adehabitatLT package, version 0.3.25). Given the 
time series nature of the movement-rate data, we used 
gamma-distributed generalised additive models (GAM; gam 
function, mgcv package, version 1.8.33; Wood 2017) with 
smoothing functions for day of year and hour because of 
potential non-linear temporal effects (seasonal and daily) 
on movement rates (Graham and Stenhouse 2014). We addi
tionally included a smoothing function for the location coor
dinates to account for spatial correlation within the data. We 
included interactions between bear class and the day of year, 
hour and location effects to test whether movement rates for 
resident and translocated bears changed differently over time 
and space. To account for subject non-independence within 
the data, we used the individual bear ID as a random inter
cept. We evaluated competing models by using Akaike infor
mation criterion (AIC) values (Burnham and Anderson 2002), 
and we checked model assumptions of independence, homo
scedasticity, normality of residuals and random effects (Zuur 
et al. 2010). We found no significant effect of day post- 
capture or translocation event on movement rates within 
30 days, when taking bear class, age/sex/reproductive 
class, year, day of year and location into account (GAM, 
t-value = 0.297, P = 0.767; data not shown). Therefore, 
we excluded translocation and capture days from the move
ment dataset used for movement rates, distance travelled and 
displacement analyses. 

Daily distance travelled 
The daily distance travelled indicates how far an individ

ual bear moves within a day, a measure that can relate to 
individual variation in activity, use of resources, energy, or 
the likelihood of finding quality food (Hertel et al. 2019). 
We generated the daily distance travelled using the sum of 
Euclidian distances calculated between consecutive GPS 
location points. To avoid underestimation of the cumulative 
daily travel distance, we limited the data to days containing 
100% (24 of 24) of the hourly locations. 

Daily displacement 
We examined daily displacement, a measure that shows 

how far a bear moves during the day from its starting 
location, to determine whether resident or translocated 
bears moved farther around the landscape. We calculated 
daily displacement as the Euclidian distance between GPS 
location points at approximately midnight each day. We 
subsampled our GPS location data to points only at midnight 
and recalculated output data to get the time and distance 
between those points. We retained data with time differ
ences of 24 h to maintain data for consecutive days. 

Diurnality 
We assessed whether translocated bears shifted the tim

ing of their active behaviour compared with resident bears. 
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To do this, we calculated a diurnality index that identifies 
whether a bear is more active during the day or night over 
time (e.g. across months or seasons). We separated our GPS 
location points into day and night only, incorporating twi
light times within their respective categories. For each bear, 
we generated a diurnality index by age, sex and bear class 
with an Eqn 1 adapted from previous studies (Hoogenboom 
et al. 1984; Hertel et al. 2019), as follows: 

Diurnality index =
+

MRD
DD

MRN
DN

MRD
DD

MRN
DN

(1)  

where MRD and MRN are the sums of hourly movement-rate 
values during the day and night, and DD and DN are the 
durations of the day and night respectively, determined by 
sunrise and sunset times (National Research Council of 
Canada 2015). The diurnality index varies between −1 
(night active) and 1 (day active). We examined differences 
in the diurnality index between bear classes across months 
outside of the denning period. 

Use of novel landscapes 

Quality of habitat use 
To determine the quality of habitat used from GPS loca

tion data of translocated and resident bears, we used previ
ously established and maintained (by fRI Research) models 
on the relative probability of space used as a surrogate of 
habitat quality (RSF layers created in house by using meth
ods from Nielsen et al. 2010 and updated annually). We 
calculated the percentage of time spent within poor- to high- 
quality habitat (RSF bin values from 1 to 10 respectively) as 
the number of hourly GPS locations per habitat value 
divided by the total number of locations. For each GPS 
location point, we used concurrent annual and seasonal 
RSF data with the most recent available data (2018). We 
excluded GPS location data that fell outside of the season 
dates or the RSF layer extent. 

Habitat quality of GPS site revisits 
By using the same previously created habitat-quality RSF 

layer as above, we calculated the proportion of time trans
located and resident bears spent revisiting areas of varying 
habitat quality. We calculated two categories of revisits, 
namely, between-year and within-year revisits. Within- 
year revisits were calculated using the Recurse package 
version 1.1.2 (Bracis et al. 2018), and were defined as a 
location where a bear returned to within 100 m of a point, 
after a minimum of 14 days. Between-year revisits were 
defined as a bear returning to within 500 m of a point 
occupied in the previous year. The spatial scales of 100 m 
for within-year revisits and 500 m for between-year revisits 
differ to account for temporal differences between the two 
revisit categories. With the longer time period with 
between-year revisits, we chose a coarser spatial scale to 

account for landscape change and changes in food availabil
ity. For each revisit, we extracted the RSF bin value from 1 
to 10. We then calculated the proportion of GPS site revisits 
in each bin as a percentage of the total number of GPS 
locations. 

Mortality risk in novel landscapes 

Mortality risk and time spent near humans 
To model time spent in areas of high mortality risk, we 

used previously created (Nielsen et al. 2004b) and annually 
updated (by fRI research) mortality-risk layers. First, we 
calculated the percentage of time spent within low to high 
mortality-risk habitat (0–10 risk bin values respectively) by 
using the RSF layers described above for translocated and 
resident bears. We limited annual mortality risk data to the 
same seasonal period so as to compare with RSF values, and 
excluded points outside the mortality risk extent. We 
assessed time spent near human activity for each GPS loca
tion by determining whether it was within 100 m (McLellan 
and Shackleton 1989; Proctor et al. 2020) of agricultural 
lands (e.g. abandoned agricultural lands, fruit and vegetable 
crops, pastures), industry facilities, roads (e.g. gravel, paved 
and unimproved roads), residential lands (e.g. urban, rural 
and country residential building footprints), campgrounds and 
recreational day-use sites, and active oil and gas well sites 
(ABMI 2018). We then calculated a percentage of total GPS 
locations for translocated and resident bears spent near each 
human landscape class. 

Mortality risk of GPS site revisits 
We further investigated the difference in mortality risk of 

GPS within-year and between-year site revisits, using the 
same methods as for the habitat-quality revisits (see above), 
of translocated and resident bears by using the mortality risk 
layers. For each revisit, we extracted the mortality risk bin 
values from 0 to 10. The proportion of GPS site revisits in 
each bin were then calculated as a percentage of the total 
number of GPS site revisits. 

Road crossings and road area use 
We compared the number of road crossings and the 

amount of time spent within 50 m of a road between trans
located and resident bears, because proximity to roads is a 
known factor in grizzly bear mortality (Schwartz et al. 2003;  
Nielsen et al. 2004b; Boulanger and Stenhouse 2014). We 
generated numbers of road crossings for different road types 
(i.e. paved, gravel, truck trail, unimproved, and other) for 
each individual bear year by calculating straight-line trajec
tories from grizzly bear GPS locations and determining the 
number of intersections with roads summarised by road 
type, time of day and time spent within 50 m of a road. 
We calculated road density within the area of grizzly bear 
utilisation (95% MCP referenced above) and computed the 
proportion of road crossings by individual bear and divided 
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it by the total density of roads within each individual’s area; 
higher ratio values indicated more road crossings relative to 
density. We compared translocated and resident bear road 
crossing ratios in response to all roads, road types, time of 
day and sex of the animal. 

Selection near anthropogenic features and 
mortality risk 

To compare how translocated and resident bears perceive 
and select for different attributes of their environment, we 
created new RSF models using a RSF Type III approach 
(Boyce et al. 2002). This approach compares used and gener
ated random available locations to determine whether bears 
select for human-activity and high-mortality risk areas dis
proportionately more than what is available within each 
bear's home range. We created separate RSFs for each bear 
class by using GLMMs with aggregated foraging seasons and 
added each human-activity (described above) variable sepa
rately to the core model (Table 2). To select the best model, 
we compared candidate models to the core model by using 
environmental variables known to influence grizzly bear hab
itat selection from previous research in the region (Roever 
et al. 2008; Nielsen et al. 2010; Berman et al. 2019; Kearney 
et al. 2019; McClelland et al. 2020). Our core model con
sisted of land cover, elevation, compound topographic index 
(i.e. soil wetness), distance to roads and distance to forest 
edge, which were tested for and added as quadratic terms, 
given previous evidence of non-linear relationships (Roever 
et al. 2008; Nielsen et al. 2010; Berman et al. 2019; Kearney 
et al. 2019; McClelland et al. 2020). For all models, we 
included a nested random intercept to account for differing 
response magnitudes among individual bears of different age 
and sex classes (Nielsen et al. 2004a; Roever et al. 2008;  
Kearney et al. 2019). We then created a model that encom
passed all human-activity areas and mortality risk for both 

translocated and resident bears, and we selected a final model 
by using only human-activity areas deemed significant 
(P < 0.1). We selected models with the lowest AIC score for 
each bear class (Burnham and Anderson 2002). Odds ratios 
calculated from the best performing models determined the 
relative strength of selection for each human-activity area in 
the final models, where a ratio above one indicates selection 
and a ratio below one indicates avoidance. 

Results 

Exploration of novel landscapes 

Movement rates varied significantly by bear class and age/ 
sex/reproductive class (Table 3). Two-dimensional smoothing 
functions for day of year and hour, and for spatial coordinates 
with interaction terms for translocated or resident bears were 
also significant (Table 3), indicating a non-linear relationship 
between these variables and movement rates. Translocated 
bears moved faster (i.e. at a higher rate in km h−1) than did 
resident bears when taking age/sex/reproductive class, day of 
year, hour and location into account (GAM, t-value = 4.09, 
P < 0.001; Table 4). We found no significant difference 
in mean daily distance travelled between translocated and 
resident bears (t-test, t = −1.11, d.f. = 19, P = 0.28; translo
cated: 11 248 ± 2357; and resident: 9562 ± 1642 m day−1). 
However, we did find a significant difference in mean daily 
displacement (t-test, t = −2.35, d.f. = 16, P = 0.03; translo
cated: 6793 ± 7211; and resident: 4245 ± 3805 m day−1), 
where translocated bears had higher displacement than 
did residents (Supplementary Fig. S1). Diurnality between 
resident and translocated bears was similar through- 
out the year. However, some translocated bears showed 
higher individual variation and less daytime activity 
(Fig. S2). 

Table 2. Human-activity GLMM model descriptions with translocated versus resident grizzly bear Akaike information criterion (AIC) and 
delta AIC scores in west-central Alberta, Canada, between 2016 and 2019.       

Model AIC translocated bears AIC resident bears ΔAIC translocated bears ΔAIC resident bears   

Core 259 509 158 646 2395 253 

Core + agricultural lands 258 493 158 647 1380 253 

Core + residential lands 259 372 158 628 2259 234 

Core + campgrounds/recreation 
sites 

259 486 158 606 2372 212 

Core + industrial areas 259 509 158 648 2396 254 

Core + active well sites 259 277 158 644 2164 250 

Core + mortality risk bin values 259 174 158 330 1635 60 

Core + all variables 257 610 158 271 2 3 

Core + final variables 257 608 158 268 0 0 

The core model consists of the following: distance to roads2 + compound topographic index2 + distance to forest edge2 + land-cover class + elevation + 1|(sex 
class/individual bear year).  
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Use of novel landscapes 

Quality of habitat use 
Translocated bears spent 24% of their time in the 

poorest-quality habitat (i.e. the lowest RSF bin value; 3% 
for resident bears), whereas resident bears spent the most 
time (31%) in the highest-quality habitat (RSF 10; 16% for 
translocated bears; Fig. 2a). Most translocated bears with 
multiple years of data (88%, 7 of 8 bears) spent more time in 
higher RSF-valued habitat during the first year of trans
location than during the second. All resident bears with 
multiple years of data (100%, 7 of 7 bears) used similar- 
quality habitat each year (Fig. S3). 

Habitat quality of GPS site revisits 
When we compared within-year GPS site revisits between 

resident and translocated bears, we found that 32% of total 
locations were revisited for resident bears, whereas for 
translocated bears, only 8% of locations were revisited. 
Between-year GPS site revisit calculations showed that for 
resident bears, 66% of total locations were revisited from 
the previous year, whereas for translocated bears, only 8% 
of locations were within 500 m of a location from the previ
ous year. When comparing revisits of habitat within a year, 
we observed that resident bears revisited higher-quality 
habitat more frequently than did translocated bears; 39% 

of all resident bear revisits occurred in the highest-quality 
habitat (RSF bin value 10) and 67% of all resident bear 
revisits occurred in the top-three RSF bin values (8–10;  
Fig. 2b). Conversely, 30% of translocated bear revisits 
occurred in the highest-quality habitat and 53% in the 
top-three RSF bin values. We further observed that 
between-years resident bears revisited more high-quality 
habitats than did translocated bears; 44% of all resident 
bear revisits occurred in the highest-quality habitat and 
77% of all resident bear revisits occurred in the top-three 
RSF bin values. Conversely, only 27% of translocated bear 
revisits occurred in the highest-quality habitat, and only 
46% of all translocated bear revisits occurred in the top- 
three RSF bin values. 

Mortality risk in novel landscapes 

Mortality risk and time spent near humans 
We found that translocated bears spent more time in 

riskier habitat than did resident bears (Fig. 3a). 
Translocated bears spent 43% of their time in the highest 
mortality-risk habitats (bins 8–10; 20% for resident bears), 
whereas resident bears spent 29% of their time in low-risk 
habitat (bins 0–2; 17% for translocated bears). Furthermore, 
translocated bears spent 14% of their time within 100 m of 
all anthropogenic features, including 9% in agricultural 
lands, 0.7% in residential lands, 0.8% in industrial areas, 
5% in active oil and gas wellsites, and 0.03% in campgrounds 
and recreation sites. Comparatively, resident bears spent 2% 
of their time within 100 m of all anthropogenic features, 
including 0.1% in agricultural lands, 0.6% in residential 
lands, 0.5% in industrial areas, 0.6% in active oil and gas 
wellsites, and 0.03% in campgrounds and recreation sites. 

Mortality risk of GPS site revisits 
When we compared the within-year revisits of risk- 

habitat levels, translocated bears revisited areas of higher 
mortality risk more frequently than did resident bears; 8% 
of all translocated bear within-year revisits occurred in the 
highest mortality-risk areas (mortality risk bin value 10) and 
42% within the top-three bin values (8–10; Fig. 3b). 
Conversely, 2% of resident bear within-year revisits 
occurred in the highest mortality-risk areas and 19% 
occurred in the top-three bin values. When we shift focus 
to between-year revisits, translocated bears also revisited 
areas of higher mortality risk more frequently than did 
resident bears; 4% of all translocated bear between-year 
revisits occurred in the highest mortality-risk areas and 
48% in the top-three bin values. Conversely, only 2% of 
resident bear between-year revisits occurred in the highest 
risk habitat, and only 17% in the top-three bin values. We 
further examined the proportion of revisits as a percentage 
of total revisits into agricultural lands by translocated and 
resident bears. We found that although translocated bears 
had more within-year revisits than did resident bears (8% 

Table 3. Model selection of generalised additive models (GAMs) 
for resident and translocated grizzly bear movement rates in west- 
central Alberta, Canada, between 2016 and 2019, by using degrees of 
freedom (d.f.) and Akaike information criterion (AIC).     

Model d.f. AIC   

MR ~ BC + ASR + YR + s(DOY, H) + s(id) 57 −28 785 

MR ~ BC + ASR + YR + s(DOY, H, by=BC) + s(id) 86 −30 058 

MR ~ BC + ASR + YR + s(DOY, H, by=BC) + s(X, 
Y) + s(id) 

114 −33 634 

MR ~ BC + ASR + YR + s(DOY, H, by=BC) + s(X, 
Y, by=BC) + s(id) 

143 −35 314 

MR ~ BC + ASR + YR + te(DOY, H, by=BC) + te 
(X, Y, by=BC) + s(id) 

123 −42 446 

MR ~ BC + ASR + te(DOY, H, by=BC) + te(X, Y, 
by=BC) + s(id) 

122 −42 432 

MR ~ BC + ASR + YR + te(DOY, H, by=BC) + 
s(X, Y, by=BC) + s(id) 

132 −43 091 

MR ~ BC*ASR + YR + te(DOY, H, by=BC) + te(X, 
Y, by=BC) + s(id) 

124 −42 444 

MR ~ BC + ASR + YR + te(DOY, H, by=BC) + te 
(X, Y, by=BC) + s(id) 

142 −34 008 

Model variables include movement rate (MR), bear class (BC), age (A), sex (S) 
and reproductive (R) class, year (YR), day of the year (DOY), hour (H) and 
bear ID (id). Functions include 2D smoothing functions (s) and full tensor 
product smoothing functions (te). All models use a gamma distribution, except 
the last, which uses a Tweedie distribution. Bold indicates the final model 
selected.  
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and 0.3% respectively), only a small portion of between- 
year revisits were present for both classes (translocated = 
1%, resident = 0.2%). 

Road crossings and road area use 
Using Wilcoxon tests, no significant differences were 

found between translocated and resident bear road-crossing 
ratios in response to all roads (total crossings; Wilcoxon test 
W = 132, P = 0.17; translocated: 0.29 ± 0.18; and resident: 
0.24 ± 0.24) or when separated by road type (gravel, paved, 
truck trail, unimproved, other and gravel/paved; Table S2). No 
significant differences were found between translocated and 
resident bear road-crossing ratios during the day (Wilcoxon 
test W = 144, P = 0.30; translocated: 0.18 ± 0.11; and 
resident: 0.18 ± 0.21), twilight morning (Wilcoxon test 
W = 152, P = 0.42; translocated: 0.01 ± 0.01; and resi
dent: 0.01 ± 0.01), or twilight night (Wilcoxon test 
W = 154, P = 0.46; translocated: 0.02 ± 0.01; and resident: 
0.01 ± 0.01). However, translocated bears were found 
to cross roads significantly more at night than were 
resident bears relative to road density (Wilcoxon test 
W = 111, P = 0.04; translocated: 0.08 ± 0.09; and resident: 
0.04 ± 0.03). When separated by sex, there was no signifi
cant difference between translocated and resident bear road- 
crossing ratios in response to all roads (females: Wilcoxon 
test W = 30, P = 0.18; translocated: 0.30 ± 0.21; and 
resident: 0.16 ± 0.07; and males: Wilcoxon test W = 35, 
P = 0.70; translocated: 0.28 ± 0.17; and resident: 0.34 ±  
0.35), road type, or time of day within each sex (Table S2). 

Furthermore, there was no significant difference between 
translocated and resident bears with respect to time spent 
within 50 m of roads (Wilcoxon test W = 167, P = 0.72; 
translocated: 0.31 ± 0.14; and resident: 0.47 ± 0.45). 

Selection near anthropogenic features and 
mortality risk 

The final translocated bear RSF model with the lowest 
AIC included agricultural and residential lands, camp
grounds and recreation sites, active wellsites, and mortality 
risk bins as significant factors (P < 0.1; Table S3). Industrial 
facilities were not included in the final model for translo
cated bears (P = 0.70; Table S3). The final resident bear RSF 
model included residential lands, campgrounds and recrea
tion sites, active wellsites, and mortality risk bins (P < 0.1; 
Table S3). Agricultural lands and industrial facilities were 
not included in the final model for resident bears (agricul
tural lands: P = 0.20; industrial facilities: P = 0.28; 
Table S3). When comparing selection for areas near anthro
pogenic features using odds ratios, we found that translo
cated bears selected for agricultural lands (odds ratio = 2.4 
when compared with non-agricultural lands), avoided resi
dential lands (odds ratio = 0.4 when compared with non- 
residential lands), avoided campgrounds and recreation sites 
(odds ratio = 0.4 when compared with non-campgrounds) 
and selected for active well sites (odds ratio = 1.5 when 
compared with non-well sites; Fig. 4a). Resident bears 
selected for residential lands (odds ratio = 1.7 when com
pared with non-residential lands), avoided campgrounds 

Table 4. Model coefficients of the final generalised additive model (GAM; MR ~ BC + ASR + YR + te(DOY, H, by=BC) + s(X, Y, by=BC) + s(id)) 
for resident and translocated grizzly bear movement rates in west-central Alberta, Canada, between 2016 and 2019.       

Variable: parametric 
coefficients 

Coefficient Standard error t-value P-value   

(intercept)  27.31  28.48  0.96  0.34 

Translocated  36.56  8.94  4.09  <0.001 

Adult female with cubs of the year  −0.56  0.03  −19.77  <0.001 

Adult male  0.23  0.30  0.78  0.44 

Subadult female  −0.21  0.40  −0.52  0.61 

Subadult male  −0.17  0.30  −0.59  0.56 

Year  −0.03  0.01  −2.39  0.02       

Variable: smoother terms Estimated d.f. Reference d.f. F    

te(DOY, H):resident  23.75  23.99  552.27  <0.001 

te(DOY, H):translocated  23.89  24.00  242.28  <0.001 

s(X,Y):resident  28.50  28.86  50.30  <0.001 

s(X,Y):translocated  28.50  28.95  57.81  <0.001 

s(id)  19.85  20.00  95.21  <0.001 

Final model variables include movement rate (MR), bear class (BC), age (A), sex (S) and reproductive (R) class, year (YR), day of the year (DOY), hour (H), bear ID 
(id), latitude (X) and longitude (Y). Functions include 2D smoothing functions (s) and full tensor product smoothing functions (te). The model has a gamma 
distribution. The reference state for the model coefficients is adult female resident bears.  
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and recreation sites (odds ratio = 0.1 when compared with 
non-campgrounds and non-recreation sites) and avoided 
active well sites (odds ratio = 0.9 when compared with 
non-well sites; Fig. 4b). When comparing selection for low 
versus high mortality risk across the landscape using odds 
ratios, translocated bears selected for areas of low mortality 
risk, but showed stronger selection, indicated by higher 
odds ratios when compared with mortality risk bin 0 (no 
mortality risk), for areas of higher mortality risk. 
Conversely, resident bears showed stronger selection for 

lower mortality risk when compared with mortality risk 
bin 0 (no mortality risk). These results corroborated our 
finding of time spent in the RSF mortality-risk layer. 

Discussion 

We found that grizzly bears translocated into novel environ
ments showed different behavioural patterns and habitat use 
than did resident bears who were familiar with the landscape. 
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Fig. 2. Comparison of the (a) time spent and (b) percentage of revisits between translocated and resident grizzly bears within 
poor- and high-quality habitat (1–10 resource selection function (RSF) bin values respectively) in west-central Alberta, Canada, 
between 2016 and 2019, where higher habitat-quality bin values indicate higher-quality habitat.   
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Translocated bears showed higher movement rates and greater 
daily displacement. During their exploration, translocated 
bears used poorer-quality habitat more, suggesting that these 
bears responded to or utilised resources differently compared 
with resident bears familiar with the area. Translocated bears 
also spent more time in areas of greater mortality risk and 
agricultural areas; however, they avoided residential areas. 
Overall, very few translocated bears reoffended and most 
bears survived over the course of the monitoring period. 

In this study, we found that translocated grizzly 
bears exhibited higher movement rates and greater daily 

displacement than did resident bears, behaviours that are 
indicative of exploration within a novel environment (Seddon 
et al. 2012; Berger-Tal and Saltz 2014; Hertel et al. 2019). 
Moving faster presumably allows translocated bears to explore 
more area in search of food, which may lead to encountering 
other bears and/or areas of higher mortality risk. However, 
greater movement rates can result in increased energy expen
diture for these bears (Carnahan et al. 2021), which may 
result in poorer body condition. Overall, translocated bears 
travelled similar distances as did resident bears; however, 
they showed greater daily displacement, moving further into 
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Fig. 3. Comparison of the (a) time spent and (b) percentage of revisits between translocated and resident grizzly bears within low 
to high mortality-risk habitat (0–10 bin values respectively) in west-central Alberta, Canada, between 2016 and 2019, where higher 
mortality-risk bin values indicate higher mortality risk.   
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different areas as they travelled across more habitat (Réale 
et al. 2007; Hertel et al. 2019). In contrast to our results,  
Hertel et al. (2019) found that individual bears that travelled 
further also had further displacement. 

We found that translocated grizzly bears spent more time 
in lower-quality habitat, and although we were unable to 
gather data on the body condition of translocated grizzly 
bears during the months following release, this may have 
had negative impacts on their body condition (Bourbonnais 
et al. 2014). This further suggests that bears have to range 
farther to find high-quality foods, because they do not know 
where those resources are yet, while establishing a new home 
range and interacting with resident bears during their first 
year of exploration. During their exploration of lower-quality 
habitat, translocated bears may use olfactory and visual cues 
to search for food in the novel landscape, instead of estab
lished spatial memory of food resources that resident bears 
have acquired while living in the area (Coogan et al. 2012;  
Nielsen et al. 2013). Murray et al. (2017) found that grizzly 
bears develop individual preferences for specific food 
resources. Therefore, it is possible that foraging behaviours 
are related to local environmental cues, which could then be 
difficult to generalise in novel environments. 

Previous studies have shown that translocated bears have 
lower survival rates than do resident bears (Milligan et al. 
2018), which may be due to their unfamiliarity with mortality 

risk in a novel environment or their willingness to take more 
risk. Our analysis confirmed this, with translocated bears 
spending more time than resident bears in high-risk habitat, 
which was additionally supported by weaker avoidance of 
features indicative of higher risk. Our findings suggest that 
translocated bears, despite potential previous knowledge of 
dangerous anthropogenic features in their home environ
ment, recognised or responded to risk in a novel environ
ment differently from resident bears. Translocated bears also 
revisited high-risk habitat more often than did resident 
bears, both within and among years, suggesting that these 
bears were not learning quickly about local risks during their 
exploration. These differences in response to mortality risk 
may indicate why lower rates of survival are typically seen 
with grizzly bear translocation and may even affect other 
aspects of translocated-bear lives such as feeding behaviour 
(Hertel et al. 2016). Another concern around translocated 
bears is their tendency to reoffend or bring potentially 
destructive behaviours (e.g. killing livestock, disturbing agri
cultural areas, or causing problems residential and recrea
tional areas) into a new region. In this study, we found that 
even though translocated bears spent more time near agri
cultural lands than did resident bears, the overall percentage 
of time spent there was low, and they avoided other human- 
activity areas (e.g. residential and recreational camping 
areas). Only a small percentage of revisits along GPS travel 
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paths made by translocated bears was associated with agri
cultural lands, which suggests that these bears were not 
returning to the same agricultural areas and repeating con
flict on a continual basis, nor in successive years. When 
translocated bears selected agricultural lands, they used 
areas where no residential buildings were present, showing 
that these bears avoided areas in close proximity to people 
following their translocation. Other studies have suggested 
that the time bears spend near people and anthropogenic 
features could be a measure of ‘boldness’ (Hertel et al. 2019). 
Using this same metric, we conclude that both resident and 
translocated bears showed differences in boldness in some 
circumstances. Our results showed that both translocated 
and resident bears were not attracted to industrial areas or 
campgrounds where human activity tends to be high. 
Furthermore, past research has shown negative relationships 
between roads and road densities and grizzly bear survival 
(Boulanger et al. 2018; Proctor et al. 2020). In our study, 
translocated bears crossed roads at the same rate and spent 
the same amount of time near roads within a novel environ
ment as did resident bears. However, translocated bears did 
cross roads more frequently at night, when we presume 
traffic volumes are most likely to be lower (Northrup et al. 
2012), than did resident bears, a difference in behaviour that 
could indicate a higher degree of wariness by translocated 
bears around these common landscape features. 

Despite spending more time in areas of higher mortality 
risk, the majority of translocated grizzly bears in our study 
survived. Others have noted that survival of animals, partic
ularly large carnivores, may be compromised when they are 
moved to new territories (Stamps and Swaisgood 2007;  
Stuparyk et al. 2018). Contrary to suggestions that trans
location actions have an outcome similar to lethal removal 
(Treves and Karanth 2003), our results showed a much 
higher success rate during the period of monitoring. We 
found that following translocation, 8 of the 12 translocated 
bears (67%) survived at minimum until the end of collar life, 
and four (33%, all males) died. Three bears were killed by 
management personnel in response to further conflicts 
(25%; two bears with livestock conflicts and one bear 
because of close proximity to people) and one bear was 
killed illegally. Note that reoffending translocated bears 
that were killed were similar to those that survived in 
terms of their use of high-risk habitat, time near anthropo
genic features, and road crossings. A similar amount of 
repeat conflict behaviour (30%) for relocated black bears 
has been reported by Landriault et al. (2009); however, they 
found that adult females were most likely to reoffend. None 
of the translocated bears returned to their original capture 
site after either short- or long-distance moves, which differs 
from previous findings in Alberta that reported homing 
behaviour for bears moved similar short distances 
(Milligan et al. 2018). More recently, Bauder et al. (2020) 
found that translocating black bears (Ursus americanus) 
greater distances from the capture site did not affect 

repeated conflict behaviour, but reduced the probability of 
a translocated bear returning to an original conflict site. 
Studies have also suggested that prey abundance at the 
release site may also be a determinant of translocation 
success, with greater prey abundance resulting in less fre
quent homing behaviour and attacks on livestock (Hayward 
et al. 2006; Gusset et al. 2009). 

Conclusions and conservation implications 

Taken together, our findings have provided evidence that 
despite extensive movement behaviour related to explora
tion, translocated bears were not repeating previous conflict 
behaviours in the novel environments where they were 
released. Translocated bears spent more time in riskier hab
itat as defined by mortality-risk models, but avoided human 
settlements, buildings or facilities, suggesting that translo
cated bears pose a small risk to humans within our study 
area. Because some translocated bears in this study reof
fended (3 of 12 bears), this should not be seen as failure, but 
rather as a part of expected exploration behaviour as they 
have been shown to range farther and use lower-quality 
habitat for at least 2 years after translocation. Therefore, 
we suggest that bears that reoffend should be returned to 
their original release site where some learning has already 
occurred and not moved to an additional novel environment 
where they will need to begin exploration activities again. 
Improved success rates and survival of translocated bears 
can occur as we integrate this new knowledge into manage
ment strategies. 

In 1931, Dice suggested that the reaction of an animal to 
its environment is as equally important as are the character
istics of the environment in enabling the animal to survive 
(Dice 1931). Although there were no methods available at 
that time to investigate animal responses to novel environ
ments, our findings support this important point and should 
be considered when translocating animals for management 
purposes. Because management agencies use wildlife trans
location to address conservation conflict situations, or as a 
means to augment populations to support recovery or 
reintroduction actions, it is important to develop practices 
and protocols to monitor and evaluate the effectiveness of 
this technique. Regular review of outcomes would allow 
needed modifications in approaches to be incorporated 
into science-based best practices. It is important to under
stand the consequences of translocation for the animal (high 
levels of exploration over long periods) and how the animal 
may respond to novel environments (movements and habi
tat use). Furthermore, translocated bears will likely learn at 
different rates on the basis of individual behaviours and 
personality traits (Ordiz et al. 2014; Leclerc et al. 2016), 
past experiences (Morehouse and Boyce 2017) and individ
ual temperaments (Réale et al. 2007; Armstrong et al. 2015), 
which was not possible to determine in the current study. 
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The high levels of exploration shown by translocated grizzly 
bears in this study also suggest that wildlife management 
efforts focusing only on high-quality habitat to find the 
‘ideal’ release site for translocations may need to be comple
mented with an understanding of exploration behaviour and 
movement (i.e. the bear may leave the high-quality habitat). 
In general, wildlife managers should translocate bears to 
places where there is both a high level of high-quality habi
tat (because bears are not initially good at finding high- 
quality habitat) and a land area where it is safe for them 
to range without reoffending (e.g. large natural areas). 

Supplementary material 

Supplementary material is available online. 
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