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Abstract
Context. Fertility control is seen as an attractive alternative to lethal methods for control of population size and

genetic diversity in managed animal populations. Immunocontraceptive vaccines have emerged as the most promising
agents for inducing long-term infertility in individual animals. However, after over 20 years of scientific testing
of immunocontraceptive vaccines in the horse, the scientific consensus is that their application as a sole management
approach for reducing population size is not an effective strategy.

Aims. The purpose of this review is to evaluate currently available non-lethal fertility-control methods that have
been tested for their contraceptive efficacy in Equidae, and to assess their suitability for effective management of wild (feral)
horses in an Australian setting.

Key results. (1) Fertility-control agents, particularly injectable immunocontraceptive vaccines based on porcine zona
pellucida (PZP) or gonadotrophin-releasing hormone (GnRH), can induce multi-year infertility (up to 3 years) in the horse.
Some formulations require annual or biennial booster treatments. Remote dart delivery (on foot) to horses is possible,
although the efficacy of this approach when applied to large numbers of animals is yet to be determined. (2) The proportion
of females that must be treated with a fertility-control agent, as well as the frequency of treatment required to achieve
defined management outcomes (i.e. halting population growth in the short term and reducing population size in the long
term) is likely to be >50% per annum. In national parks, treatment of a large number of wild horses over such a broad
area would be challenging and impractical. (3) Fertility control for wild horses could be beneficial, but only if employed
in conjunction with other broad-scale population-control practices to achieve population reduction and to minimise
environmental impacts.

Conclusions. InAustralia, most populations ofwild horses are large, dispersed over varied and difficult-to-access terrain,
are timid to approach and open to immigration and introductions. These factors make accessing and effectively managing
animals logistically difficult. If application of fertility control could be achieved in more than 50% of the females, it could
be used to slow the rate of increase in a population to zero (2–5 years), but it will take more than 10–20 years before
population size will begin to decline without further intervention. Thus, use of fertility control as the sole technique for
halting population growth is not feasible in Australia.
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Introduction

Wild (feral) horse (Equus caballus) management at
a landscape scale in Australia (and internationally) is complex
and problematic. Horses escaped domestication some 200 years
ago, and since then have become an over-abundant pest in
many natural environments and pastoral regions throughout
mainland Australia. Their various impacts on flora and fauna,
water quality and soil compaction and erosion have been
documented (for reviews: Dawson et al. 2006; Nimmo and
Miller 2007). The scale, location and impact of wild horses, as

well as their welfare, can define their immediate management,
which can include humane lethal control (shooting), trapping and
mustering (herding or gathering), translocation and rehoming.
However, there is often controversy surrounding management of
wild horses,with community acceptance ofmost controlmethods
(particularly lethal control) being low despite full engagement in
the decision-making process (National Research Council 2013;
Office of Environment and Heritage 2016a).

Fertility control is often considered more acceptable as an
alternative to lethal methods for maintenance of population size
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in managed populations, whether they be captive, over-abundant
native or feral species. Since the early 1990s, there has been
considerable debate about the role of fertility control for
wildlife management (Bomford and O’Brien 1992), with many
publications now available on the development of potential
fertility-control methods for application to wildlife and feral
species (see Kirkpatrick and Rutberg 2001; Kirkpatrick et al.
2011; Garside et al. 2014; Massei and Cowan 2014; Massei
et al. 2014; Ransom and Kaczensky 2016).

The purpose of the present review is to provide a current
perspective of the most effective fertility-control methods
available for use in Equidae. We also present a considered
judgement of the suitability and practicality of fertility control
as part of an integrated management approach for wild horses
in an Australian setting.

Although many laboratory assessments of different agents
have been positive, there have been few broad-scale trials of
fertility control for population management of wildlife (see:
Massei and Cowan 2014; Rutberg et al. 2017). The transfer
to field settings is limited by the absence of cost-effective,
efficient and practical field-delivery techniques. There are no
proven orally deliverable formulations available for large free-
ranging herbivores (Sharma and Hinds 2012); thus, all current
agents require capture, or mustering for individual treatment
of animals. That said, remote-dart delivery of some agents
(e.g. some immunocontraceptive vaccines) is possible in the
field (Kirkpatrick et al. 1990; Turner et al. 1992, 1996; Rutberg
et al. 2017), and may prove the most efficacious approach in the
medium to long term for relatively small isolated populations.
Other issues, such as how best to remotely mark treated animals
at the time of treatment or in subsequent years and learned
avoidance (increasing aversion to human presence), may arise
with remote delivery (e.g. Naugle and Grams 2013).

Fertility control strategies targeting females only are usually
more productive in terms of efficiency, absence of adverse
side effects on their behaviour or welfare, duration of
infertility and overall cost effectiveness (Bomford 1990). Even
in species where females predominantly mate with a single
dominant territorial male (such as the horse), invoking
temporary or permanent male sterility is ineffective as females
have opportunities to mate with fertile extra-harem or
subordinate males (Asa 1999; Scully et al. 2015). When male-
oriented contraception for horses is simulated (Garrott and
Siniff 1992), there are poor outcomes for overall wild
population control – very high proportions of stallions needed
to be sterilised to suppress population growth (Eagle et al. 1993).
Moreover, no contraceptive agent (Stout and Colenbrander
2004; Janett et al. 2009) or chemical castration (Scully et al.
2015) tested thus far can completely inhibit sperm production

in stallions; this leaves only surgical castration, which is highly
impractical for large-scale field application. Nevertheless,
Collins and Kasbohm (2017) applied both vasectomy and
ovariectomy concurrently to a closed population of ~1800
horses and observed a decrease in foaling rate from >20% to
<4% within 4 years.

The present review, therefore, discusses only those fertility-
control agents that inhibit the fertility of females and that have
the potential for remote delivery. As noted by others, there
are several desirable characteristics of fertility-control agents
that are important if a product is to be suitable for field use
(Table 1; see: Kirkpatrick and Turner 1991; Massei and Cowan
2014), particularly cost effectiveness, long-lasting efficacy and
feasibility of efficient field delivery.

Fertility-control research

Research on the useof fertility-control agents in pestmanagement
began in the late 1970s and reflected developments in the use
of steroids for human fertility and contraception (Kirkpatrick
and Rutberg 2001); the FDA approved ‘the pill’ for human
contraceptive use in 1960. Over the past 40 years, methods
for animals have continued to evolve in parallel with studies
of human contraception, whereby a range of approaches
target the key physiological processes essential for successful
reproduction, namely, reproductive hormones associated with
the overall function of the hypothalamic–pituitary–gonadal axis,
production of sperm or eggs (gametes) by the gonads (testes
and ovaries), fertilisation in the oviduct, or implantation of the
embryo in the uterus (Fig. 1).

The physiological efficacy of various contraceptive
approaches has been demonstrated in a wide range of species
in captive studies, but success has been more variable in field
testing (see: Massei and Cowan 2014; Massei et al. 2014).
Discounting surgical castration (invasive and resource intense),
the remaining contraceptive methods can be generally categorised
as intrauterine devices, hormone analogues, or immunocontraceptive
vaccines (see summary of studies pertinent to mares in
Table 2; Stout and Colenbrander 2004; Patton et al. 2007;
National Research Council 2013; Swegen and Aitken 2016;
Hall et al. 2017). Although there are ongoing laboratory-based
studies seeking new reproductive targets (e.g. proteins on
follicles, sperm, oocytes, spermatogonial stem cells, and
blastocysts), these are in the very early stages of development
(see Swegen and Aitken 2016; Hall et al. 2017).

In 2013, in the USA, a Committee of The National Research
Council undertook a major review of the Bureau of Land
Management (BLM) Wild Horse and Burro Program, so as to
determine ways to improve management practices. This

Table 1. Characteristics of fertility control agents to be used for large-scale wild population management

Desirable characteristic Requirements

Specificity Biochemical specificity of agent; and/or targeted delivery to chosen species only
Efficacy Minimal per animal dose (preferably ‘one shot’); fast-acting and long duration (or permanent)
Humaneness Limited or no negative side effects on social behaviour or animal welfare
Safety Can be administered during pregnancy and lactation; multiple doses not detrimental
Cost-effectiveness Low-cost active agent and delivery mechanism; delivery possible and efficient in remote areas
Environmentally benign Does not persist in the environment
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Committee extensively reviewed methods of fertility control
relevant to horses (and ungulates) and concluded that there
were no fertility-control methods that were highly effective,
easily delivered and affordable across all BLM herd-management
areas (HMAs). Of the methods available, the Committee
considered that ‘the most promising fertility-control methods
for application to free ranging horses or burros are porcine
zona pellucida (PZP) vaccines, GonaCon vaccine, and chemical
vasectomy’ (National Research Council 2013: p.6). Althoughwe
are in general agreement with this statement, current techniques
tested for chemical vasectomy in wild stallions require capture
and anaesthesia (Scully et al. 2015), so will not be considered
in the present review. Similarly, although IUDs and hormone
implants are potential agents for wild mares, these methods
are impractical for field application (see Table 2). This leaves
immunocontraceptives as the most likely agents for immediate
application to wild horses in Australia. ‘No other class of
contraceptives has been as extensively researched in domestic
and free-ranging equids as immunocontraceptives’ (National
Research Council 2013: p.115). Immunocontraception involves
administration of a vaccine that induces an adaptive immune

response to a target tissue or molecule essential for reproduction.
In equids, the two most studied immunocontraceptives are
vaccines directed against gonadotrophin-releasing hormone
(GnRH) and the zona pellucida proteins. Therefore, our focus
below is on two immunocontraceptives (Table 2), those based
either on GnRH or on PZP, both of which can be delivered
remotely by dart to horses.

Immunocontraceptive vaccines

GnRH vaccines

Gonadotrophin-releasing hormone (GnRH) is a small decapeptide
hormone common to both females and males. It has a major role
in the endocrine feedback loop involving the hypothalamus,
pituitary and gonads leading to the downstream production of
sex hormones (e.g. oestrogen, progesterone and testosterone)
from the gonads (Fig. 1), and is an attractive target for
manipulation of reproduction. The GnRH peptide has little
natural antigenicity, so it must be conjugated to a larger highly
immunogenic molecule (e.g. keyhole limpet haemocyanin,
diptheria toxoid) and emulsified in an adjuvant before
administration. Three registered GnRH immunocontraceptive
formulations are available (ImproVac, Equity, GonaCon) and
have been evaluated in female horses (Table 2). GonaCon,
a GnRH–haemocyanin conjugate emulsified in Adjuvac
(Mycobacterium avium in mineral oil), is the only formulation
to demonstrate single-shot, multi-year (long-term) efficacy
(Killian et al. 2006, 2008). This immunocontraceptive vaccine
was developed by the National Wildlife Research Center
(USDA–APHIS Wildlife Services program). Originally
formulated for non-lethal control of white-tailed deer
populations in the USA, it was registered by the USA
Environmental Protection Agency (EPA) in 2013 for use in
wild horses and burros (GonaCon-Equine).

As with many fertility-control methods, response to GnRH
vaccination varies among individuals and species (Stout and
Colenbrander 2004; Miller et al. 2013). A single shot of
GonaCon to mares is effective at reducing fertility for the first
12 months (up to 94% of treated females; Killian et al. 2004,
2008; Gray et al. 2010), but becomes less efficacious in
subsequent years (50–70% at 3 years). A booster dose
(>12 months) of GonaCon can extend the period of infertility
in some other species (Miller et al. 2013, for review of GonaCon
effects in other species), but has not been reported for mares.

Porcine zona pellucida (PZP) vaccines

PZP-based vaccines have a much longer history of field use and
have been shown to be an effective contraceptive in ~80 ungulate
species, including several equids (Kirkpatrick et al. 2009). The
vaccines consist of native zona pellucida proteins (ZP1–4)
isolated and purified from porcine ovaries (Dunbar et al. 1980;
Naz and Saver 2016), combined with an adjuvant to increase
immunogenicity. Initially, Freund’s complete adjuvant (FCA)
was used, but has been replaced by modified Freund’s adjuvant
(MFA), or Freund’s incomplete adjuvant (FIA), which generate
smaller localised tissue reactions. Following inoculation with
PZP, the mare produces antibodies that specifically recognise
only the outer egg coat (the zona pellucida) of mature oocytes
and bind to it; this blocks the binding of sperm to oocytes

G
am

et
e 

pr
od

uc
tio

n
G

am
et

e 
fu

nc
tio

n
G

am
et

e 
ou

tc
om

e

Hypothalamus

Anterior 
Pituitary

Ovary

Oocyte

Fertilised 
Embryo

Sperm-Zona
binding

Embryogenesis

Embryo
implantation

Uterus

Ovulation

E/P

Intrauterine
devices

Zona Pellicida

Vaccines

Hormone
analogues

GnRH

FSH/LH
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preventing fertilisation. PZP antibodies also bind to ZP
proteins on developing oocytes within the ovary, altering their
maturation and related hormone signals (Mask et al. 2015;
Joonè et al. 2017). Three current formulations of PZP vaccines
(ZonaStat-H, PZP-22 and SpayVac) are similar in their method
of production, but differ in their complement of ZP antigens,
additives and delivery systems, which lead to differences in
duration of effect and, thus, efficacy (Table 2).

In equids, a single dose of ZonaStat-H injected by hand,
jab-stick, or remote darting several months before the breeding
season is an effective contraceptive in 55–70% of mares and
works for ~12 months (Kirkpatrick et al. 1990). A variant of
single-shot PZP vaccine using AdjuVac as the adjuvant rather
than mFCAwas similarly efficacious under field conditions over
a 3-year period (50–63%; Gray et al. 2010). Contraceptive
efficacy can be increased to 90–95% of treated mares if
a booster is given 2–4 weeks after the initial priming dose;
although this carries the added benefit that a primer-dose
combination is effective when given at any time of year, it
requires that animals are easily accessible and recognisable for
this treatment regimen (Kirkpatrick and Turner 1991, 2008).
In 2012, the United States EPA formally approved the PZP
vaccine, ZonaStat-H (PZP plus mFCA), for use as a
contraceptive in wild horses and burros.

Experimental formulations of PZP aimed at increasing the
duration of efficacy by encapsulating the vaccine in controlled–
release pellets have been developed. Under controlled
conditions, PZP emulsion plus controlled-release PZP pellets
(known as PZP-22 vaccine) as a single-shot was effective up to
22 months in >85% mares (Turner et al. 2007) and SpayVac
(PZP encapsulated in multi-lamellar liposomes; single-shot)
maintained infertility in 50–70% of mares for up to 3 years
(Killian et al. 2004, 2006, 2008; Roelle et al. 2017). In the
field, application of PZP-22 to wild mares showed efficacy
similar to captive trials over 12 months, with infertility
prolonged if a booster dose with either PZP-22 or ZonaStat was
given at 2–4 years (Rutberg et al. 2017). Due to the viscosity of
these liposome formulations, hand-injection is favoured
(Kirkpatrick et al. 2011), although use of large-gauge needles
and improved rapid injection systems have made remote darting
a possibility (Kirkpatrick et al. 2012; Rutberg et al. 2017). Quality
control during the production of PZP emulsions plus controlled-
release pellets has been problematic (Turner et al. 2002, 2008;
Kirkpatrick et al. 2011; Rutberg et al. 2017), but follow-up
boosters certainly extend the period of infertility, and, after
several boosters, permanent infertility occurs (Kirkpatrick and
Turner 2008). For larger species, such as the elephant,
Loxodonta africana, helicopters have been used successfully to
remotely dart deliver PZP vaccine (Delsink et al. 2007).

Availability

The two immunocontraceptive formulations approved for use
in wild horses and burros in the United States, ZonaStat-H and
GonaCon-Equine are neither produced in commercial quantities,
nor are they commercially registered and available in
Australia. Any fertility-control agent that has been developed
and formulated overseas will require registration through the
Australian Pesticides and Veterinary Medicines Authority

(APVMA). Although a registration data package is substantial
and generally requires Australian-based results for safety and
efficacy of the product in the specific field situation, information
for agents registered for wildlife use overseas can be supportive
in an Australian application for registration. Currently, one of
these vaccines (GonaCon) is in the process of being registered
by the APVMA for use in macropods and horses in Australia.
Australian quarantine regulations may prohibit the import or
registration of some overseas-derived vaccines because they
contain reagents that are derived directly from animals (e.g.
PZP vaccines are made from pig ovaries collected at the
time of slaughter). Under these circumstances, an ‘identical’
preparation may have to be produced in Australia from locally
sourced porcine ovaries to prevent potential disease transfer to
the Australian livestock industry.

Welfare considerations relevant to remote-field
application of fertility control

When developing and assessing the potential application of
any population-control strategy, humaneness, whether in the
short term at the time of application or in the longer term
due to post-treatment effects, is a major consideration for
all stakeholders. Immunocontraceptives meet all the desired
specificity, efficacy and safety (animal and environmental)
requirements of a field-applicable contraceptive (Table 1), with
the added potential of providing a humane and non-lethal
control strategy for the management of populations of wild
horses. Nevertheless, opinions differ regarding whether all the
observed changes in physiology and behaviour after application
of fertility-control agents in a range of species, including wild
horses, constitute negative welfare impacts (Nettles 1997; Gray
and Cameron 2010; Ransom et al. 2010; Hampton et al. 2015).

Stress and injury

All the contraceptive methods and agents described above
require treatment to be administered either by hand or at close
range (�40m;Massei et al. 2014); inmost cases, this necessitates
mustering or passive trapping. In an effort to standardise
procedures and reduce negative welfare outcomes of all
population-control measures in horses in Australia, a model
code of practice for the humane control of wild horses (Sharp
and Saunders 2012), and standard operating procedures for
their trapping and mustering, have been developed for Australian
conditions (Sharp 2011a, 2011b). Nevertheless, an independent
technical reference group determined that both trapping and
mustering cause moderate impacts on target-animal welfare
(Humaneness Assessment Panel 2015).

Injection-site reactions

Minimum handling and follow-up are essential aspects of any
cost-effective contraceptive treatment strategy of free-ranging
animals on a large scale. Although there are no examples of death
or injury of wild horses as a direct result of an injectable
contraceptive (excluding necessary immobilisation for treatment),
all injectable formulations of contraceptive agents have the
potential to cause transient localised oedema, abscesses or
tissue growth (granulomas). These responses are due to the
components of the adjuvants because animals treated with the
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control vaccine (no reproductive antigen) also show an injection-
site reaction. In studies of vaccine administration in horses,
variable levels of adverse reactions have been observed, from
minimal reactions with hand injection (Lyda et al. 2005; Roelle
and Ransom 2009; Gray and Cameron 2010; Donovan et al.
2013), to acceptably low rates of abscess (non-aqueous adjuvant
or modified Freund’s adjuvant; Roelle et al. 2017) or localised
sterile non-toxic granulomas (Adjuvac; Miller et al. 2008).

Over the years, improvements in adjuvants have reduced the
occurrence of adverse reactions. Granulomas are common and
persist over time (Roelle et al. 2017) and abscesses occur at a rate
of ~0.2% when using darts; these injection-site reactions are
not observed to cause discomfort, and abscesses normally
resolve without treatment after ~2 weeks (Roelle and Ransom
2009; Kirkpatrick et al. 2012; Roelle et al. 2017). In horses,
immunocontraceptive treatment had no demonstrated impacts
on their welfare, mobility or activity budgets (GonaCon, Baker
et al. 2013; SpayVac, Roelle et al. 2017).

Behavioural changes

Depending on the type of contraceptive employed, changes in
behaviour can be complex and have diverse ramifications (e.g.
compensation in survival and fitness of fertile animals,
emigration), although these are often not considered in study
design. Contraceptives that alter sex hormone-driven behaviours
(i.e. hormone analogues, GnRH vaccines), or cause a longer than
normal period of reproductive receptivity (PZP vaccines, GnRH
analogues), alter individual behaviour. It has been argued that
behavioural changes have a negative impact on the wellbeing
of PZP-contracepted females due to prolonged sexual interest
from males, increased male–male aggression and increased male
attention towards the remaining fertile females (Nuñez et al.
2009; Nuñez et al. 2017). However, other studies of free-living
wild horses, where females were immunocontracepted, either
showed no significant differences in behaviour between control
and treated females (various contraceptives, Gray and Cameron
2010), or similar social behaviours by females, and changes
in social behaviour in the untreated males (PZP, Ransom et al.
2010; Ransom 2012). More broadly, changes in individual
behaviour have the potential to modify wild-horse ecology
(Ransom et al. 2014) and, in turn, alter environmental impacts
of herds and welfare of native species.

Body condition

PZP-treated females show improved body condition, which
significantly increases lifespan (Kirkpatrick and Turner 2008),
most likely because of decreased energetic demands in the
absence of pregnancy and lactation. Although this reflects
improved welfare for the individual, some authors argue that
increased longevity engenders other health problems (e.g.
geriatric conditions such as arthritis; Kirkpatrick et al. 1997;
Kirkpatrick and Turner 2007, 2008).

Overdose and contraindications for use in pregnancy
in mares

PZP-vaccines are deemed safe for use in pregnant animals
(Lyda et al. 2005; Rutberg et al. 2017), and although GnRH
vaccines have the potential to prevent embryo implantation

if given during the first 6 weeks of pregnancy, thereafter, they
are thought not to affect pregnancy (Kirkpatrick et al. 2011).
From 6 weeks of gestation, pituitary luteinising hormone is no
longer required (equine chorionic gonadotrophin is produced
by the endometrial cups and stimulates placental progesterone
production) for ongoing support of pregnancy.

Treating individuals with multiple doses of either PZP or
GonaCon at a higher than necessary frequency (>annually) will
not be detrimental to an animal’s wellbeing, as evidenced
by ongoing use of primer-boost treatment regimes (Kirkpatrick
et al. 2011). Multiple treatments may occur if treated individuals
are not able to be identified accurately, if sites are visited more
than annually for treatment, or if an animal is treated twice when
the initial dose was thought to be unsuccessfully administered.

Field application of fertility control in free-ranging
wild horses in USA

Over the past 30 years, although there has been extensive
field testing of various GnRH and PZP vaccines in horses,
their application has largely been in an experimental capacity
to animals in the USA (Miller et al. 2013; Turner and Rutberg
2013). Results for efficacy at the individual and small-population
scale are promising, with ongoing studies determining the
long-term effects on population dynamics and relevance and
implications for population control (Kirkpatrick et al. 2012;
Rutberg et al. 2017). Research continues into development of
improved formulations and delivery systems of these vaccines
(Rutberg et al. 2017). The BLM also continues to support
research to improve fertility-control methods (see https://www.
blm.gov/programs/wild-horse-and-burro/herd-management/
science-and-research [verified 10 April 2018]).

The liquid PZP vaccine, ZonaStat-H, is used at a management
level on over 20 HMAs in the USA, by the National Parks
Service, Rachel Carson National Estuarine Reserve, the BLM
and at least five private sanctuaries (Kirkpatrick et al. 2012). The
management approach using fertility control is ad hoc, with
mares being treated opportunistically rather than in a targeted
manner (Kirkpatrick et al. 2012; Bureau of Land Management
2016). These herds run in a variety of habitat types, from closed
populations on the barrier islands of the eastern USA, to open
grasslands, and mountainous and forest habitats of western
ranges (Utah, Wyoming, Nevada, Colorado and Canada). The
average treated herd in these HMAs contains 50 mares
(Kirkpatrick et al. 2012).

The longest running (>20 years) field test of PZP (or any
immunocontraceptive) onwild horses is from a closed population
on Assateague Island National Seashore in Maryland, USA. By
the mid-1990s, horse numbers (~175 animals) were affecting
the ecology of Assateague Island and the use of PZP vaccine was
implemented to reduce population size. Because of the local
historical and cultural significance of these horses (introduced
to the island in the 1600s), the population management
objective was to reduce the population to an acceptable size
and limit future population growth, rather than eradication.
Under this management strategy, population health is targeted
by maintaining genetic diversity; females (2–4 years old) are
allowed to produce one foal, but, thereafter, are treated annually
(at least 3 years) with PZP to eventually achieve permanent
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contraception (Kirkpatrick andTurner 2008). PZP treatment (dart
delivered on foot) is 95% effective in this population, which has
been treated for over 20 years without any associated health
problems (Kirkpatrick andTurner 2008). Zero population growth
was achieved within 2 years of commencement of the fertility-
control program, and, by 8 years, population decline was
apparent, such that the population had decreased by 22.8% in
Year 11 (Kirkpatrick and Turner 2008). The long delay before
population decline occurredwas attributed to the increasing body
condition scores, reduced mortality and significantly increased
longevity of vaccinated females.

The Assateague Island management program is often cited as
the premier example of horse population control. However,
one must keep in mind that fertility control was effective in
this instance for several unique reasons, including the following:
(1) 100% of mares were treated (treatment required a primary
vaccination and booster in the first year and an annual booster
thereafter); (2) the initial population was manageable (173
animals); (3) individual animals were easily identifiable;
(4) the area was small with open habitat; (5) animals could be
approached on foot for hand injection or darting; and, finally,
(6) the population is isolated, so there is no possible increase in
numbers as a result of immigration.

More recently, efficacy of a PZP-22 treatment with PZP
boosters after 2 or 3 years was experimentally tested on two
larger, free-ranging horse populations (~200–600 animals) in
the USA (Rutberg et al. 2017). Although overall population
outcomes were not measured, remote dart delivery of a PZP
booster effectively reduced fertility in mares compared with
controls for 3 years (65–72%), whether that booster was
another PZP-22 dose or PZP in liquid form. What is important
to note, is that contraceptive efficacy over the 3 years differed
between the two HMAs; this has broader implications when
considering using such data to predict efficacy of fertility
control for populations in different locations.

Predicting contraceptive efficacy in free-ranging
populations

Assessing the effectiveness of fertility-control practices and
using this information to accurately predict future outcomes
relies on the collection of quality response data. In the case of
Assateague Island, each animal could be tracked individually
and life history detailed from birth to death. Using 30 years
of these demographic data (birth, death, removal, pedigree
and contraception date), genetic data and target population
numbers, Ballou and colleagues (2008) accurately modelled
current population management strategies and the outcomes
of the current against adapted management strategies.

With the exception of the Assateague Island National
Seashore population, few studies have empirically tested the
effects of fertility control on population dynamics of free-
ranging horses, mostly because long-term studies are expensive
to conduct. Thus, managers rely on short-term to ongoing data
gathering for input into population-modelling programs that
evaluate the long-term potential of management actions
(Turner and Rutberg 2013).

Population dynamics (maintenance, decline or expansion
of population size; changes in sex or age demographics) are

governed by the following four processes: births, deaths,
immigration and emigration. Although individuals can be
removed (i.e. culling, trapped and removed) easily to give
immediate impacts on population size, populations are fluid
and numbers may again rise through compensatory density-
dependent increases in birth rate, or immigration (Fowler
1981, 1987). The same is true for manipulating birth rate
through fertility control; defined numbers of animals must be
removed from the breeding pool through contraception to
achieve efficacy as well as allowing for increased immigration
or other compensatory mechanisms (Hone 1992; Barlow 1997;
Barlow et al. 1997; Hobbs et al. 2000).

In the absence of empirical data, population models can
be developed using a conservative set of assumptions. Early
models made assumptions about birth rates, survivorship and
contraceptive efficacy (see Kirkpatrick and Turner 2008).
More recent models have integrated knowledge obtained from
empirical studies (such as that from Assateague Island), but
most lack any ability to (1) compare cost-effectiveness
(essential for management decision making; de Seve and
Griffin 2013), (2) undertake a staged or multi-faceted approach
(Hobbs et al. 2000) or (3) consider secondary impacts of the
contraceptive treatment that may affect both animal physiology
and behaviour (such as band fidelity, longevity, extended
breeding season, compensatory survival of offspring of fertile
animals, or density-dependent increases in agonistic behaviours
among males; reviewed in Gray and Cameron 2010; Ransom
and Kaczensky 2016).

In the USA, BLM managers use WinEquus (Jenkins 2002)
to model population effects of ongoing management practices,
including fertility control. This program has been criticised for its
lack of sensitivity analysis, economic-optimisation capabilities
and inability to include annual environmental variations or staged
interventions (de Seve and Griffin 2013), highlighting the need
for further optimisation (National Research Council 2013).

Despite these shortfalls, the general consensususingpopulation
modelling is that population reduction is not achievable in large,
free-ranging wild populations using fertility control as a stand-
alone method (see de Seve and Griffin 2013; National Research
Council 2013; Raiho et al. 2015; Ransom and Kaczensky 2016).
Fertility control is appropriate for managing small, closed
populations (e.g. Assateague Island), or to maintain population
levels once an initial reduction effort has been applied (Bomford
1990; Barlow et al. 1997; Merrill et al. 2003, 2006). As fertility-
control agents with better single-shot longevity (2–3 years)
are developed, this approach may become more feasible
(Rutberg et al. 2017).

Free-ranging wild horses in Australia

Australia possesses the largest population of wild horses in the
world, being in excess of 300 000 animals. Wild horses occupy
every mainland state and territory; yet, there is no national
legislation governing the control of wild horses and pest
management is the responsibility of each individual state and
territory government. As a result, the status of wild horses as
a declared pest differs from state to state and is reflected in the
scale of implementation of population management strategies
(Dawson et al. 2006). Environmentally sensitive locations (i.e.
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national parks and conservation reserves) often require more
defined interventions for the management of pest populations
for conservation purposes, but proposed management can also
be associated with more vocal stakeholders (Nimmo and Miller
2007). Wild horses are regarded as a national symbol by many
Australians, being subjects of bush folk lore and an integral part
of our cultural heritage, particularly those populations in the
highland areas of south-eastern Australia made famous by the
poet Banjo Patterson (Dawson et al. 2006; Nimmo and Miller
2007).

Indeed, one of the most politically, socially and emotionally
charged debates of management of wild horses in Australia
surrounds the persistence of a large population of animals in
ecologically sensitive alpine, subalpine and montane habitats in
the Kosciuszko National Park (KNP) in south-eastern Australia.
Horses are currently managed by capture and removal, with
subsequent domestication where possible or transport to an
abattoir or knackery for disposal, the latter of which is highly
unacceptable to some members of the community (Nimmo
and Miller 2007; Office of Environment and Heritage 2016a,
2016b). Despite these efforts, the population has continued
to expand its range. The KNP draft horse management plan
(Office of Environment and Heritage 2016a) lists population
management objectives andacknowledges the cultural, economic
and social values of wild horses in the park. How can these
objectives be achieved to satisfy all stakeholder requirements?
Can fertility control play an integral part in such management?

Case study: feasibility of horse population
control using immunocontraceptives in Kosciuszko
National Park (KNP)

The KNP horse population is most similar to open-ranging
populations of the HMAs of the western USA, in which

immunocontraceptives are not effective as a stand-alone
population management tool (National Research Council
2013). The 2014, Australian Alps feral horse aerial survey
estimated the population as between 3899 and 8155 horses
(95% confidence interval; Cairns and Robertson 2015), with
the horses occurring over almost 50% of KNP (>700 000 ha),
the largest national park in the country. The park is subdivided
into management zones; however, apart from a handful of
isolated populations (bounded by fencing or other natural
barriers), these areas have connectivity and, thus, large
numbers of animals are free-ranging with the ability to move
between herds and subpopulations. These constraints alone
make KNP a poor candidate for a broad-scale application of
fertility control as the sole management strategy. However,
a multifaceted integrated management strategy that includes
application of fertility management could be considered.

Mathematical modelling exercises that specifically reflect
KNP horse population dynamics could predict the best
combination of control methods for population reduction and
stabilisation. Models have been developed for several species,
including horses (Ballou et al. 2008; de Seve and Griffin 2013),
and are highly informative in terms of application of fertility
control alone, or in combination with other population-reduction
techniques (such as culling or trapping and removal; for
example, see Hone 1992, 2004; Barlow et al. 1997; Hobbs
et al. 2000; Raiho et al. 2015). Pepin et al. (2017) have
recently modelled the potential effects of incorporating fertility
control with typical culling regimes for populations of wild
pigs in the USA. Their simulations of different combinations
of culling and application of fertility control were dependent on
the nature of the population (closed or open to immigration), the
efficacy of an applied fertility-control agent and the goal of
the management program. The results of Pepin et al. (2017)

Table 3. Minimum population demographic data requirements and assumptions for Kosciuszko National Park

Desired variable AssumptionsA and
estimates (range)

Comment and relevance to application of fertility control

Total KNP population ~6000 (3899–8155) Population occupies ~331 000 ha or 48% of park; four disjunct populations;
model population demographic changes as single population or four
separate populations; decide on total population outcome(s)

Annual population growth rate
(intrinsic rate of increase)

0.10–0.20 Identify rate limiting parameter; includes immigration, emigration, density
dependent emigration

Total adult females (�3 yrs) ~3200 (~53%)A Male mortality is generally higher

Average life expectancy 15 (�20) Must be adjusted over time as fertility control improves female longevity

Adult survival rate per year 0.97 (0.90–0.99)A Sex- and age-specific mortality; role of density dependence; fluctuates
in years of low resource availability; carrying capacity in home-range
habitat; female longevity would improve with immunocontraception

Age at first reproduction 3 years Sometimes 2 years

Fecundity (of 3–15-year olds) by sex–age class 0.37–0.78 Changes with resources and environment; may improve for remaining
fertile females

Average interval of successful reproduction 2 years Up to 75% can foal annually

Annual population foaling rate 0.41–0.55

Foal survival 0.83–0.95 Compensatory survival of foals when few females breeding; density
dependence

Breeding season �7 months Length and timing; time of application of fertility control
important for efficacy

ADerived from Groves 1989; Garrott and Taylor 1990; Dobbie et al. 1993; Linklater et al. 2004; Dawson and Hone 2012; Cairns and Robertson 2015.
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clearly indicated that there would be a considerable benefit
gained by applying fertility-control techniques in conjunction
with other specific removal techniques to achieve a desired
reduction in a population. This approach would be most
efficacious if themanaged populationwas closed to immigration.

With only sporadic demographic data from trapping and
smaller horse herds under scientific study (Dawson and Hone
2012), predictions about applying fertility control to achieve the
objectives of the plan across KNP is difficult, but not impossible.
There are considerable life-history data available from USA
studies that allow some conservative assumptions to be made;
however, caution should be exercised because contraceptive
efficacy has been shown to differ among HMAs (Rutberg
et al. 2017). To address the social and cultural objectives (i.e.
to maintain a self-sustaining horse population, irrespective of
size; Office of Environment and Heritage 2016a) of the KNP
plan, a level of genetic management must be incorporated into
the mathematical models and ongoing management strategies
(Ballou et al. 2008; Willers et al. 2014).

Table 3 summarises demographic data (parameters and
estimations from Groves 1989; Garrott and Taylor 1990;
Dobbie et al. 1993; Linklater et al. 2004; Dawson and Hone
2012), which are necessary to inform the most basic population
modelling scenario. Limited demographic data are available
for KNP (although sporadic over time; Independent Technical
Reference Group 2016), from which informed assumptions
can be made without the necessity for immediate collection of
additional data. Outputs of model simulations based solely on
presumptive data can be misleading compared with real on-the-
ground situations (Linklater et al. 2004). Thus, it is imperative
that management plans bemonitored and adaptive; incorporating
new data into models as they become available ensures that
optimum, site-specific strategies evolve over time.

In simplistic terms, for a population to achieve zero growth,
birth rate must equal death rate (excluding immigration, or
emigration). Thus, assuming that annual mortality is between
10% and 30% (Table 3), one would need to reduce the birth rate
to at least 30%, or further if population reduction is desired. For
some species, population modelling has shown that there may
be a broad range of levels of infertility that produces essentially
no impact on population size (Hone 1992; Hobbs et al. 2000).
Even the simplest model for white-tailed deer (Hobbs et al.
2000) suggests that over 50% of females must be removed
from breeding each season (when using contraception alone),
so as to achieve zero population growth. Similar threshold levels
(30–85%) have also been shown in fertility-control trials in
several other species (see table 2 in Massei and Cowan 2014).
Although the deployment of improved contraceptive agents with
multi-year efficacy should decrease effort in subsequent years,
this hinges on treating animals before breeding and the ability
to identify treated animals in subsequent years (Hobbs et al.
2000). Nonetheless, management strategies modelled for
wild horses in the USA agree that a multifaceted approach
combining fertility control (1–3-year efficacy) with periodic
animal removals will be the most cost-effective (Bartholow
2007; de Seve and Griffin 2013) for achieving their primary
objectives of maintaining specific population densities with a
low inbreeding coefficient. Achieving target treatment numbers
beyond the estimated 50%, to result in population reduction by

fertility control alone, would involve capturing and contracepting
untreated animals on an annual basis. This would be an ongoing
logistical challenge for the horse population within KNP, given
the complex habitat and range.

It is likely that aspects of horse ecology in Australia
differ enough from those in contraceptive studies performed
in USA to warrant initial smaller-scale testing of the most
efficacious contraceptives. The minimum data requirements to
test and monitor ongoing contraceptive efficacy at a population
level are as follows: (1) accurate population counts, including
an initial age–sex distribution; annual survival probabilities for
each age–sex class; annual foaling rates for each age class
of mares; sex ratio at birth; (2) attribution of maternity, which
is essential for monitoring efficacy of a contraceptive at the
individual level, which has implications for determining the
frequency of treatment and percentage of mares requiring
treatment (maintenance of genetic diversity); and (3) identification
or marking of treated individuals to ensure no wasted effort
(Hobbs et al. 2000) and to investigate band fidelity of treated
females. Using these data, it would be possible to extrapolate
and develop empirical models relevant to larger populations
across KNP.

Until population modelling is undertaken to predict the
most efficacious management scenario(s), it is not appropriate
to estimate the overall cost, although this is an important
consideration for long-term management strategies. More
sophisticated models would incorporate the cost-effectiveness
of various integrated strategies, including the use of fertility
control. Moreover, costs are not linear because effort changes
with terrain and population size; especially, if populations
become difficult to approach, or more wary of human
presence. Critically, overall KNP population numbers must be
reduced by other means (shooting, trapping, mustering and
removal; see Fagerstone et al. 2010) before, or in conjunction
with, deployment of any fertility-control agent. Practical
delivery to sufficient numbers of mares in such a large,
continuous population is not feasible for KNP and will delay
the achievement of conservation objectives.

Conclusions: is fertility control relevant for population
management in Australian wild horses?

Throughout Australia, populations of wild horses are dispersed
over large areas, in varied and difficult-to-access terrain and
vegetation. Moreover, horse herds are open to immigration
and introductions from neighbouring populations, making
them poor choices for the successful application of currently
available fertility-control agents. Applied alone, fertility control
will not reduce horse numbers within 10 years and will not
effectively halt population growth unless enough mares within
those populations are treated concurrently and every 2–4 years in
relation to the contraceptive used and to the duration of infertility
induced by the specific contraceptives.

If fertility control is to be implemented in large populations,
it is essential that the overall population size be reduced to
a desired carrying capacity before treatment, and that an
integrated management approach employing multiple methods
continues over many years. This will be a logistical challenge
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in Australia, given that wild horses range across multiple states
and territories and public and private lands.

In Australia, clear management goals must be stipulated and
a pragmatic approach taken to the development of horse
population control strategies; a national strategy would be
beneficial. ‘The paucity of unequivocal facts makes decisions
surrounding feral horse management more contentious than
they otherwise would be’ (Nimmo and Miller 2007). Control
of horses, particularly in areas of ecological significance, should
not be any more contentious than that of other feral ungulates
such as deer, camel, pig, goat, buffalo and the like.
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