#### 10.1071/WR23028

Wildlife Research

#### Supplementary Material

# Evaluating aerial net gunning and chemical immobilisation for capture of invasive sambar deer (*Rusa unicolor*) and red deer (*Cervus elaphus*) in alpine Australia

Eliane D. McCarthy<sup>A,\*</sup>, Jordan O. Hampton<sup>B,C</sup>, Rob Hunt<sup>D</sup>, Stuart Williams<sup>E</sup>, Grant Eccles<sup>D</sup>, and Thomas M. Newsome<sup>A</sup>

<sup>A</sup>School of Biological Sciences, The University of Sydney, Sydney, NSW2000, Australia.

<sup>B</sup>Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Vic.3052, Australia.

<sup>c</sup>Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, Perth, WA6150, Australia.

<sup>D</sup>New South Wales National Parks and Wildlife Service, New South Wales National Parks and Wildlife Service, Hurstville, NSW2220, Australia.

<sup>E</sup>Yass Veterinary Hospital, Yass, NSW, Australia.

<sup>\*</sup>Correspondence to: Eliane D. McCarthy School of Biological Sciences, The University of Sydney, Sydney, NSW 2000, Australia Email: eliane.mccarthy@sydney.edu.au

#### **Supplementary Material**

 Table S1. Capture information, immobilisation and reversal dose information collected for each captured and collared deer: <a href="https://doi.org/10.6084/m9.figshare.21555276">https://doi.org/10.6084/m9.figshare.21555276</a>.

**S1.** Protocol used to estimate the body mass of captured sambar deer (*Rusa unicolor*) from morphometric measurements.

Male and female sambar deer body mass (BM) was estimated using relationships developed from measurements of body length (L; cm) and entire carcass mass (kg) of n = 25 adult male sambar deer and n = 11 adult female sambar deer culled in Victorian state forest in 2012–2013 (Forsyth *et al.* 2014). These relationships were estimated using least squares regression and explained 83.1% and 90.17% of the observed variation for males and females, respectively. The relationship for female sambar deer was:

BM = -122.9572 + (1.4919 \* L)

The relationship for male sambar deer was:

BM = -251.818 + (2.327\*L)



**Fig. S1.** Images of male sambar deer (*Rusa unicolor*) taken during aerial net gun capture, and while the animal was recumbent following chemical immobilisation. In the top image, a second net is fired on the sambar deer whilst the animal is restrained by the first net. In the bottom left image, the sambar deer is fitted with a GPS tracking collar (G52D Iridium, Advanced Telemetry Systems, Isanti, MN, USA) and ear tag. The animal wears a blindfold to prevent distress to the animal during immobilisation and antler covers, to prevent harm to personnel working close to the animal during processing. In the bottom right image, a sambar deer is fitted with a blindfold, hobbles, antler covers and an antler protection board. Image credit: Rob Hunt.

**Table S2.** Immobilisation quality scoring sheet, used to rate immobilisation quality of aerially net gunned and sedated sambar (*Rusa unicolor*) and red deer (*Cervus elaphus*), adapted from Grint *et al.* (2009).

| Immobilisation     | 0              | 1                  | 2                    | 3                          | 4               | Score |
|--------------------|----------------|--------------------|----------------------|----------------------------|-----------------|-------|
| quality            |                |                    |                      |                            |                 |       |
| Spontaneous        | Standing       | Tired but standing | Lying but can rise   | Lying difficulty rising    | Unable to rise  |       |
| posture            |                |                    |                      |                            |                 |       |
| Eye reflex         | Normal         | Reduced            | Slow, full TEL sweep | Slow, partial third eyelid | Absent          |       |
|                    |                |                    |                      | sweep                      |                 |       |
| Eye position       | Central/alert  | Central/relaxed    | Forwards/downwards   | Forwards/downwards &       | Dilated,        |       |
|                    |                |                    | but visible          | obscured by TEL            | nonresponsive   |       |
| Jaw tone           | Normal         | Reduced tone       | Much reduced tone    | Minimal tone               | Absent          |       |
| Response to noise  | Normal startle | Reduced startle    | Relaxed              | Minimal startle            | Absent reaction |       |
| Resistance in      | Struggling,    | Some struggle,     | Min struggle         | Relaxed                    | Absent struggle |       |
| lateral recumbency | no lateral     | allows lateral     | Permissive           |                            |                 |       |
|                    | recumbency     | recumbency         |                      |                            |                 |       |
| General attitude   | Excitable      | Awake and          | Tranquil             | Drowsy                     | Comatose        |       |
|                    |                | normal             |                      |                            |                 |       |
|                    |                |                    |                      |                            | Mean            |       |

S2. Model output describing post-release mean hourly distances travelled and mean activity of collared sambar (Rusa unicolor) and red deer

(Cervus elaphus) in the 45 days following capture, using generalised additive models fit with thin-plate regression splines.

## Sambar males (n = 9)Mean hourly distance travelled

| Param. Terms                           | Est.        | Std. error | t        | P       |
|----------------------------------------|-------------|------------|----------|---------|
| Intercept                              | 3.29        | 0.05       | 60.48    | < 0.001 |
| Month                                  | 0.65        | 0.69       | 9.39     | < 0.001 |
| Smooth Terms                           | edf         | Ref. df    | F        | Р       |
| $s(t_{overall})$                       | 3.26        | 4.04       | 1.45     | 0.2400  |
| s(tmonth):April                        | 5.02        | 6.16       | 2.83     | 0.0144  |
| s( <i>t<sub>month</sub></i> ):November | 1.00        | 1.00       | 1.45     | 0.2286  |
| Model fit                              | R-sq (adj.) | Dev. (%)   | No. obs. | _       |
|                                        | 0.29        | 30.6       | 360      | -       |

#### Mean activity

| Param. Terms                           | Est.        | Std. error      | t            | Р       |
|----------------------------------------|-------------|-----------------|--------------|---------|
| Intercept                              | -1.04       | 0.03            | -33.85       | < 0.001 |
| Month                                  | 0.71        | 0.37            | 18.98        | < 0.001 |
| Smooth Terms                           | edf         | Ref. df         | $\mathbf{F}$ | Р       |
| $S(t_{overall})$                       | 3.39        | 4.20            | 15.90        | < 0.001 |
| s( <i>t<sub>month</sub></i> ):April    | 4.22        | 5.20            | 1.51         | 0.187   |
| s( <i>t<sub>month</sub></i> ):November | 0.002       | 0.002           | 0.002        | 0.998   |
| Model fit                              | R-sq (adj.) | <b>Dev.</b> (%) | No. obs.     | _       |
|                                        | 0.59        | 58.3            | 360          | -       |

## Sambar females (n = 5)Mean hourly distance travelled

| Param. Terms                           | Est.        | Std. error | t            | р       |
|----------------------------------------|-------------|------------|--------------|---------|
| Intercept                              | 3.55        | 0.05       | 69.34        | < 0.001 |
| Month                                  | 0.14        | 0.09       | 1.59         | 0.113   |
| Smooth Terms                           | edf         | Ref. df    | $\mathbf{F}$ | р       |
| $s(t_{overall})$                       | 5.52        | 6.66       | 3.90         | < 0.001 |
| s( <i>t<sub>month</sub></i> ):April    | 1.00        | 1.00       | 2.10         | 0.1488  |
| s( <i>t<sub>month</sub></i> ):November | 0.001       | 0.002      | 0.04         | 0.9929  |
| Model fit                              | R-sq (adj.) | Dev. (%)   | No. obs.     |         |
|                                        | 0.10        | 12.5       | 270          |         |

### Mean activity

| Param. Terms                           | Est.        | Std. error | t        | р       |
|----------------------------------------|-------------|------------|----------|---------|
| Intercept                              | -0.73       | 0.03       | -26.31   | < 0.001 |
| Month                                  | 0.25        | 0.05       | 5.29     | < 0.001 |
| Smooth Terms                           | edf         | Ref. df    | F        | Р       |
| s(toverall)                            | 3.34        | 4.15       | 7.84     | < 0.001 |
| s(t <sub>month</sub> ):April           | 1.00        | 1.00       | 0.18     | 0.6720  |
| s( <i>t<sub>month</sub></i> ):November | < 0.001     | < 0.001    | 0.003    | 0.9990  |
| Model fit                              | R-sq (adj.) | Dev. (%)   | No. obs. | _       |
|                                        | 0.24        | 25.9       | 270      | -       |

# $\frac{\text{Red males } (n = 2)}{\text{Mean hourly distance travelled}}$

| Param. Terms                           | Est.        | Std. error | t            | Р       |
|----------------------------------------|-------------|------------|--------------|---------|
| Intercept                              | 4.36        | 0.07       | 59.13        | < 0.001 |
| Month                                  | -0.37       | 0.10       | -3.56        | < 0.001 |
| Smooth Terms                           | edf         | Ref. df    | $\mathbf{F}$ | Р       |
| $s(t_{overall})$                       | 6.74        | 7.63       | 1.40         | 0.140   |
| s( <i>t<sub>month</sub></i> ):April    | 3.68        | 4.38       | 1.21         | 0.411   |
| s( <i>t<sub>month</sub></i> ):November | 1.77        | 2.25       | 0.24         | 0.845   |
| Model fit                              | R-sq (adj.) | Dev. (%)   | No. obs.     |         |
|                                        | 0.65        | 70.3       | 90           | -       |

# Mean activity

| Param. Terms                           | Est.        | Std. error | t            | р       |
|----------------------------------------|-------------|------------|--------------|---------|
| Intercept                              | -0.37       | 0.04       | -8.85        | < 0.001 |
| Month                                  | -0.03       | 0.06       | -0.44        | 0.662   |
| <b>Smooth Terms</b>                    | edf         | Ref. df    | $\mathbf{F}$ | р       |
| $s(t_{overall})$                       | 7.45        | 8.13       | 20.55        | < 0.001 |
| s(t <sub>month</sub> ):April           | 1.00        | 1.00       | 12.47        | < 0.001 |
| s( <i>t<sub>month</sub></i> ):November | < 0.001     | < 0.001    | 0.07         | 0.997   |
| Model fit                              | R-sq (adj.) | Dev. (%)   | No. obs.     |         |
|                                        | 0.69        | 72.1       | 90           | -       |

# $\frac{\text{Red females } (n = 3)}{\text{Mean hourly distance travelled}}$

| Param. Terms                           | Est.        | Std. error | t        | р       |
|----------------------------------------|-------------|------------|----------|---------|
| Intercept                              | 3.55        | 0.08       | 42.09    | < 0.001 |
| Month                                  | 0.65        | 0.14       | 4.42     | < 0.001 |
| Smooth Terms                           | edf         | Ref. df    | F        | р       |
| $s(t_{overall})$                       | 2.57        | 3.20       | 1.94     | 0.109   |
| s(t <sub>month</sub> ):April           | 1.00        | 1.00       | 0.74     | 0.392   |
| s( <i>t<sub>month</sub></i> ):November | < 0.001     | < 0.001    | 0.011    | 0.999   |
| Model fit                              | R-sq (adj.) | Dev. (%)   | No. obs. | _       |
|                                        | 0.15        | 17.8       | 135      | -       |

# Mean activity

| Param. Terms                           | Est.        | Std. error | t        | р       |
|----------------------------------------|-------------|------------|----------|---------|
| Intercept                              | -0.90       | 0.03       | -31.80   | < 0.001 |
| Month                                  | 0.69        | 0.05       | 15.06    | < 0.001 |
| Smooth Terms                           | edf         | Ref. df    | F        | р       |
| $s(t_{overall})$                       | 1.00        | 1.00       | 14.00    | < 0.001 |
| s( <i>t<sub>month</sub></i> ):April    | 4.51        | 5.54       | 2.43     | 0.027*  |
| s( <i>t<sub>month</sub></i> ):November | < 0.001     | < 0.001    | 0.001    | 0.999   |
| Model fit                              | R-sq (adj.) | Dev. (%)   | No. obs. |         |
|                                        | 0.68        | 68.4       | 135      | •       |



**Fig. S2**. Distances travelled from capture location for five aerially captured and collared 14 sambar deer (*Rusa unicolor*) and five red deer (*Cervus elaphus*), during a 45-day monitoring period following aerial net gunning, immobilisation, and collaring. Red and sambar deer were captured in Kosciuszko National Park, Australia in over two operation periods, in April and November 2021.

#### **References:**

- Forsyth, DM, Woodford, L, Moloney, PD, Hampton, JO, Woolnough, AP, and Tucker, M (2014). How Does a Carnivore Guild Utilise a Substantial but Unpredictable Anthropogenic Food Source? Scavenging on Hunter-Shot Ungulate Carcasses by Wild Dogs/Dingoes, Red Foxes and Feral Cats in South-Eastern Australia Revealed by Camera Traps. *PLoS ONE* 9(6), e97937. doi: 10.1371/journal.pone.0097937.
- Grint, N, Burford, J, and Dugdale, A (2009). Does pethidine affect the cardiovascular and sedative effects of dexmedetomidine in dogs? *Journal of Small Animal Practice* **50**(2), 62-66. doi: 10.1111/j.1748-5827.2008.00670.x.