Supplementary Material

Modelling the management of an invasive species at landscape scale: are oral contraceptives the missing ingredient for success?
S. Croft ${ }^{\mathrm{A},{ }^{*}}$, and G. Massei ${ }^{\mathrm{B}}$
${ }^{\text {A }}$ National Wildlife Management Centre, Animal and Plant Health Agency, York, UK.
${ }^{B}$ Botstiber Institute for Wildlife Fertility Control Europe, Department of Environment and Geography, University of York, York, UK.
*Correspondence to: S. Croft National Wildlife Management Centre, Animal and Plant Health Agency, York, UK Email: simon.croft@apha.gov.uk

Table S1: Universal trapping. Summary model outputs describing speed of population reduction and corresponding effort (labour cost) for different live trapping routines (duration and density of trap deployment) given different initial population levels ($100 \%, 80 \%, 60 \%$ and 20% saturation). Main values reflect the median ($50^{\text {th }}$ percentile) across all simulations. Values in square brackets denote the range of values across all simulation.

Days	Density	Trap visits / yr.	\% Reduction (yr. 1)	Eradication time (yrs.)
Initial population 100% saturation				
5	0.12500	14112.00000	0.003 [0.000,0.004]	>100 [$>100,>100]$
5	0.25000	23548.00000	0.004 [0.002,0.006]	>100 [>100,>100]
5	0.50000	43764.00000	0.018 [0.012,0.028]	38 [30,67]
5	1.00000	85267.00000	0.382 [0.357,0.415]	12 [10,21]
5	2.00000	169659.00000	0.813 [0.794,0.829]	$9[7,13]$
5	4.00000	339178.00000	0.978 [0.974,0.983]	7 [5,10]
10	0.12500	28224.00000	0.009 [0.005,0.012]	>100 [$>100,>100]$
10	0.25000	47096.00000	0.024 [0.017,0.031]	39 [30,64]
10	0.50000	87528.00000	0.385 [0.365,0.421]	$12[9,18]$
10	1.00000	170534.00000	0.813 [0.796,0.824]	$8[7,12]$
10	2.00000	339318.00000	0.978 [0.973,0.982]	7 [5,11]
10	4.00000	678356.00000	0.997 [0.995,0.998]	4 [3,7]
15	0.12500	42336.00000	0.023 [0.018,0.030]	>100 [$>100,>100]$
15	0.25000	70644.00000	0.199 [0.175,0.231]	$16[13,24]$
15	0.50000	131292.00000	0.665 [0.643,0.679]	$8[7,12]$
15	1.00000	255801.00000	0.942 [0.933,0.949]	7 [5,10]
15	2.00000	508977.00000	0.993 [0.991,0.995]	$5[4,9]$
15	4.00000	1017534.00000	0.999 [0.998,0.999]	3 [2,5]
30	0.12500	84672.00000	0.246 [0.214,0.273]	19 [14,33]
30	0.25000	141288.00000	0.678 [0.653,0.693]	7 [5,9]
30	0.50000	262584.00000	0.947 [0.94,0.955]	$5[4,7]$
30	1.00000	511602.00000	0.994 [0.992,0.996]	4 [3,7]
30	2.00000	1017954.00000	0.999 [0.998,0.999]	3 [2,6]
30	4.00000	2035068.00000	1.000 [1.000,1.000]	$2[1,3]$
45	0.12500	127008.00000	0.527 [0.505,0.555]	10 [8,14]
45	0.25000	211932.00000	0.879 [0.866,0.893]	4 [4,5]
45	0.50000	393876.00000	0.990 [0.988,0.993]	4 [3,5]
45	1.00000	767403.00000	0.998 [0.997,0.999]	3 [2,5]
45	2.00000	1526931.00000	1.000 [0.999,1.000]	$2[2,5]$
45	4.00000	3052602.00000	1.000 [1.000,1.000]	1 [1,2]
Initial population 80% saturation (20% reduction based on 1 year trapping at 3.75 trap days/ha, a cost of 70644 trap visits)				
0	0.00000	0.00000	-0.212 [-0.246,-0.178]	>100 [$>100,>100]$
5	0.12500	14112.00000	-0.178 [-0.216,-0.147]	>100 [$>100,>100]$
5	0.25000	23548.00000	-0.108 [-0.147,-0.082]	>100 [$>100,>100]$
5	0.50000	43764.00000	0.145 [0.106,0.186]	$35[28,50]$
5	1.00000	85267.00000	0.526 [0.499,0.544]	11 [9,19]
5	2.00000	169659.00000	0.863 [0.847,0.877]	$8[6,12]$
5	4.00000	339178.00000	0.986 [0.982,0.990]	$5[4,9]$
10	0.12500	28224.00000	-0.091 [-0.112,-0.062]	>100 [$>100,>100]$
10	0.25000	47096.00000	0.145 [0.113,0.189]	37 [28,52]
10	0.50000	87528.00000	0.524 [0.502,0.544]	11 [9,24]
10	1.00000	170534.00000	0.862 [0.848,0.878]	$8[6,13]$
10	2.00000	339318.00000	0.986 [0.981,0.989]	$6[4,9]$

10	4.00000	678356.00000	0.998 [0.997,0.999]	4 [2,6]
15	0.12500	42336.00000	0.050 [0.014,0.076]	>100 [$>100,>100]$
15	0.25000	70644.00000	0.367 [0.344,0.388]	15 [12,26]
15	0.50000	131292.00000	0.746 [0.727,0.764]	$8[6,14]$
15	1.00000	255801.00000	0.960 [0.954,0.967]	$6[4,10]$
15	2.00000	508977.00000	0.996 [0.994,0.998]	5 [3,9]
15	4.00000	1017534.00000	0.999 [0.999,1.000]	3 [2,5]
30	0.12500	84672.00000	0.402 [0.374,0.427]	17 [13,35]
30	0.25000	141288.00000	0.749 [0.733,0.769]	6 [5,9]
30	0.50000	262584.00000	0.962 [0.954,0.970]	$4[3,7]$
30	1.00000	511602.00000	0.997 [0.996,0.998]	4 [3,6]
30	2.00000	1017954.00000	0.999 [0.999,1.000]	3 [2,5]
30	4.00000	2035068.00000	1.000 [1.000,1.000]	$2[1,3]$
45	0.12500	127008.00000	0.625 [0.605,0.655]	$9[7,13]$
45	0.25000	211932.00000	0.907 [0.893,0.921]	$4[3,7]$
45	0.50000	393876.00000	0.994 [0.991,0.995]	3 [2,5]
45	1.00000	767403.00000	0.999 [0.998,0.999]	3 [2,5]
45	2.00000	1526931.00000	1.000 [0.999,1.000]	2 [2,4]
45	4.00000	3052602.00000	1.000 [1.000,1.000]	1 [1,2]
Initial population 60% saturation (40% reduction based on 1 year trapping at 5 trap days/ha, a cost of 87528 trap visits)				
0	0.00000	0.00000	-0.441 [-0.476,-0.410]	>100 [$>100,>100]$
5	0.12500	14112.00000	-0.259 [-0.303,-0.223]	$>100[>100,>100]$
5	0.25000	23548.00000	-0.111 [-0.147,-0.072]	>100 [$>100,>100]$
5	0.50000	43764.00000	0.155 [0.121,0.192]	$35[25,58]$
5	1.00000	85267.00000	0.536 [0.507,0.567]	11 [9,18]
5	2.00000	169659.00000	0.863 [0.845,0.877]	$8[6,10]$
5	4.00000	339178.00000	0.984 [0.98,0.987]	$6[4,10]$
10	0.12500	28224.00000	-0.086 [-0.119,-0.047]	>100 [$>100,>100]$
10	0.25000	47096.00000	0.171 [0.147,0.195]	33 [25,55]
10	0.50000	87528.00000	0.536 [0.505,0.565]	11 [8,17]
10	1.00000	170534.00000	0.863 [0.846,0.878]	$8[6,11]$
10	2.00000	339318.00000	0.984 [0.978,0.988]	$6[4,10]$
10	4.00000	678356.00000	0.997 [0.997,0.998]	4 [2,6]
15	0.12500	42336.00000	0.072 [0.041,0.108]	>100 [$>100,>100]$
15	0.25000	70644.00000	0.387 [0.360,0.410]	14 [11,21]
15	0.50000	131292.00000	0.749 [0.718,0.767]	$8[6,13]$
15	1.00000	255801.00000	0.957 [0.948,0.964]	$6[4,9]$
15	2.00000	508977.00000	0.995 [0.993,0.997]	$5[3,8]$
15	4.00000	1017534.00000	0.999 [0.998,1.000]	3 [2,5]
30	0.12500	84672.00000	0.424 [0.383, 0.462$]$	16 [12,34]
30	0.25000	141288.00000	0.764 [0.748,0.782]	$6[5,8]$
30	0.50000	262584.00000	0.960 [0.953,0.968]	$4[3,8]$
30	1.00000	511602.00000	0.995 [0.993,0.997]	$4[3,6]$
30	2.00000	1017954.00000	0.999 [0.998,0.999]	3 [2,6]
30	4.00000	2035068.00000	1.000 [1.000,1.000]	$2[1,3]$
45	0.12500	127008.00000	0.645 [0.622,0.669]	$9[7,12]$
45	0.25000	211932.00000	0.912 [0.900,0.924]	4 [4,5]
45	0.50000	393876.00000	0.992 [0.989,0.995]	3 [2,5]
45	1.00000	767403.00000	0.998 [0.997,0.999]	3 [2,4]
45	2.00000	1526931.00000	1.000 [0.999,1.000]	2 [2,4]
45	4.00000	3052602.00000	1.000 [1.000,1.000]	1 [1,2]

Initial population 20% saturation (80% reduction based on 1 year trapping at 10 trap days/ha, a cost of 170534 trap visits)				
0	0	0	-0.409 [-0.491,-0.340]	>100 [$>100,>100]$
5	0.125	14112	-0.182 [-0.248,-0.135]	$>100[>100,>100]$
5	0.25	23548	-0.029 [-0.096,0.038]	$>100[>100,>100]$
5	0.5	43764	0.222 [0.156,0.298]	25 [18,41]
5	1	85267	0.564 [0.499,0.610]	10 [8,15]
5	2	169659	0.855 [0.822,0.883]	$8[6,10]$
5	4	339178	0.972 [0.962,0.980]	$6[4,9]$
10	0.125	28224	0.007 [-0.065,0.060]	>100 [$>100,>100]$
10	0.25	47096	0.244 [0.181,0.311]	$26[17,49]$
10	0.5	87528	0.575 [0.536,0.626]	$9[7,17]$
10	1	170534	0.855 [0.826,0.887]	$7[5,11]$
10	2	339318	0.971 [0.961,0.978]	$6[4,9]$
10	4	678356	0.993 [0.988,0.996]	$4[2,9]$
15	0.125	42336	0.160 [0.080,0.243]	$>100[57,>100]$
15	0.25	70644	0.453 [0.413,0.501]	$12[9,16]$
15	0.5	131292	0.768 [0.731,0.808]	$7[5,11]$
15	1	255801	0.943 [0.926,0.958]	$6[4,9]$
15	2	508977	0.987 [0.981,0.991]	$5[3,8]$
15	4	1017534	0.997 [0.995,0.999]	3 [2,5]
30	0.125	84672	0.500 [0.446,0.571]	12 [10,20]
30	0.25	141288	0.798 [0.766,0.832]	5 [4,7]
30	0.5	262584	0.958 [0.937,0.970]	$4[3,8]$
30	1	511602	0.988 [0.982,0.992]	$4[3,7]$
30	2	1017954	0.997 [0.994,0.998]	3 [2,5]
30	4	2035068	1.000 [0.999,1.000]	$2[1,3]$
45	0.125	127008	0.702 [0.664,0.746]	7 [5,10]
45	0.25	211932	0.927 [0.893,0.943]	4 [3,6]
45	0.5	393876	0.989 [0.984,0.992]	3 [2,5]
45	1	767403	0.995 [0.991,0.998]	3 [2,5]
45	2	1526931	0.999 [0.998,1.000]	$2[2,3]$
45	4	3052602	1.000 [1.000,1.000]	1 [1,2]

Table S2: Universal contraception. Summary model outputs describing speed of population reduction and corresponding effort (labour cost) for different contraceptive delivery routines (density and duration of hopper deployment) and contraception efficacy given different initial population levels ($100 \%, 80 \%, 60 \%$ and 20% saturation). Main values reflect the median ($50^{\text {th }}$ percentile) across all simulations. Values in square brackets denote the range of values across all simulation.

Days	Density	Efficacy	Hopper visits / yr.	\% Reduction (yr. 1)	Eradication time (yrs.)
Initial population 100% saturation					
5	0.5	0.5	18756	0.001 [-0.001,0.002]	>100 [$>100,>100$]
5	0.5	0.6	18756	0.001 [-0.001,0.002]	>100 [$>100,>100]$
5	0.5	0.7	18756	0.001 [-0.001,0.002]	>100 [$>100,>100]$
5	0.5	0.8	18756	0.001 [0.000,0.003]	>100 [$>100,>100]$
5	0.5	0.9	18756	0.001 [-0.001,0.003]	$>100[>100,>100]$
5	0.5	1	18756	0.001 [-0.001,0.004]	>100 [$>100,>100]$
5	1	0.5	36543	0.001 [0.000,0.003]	>100 [$>100,>100]$
5	1	0.6	36543	0.002 [0.000,0.004]	$>100[>100,>100]$
5	1	0.7	36543	0.002 [0.001,0.005]	>100 [$>100,>100]$
5	1	0.8	36543	0.003 [0.001,0.007]	>100 [$>100,>100$]
5	1	0.9	36543	0.004 [0.002,0.008]	>100 [$>100,>100$]
5	1	1	36543	0.006 [0.003,0.010]	>100 [$>100,>100$]
5	2	0.5	72711	0.003 [0.001,0.007]	>100 [$>100,>100$]
5	2	0.6	72711	0.005 [0.003,0.009]	>100 [$>100,>100]$
5	2	0.7	72711	0.009 [0.005,0.013]	>100 [$>100,>100]$
5	2	0.8	72711	0.018 [0.012,0.025]	>100 [$>100,>100]$
5	2	0.9	72711	0.056 [0.039,0.073]	49 [36,81]
5	2	1	72711	0.136 [0.116,0.162]	28 [23,38]
5	4	0.5	145362	0.006 [0.004,0.010]	>100 [$>100,>100$]
5	4	0.6	145362	0.012 [0.008,0.018]	>100 [$>100,>100]$
5	4	0.7	145362	0.027 [0.019,0.039]	>100 [93,>100]
5	4	0.8	145362	0.098 [0.076,0.117]	42 [36,62]
5	4	0.9	145362	0.209 [0.194,0.229]	26 [23,30]
5	4	1	145362	0.325 [0.306,0.340]	17 [15,21]
10	0.5	0.5	37512	0.001 [-0.001,0.003]	>100 [$>100,>100$]
10	0.5	0.6	37512	0.001 [0.000,0.003]	>100 [$>100,>100]$
10	0.5	0.7	37512	0.001 [0.000,0.003]	>100 [$>100,>100$]
10	0.5	0.8	37512	0.001 [0.000,0.003]	>100 [$>100,>100$]
10	0.5	0.9	37512	0.002 [0.001,0.004]	>100 [$>100,>100]$
10	0.5	1	37512	0.002 [0.000,0.005]	>100 [$>100,>100$]
10	1	0.5	73086	0.002 [0.000,0.007]	>100 [$>100,>100]$
10	1	0.6	73086	0.003 [0.001,0.006]	>100 [$>100,>100$]
10	1	0.7	73086	0.005 [0.002,0.008]	>100 [$>100,>100$]
10	1	0.8	73086	0.007 [0.004,0.011]	>100 [$>100,>100$]
10	1	0.9	73086	0.012 [0.007,0.020]	>100 [$>100,>100$]
10	1	1	73086	0.028 [0.017,0.038]	>100 [$>100,>100]$
10	2	0.5	145422	0.005 [0.002,0.007]	>100 [$>100,>100]$
10	2	0.6	145422	0.008 [0.005,0.013]	>100 [$>100,>100$]
10	2	0.7	145422	0.014 [0.009,0.020]	>100 [$>100,>100$]
10	2	0.8	145422	0.039 [0.026,0.058]	70 [54,> 100]
10	2	0.9	145422	0.115 [0.095,0.145]	32 [28,40]
10	2	1	145422	0.216 [0.195,0.236]	21 [18,26]
10	4	0.5	290724	0.007 [0.003,0.011]	>100 [$>100,>100$]

10	4	0.6	290724	0.013 [0.009,0.020]	>100 [$>100,>100]$
10	4	0.7	290724	0.030 [0.018,0.039]	>100 [86,>100]
10	4	0.8	290724	0.105 [0.091,0.123]	41 [36,59]
10	4	0.9	290724	0.220 [0.205,0.246]	26 [22,31]
10	4	1	290724	0.335 [0.318,0.346]	16 [14,19]
Initial population 80% saturation (20% reduction based on 1 year trapping at 3.75 trap days/ha, a cost of 70644 trap visits)					
5	0.5	0.5	18756	-0.197 [-0.229,-0.163]	>100 [$>100,>100]$
5	0.5	0.6	18756	-0.193 [-0.229,-0.161]	$>100[>100,>100]$
5	0.5	0.7	18756	-0.187 [-0.229,-0.149]	$>100[>100,>100]$
5	0.5	0.8	18756	-0.179 [-0.206,-0.156]	$>100[>100,>100]$
5	0.5	0.9	18756	-0.169 [-0.202,-0.14]	>100 [$>100,>100]$
5	0.5	1	18756	-0.160 [-0.187,-0.128]	$>100[>100,>100]$
5	1	0.5	36543	-0.159 [-0.188,-0.135]	>100 [$>100,>100]$
5	1	0.6	36543	-0.130 [-0.152,-0.096]	$>100[>100,>100]$
5	1	0.7	36543	-0.093 [-0.117,-0.067]	$>100[>100,>100]$
5	1	0.8	36543	-0.047 [-0.078,-0.014]	$>100[>100,>100]$
5	1	0.9	36543	0.002 [-0.026,0.028]	>100 [$>100,>100]$
5	1	1	36543	0.056 [0.026,0.079]	>100 [$>100,>100]$
5	2	0.5	72711	-0.075 [-0.104,-0.052]	>100 [$>100,>100]$
5	2	0.6	72711	-0.005 [-0.034,0.023]	$>100[>100,>100]$
5	2	0.7	72711	0.074 [0.047,0.105]	$>100[>100,>100]$
5	2	0.8	72711	0.153 [0.129,0.179]	>100 [$>100,>100]$
5	2	0.9	72711	0.234 [0.205,0.261]	$42[33,73]$
5	2	1	72711	0.314 [0.297,0.336]	$25[22,33]$
5	4	0.5	145362	-0.020 [-0.042,0.003]	>100 [$>100,>100]$
5	4	0.6	145362	0.072 [0.047,0.092]	$>100[>100,>100]$
5	4	0.7	145362	0.167 [0.142,0.191]	$>100[81,>100]$
5	4	0.8	145362	0.260 [0.240,0.282]	$39[32,56]$
5	4	0.9	145362	0.355 [0.340,0.375]	24 [21,30]
5	4	1	145362	0.445 [0.432,0.461]	16 [15,19]
10	0.5	0.5	37512	-0.180 [-0.216,-0.152]	>100 [$>100,>100]$
10	0.5	0.6	37512	-0.170 [-0.204,-0.131]	>100 [$>100,>100]$
10	0.5	0.7	37512	-0.151 [-0.178,-0.125]	>100 [>100, > 100]
10	0.5	0.8	37512	-0.125 [-0.149,-0.090]	>100 [$>100,>100]$
10	0.5	0.9	37512	-0.096 [-0.130,-0.067]	>100 [$>100,>100]$
10	0.5	1	37512	-0.065 [-0.092,-0.033]	>100 [$>100,>100]$
10	1	0.5	73086	-0.115 [-0.140,-0.086]	>100 [$>100,>100]$
10	1	0.6	73086	-0.063 [-0.092,-0.036]	$>100[>100,>100]$
10	1	0.7	73086	0.002 [-0.037,0.043]	>100 [$>100,>100]$
10	1	0.8	73086	0.067 [0.026,0.090]	$>100[>100,>100]$
10	1	0.9	73086	0.135 [0.106,0.164]	$>100[>100,>100]$
10	1	1	73086	0.205 [0.179,0.233]	$>100[63,>100]$
10	2	0.5	145422	-0.051 [-0.073,-0.009]	>100 [$>100,>100]$
10	2	0.6	145422	0.034 [0.003,0.061]	>100 [$>100,>100]$
10	2	0.7	145422	0.119 [0.096,0.142]	>100 [$>100,>100]$
10	2	0.8	145422	0.207 [0.184,0.238]	61 [41,>100]
10	2	0.9	145422	0.294 [0.278,0.317]	28 [23,46]
10	2	1	145422	0.381 [0.363,0.397]	18 [16,23]
10	4	0.5	290724	-0.015 [-0.044,0.013]	>100 [$>100,>100]$
10	4	0.6	290724	0.078 [0.055,0.113]	>100 [$>100,>100]$
10	4	0.7	290724	0.171 [0.148,0.193]	$94[71,>100]$
10	4	0.8	290724	0.267 [0.238,0.297]	$39[33,54]$

10	4	0.9	290724	0.363 [0.345,0.383]	$24[21,28]$
10	4	1	290724	0.452 [0.437,0.468]	15 [13,18]
Initial population 60\% saturation (40% reduction based on 1 year trapping at 5 trap days/ha, a cost of 87528 trap visits)					
5	0.5	0.5	18756	-0.317 [-0.36,-0.277]	>100 [$>100,>100]$
5	0.5	0.6	18756	-0.288 [-0.328,-0.250]	>100 [$>100,>100]$
5	0.5	0.7	18756	-0.266 [-0.304,-0.221]	>100 [$>100,>100]$
5	0.5	0.8	18756	-0.236 [-0.272,-0.200]	>100 [$>100,>100]$
5	0.5	0.9	18756	-0.204 [-0.241,-0.162]	>100 [$>100,>100]$
5	0.5	1	18756	-0.179 [-0.213,-0.129]	>100 [$>100,>100]$
5	1	0.5	36543	-0.190 [-0.233,-0.157]	>100 [$>100,>100]$
5	1	0.6	36543	-0.139 [-0.168,-0.102]	>100 [$>100,>100]$
5	1	0.7	36543	-0.080 [-0.114,-0.045]	>100 [$>100,>100]$
5	1	0.8	36543	-0.022 [-0.053,0.010]	>100 [$>100,>100]$
5	1	0.9	36543	0.030 [-0.006,0.061]	>100 [$>100,>100]$
5	1	1	36543	0.086 [0.052,0.123]	>100 [$>100,>100]$
5	2	0.5	72711	-0.070 [-0.099,-0.036]	$>100[>100,>100]$
5	2	0.6	72711	0.009 [-0.031,0.050]	>100 [$>100,>100]$
5	2	0.7	72711	0.093 [0.067,0.131]	>100 [$>100,>100]$
5	2	0.8	72711	0.176 [0.132,0.206]	>100 [72,>100]
5	2	0.9	72711	0.255 [0.224,0.281]	$39[29,67]$
5	2	1	72711	0.341 [0.314,0.368]	$23[20,35]$
5	4	0.5	145362	-0.008 [-0.039,0.021]	>100 [$>100,>100]$
5	4	0.6	145362	0.088 [0.048,0.120]	>100 [>100, > 100]
5	4	0.7	145362	0.184 [0.153,0.209]	92 [65,>100]
5	4	0.8	145362	0.277 [0.249,0.296]	$36[31,50]$
5	4	0.9	145362	0.369 [0.343,0.389]	23 [19,29]
5	4	1	145362	0.459 [0.441,0.472]	15 [13,18]
10	0.5	0.5	37512	-0.245 [-0.278,-0.196]	>100 [>100, > 100]
10	0.5	0.6	37512	-0.202 [-0.239,-0.164]	>100 [$>100,>100]$
10	0.5	0.7	37512	-0.158 [-0.205,-0.124]	>100 [$>100,>100]$
10	0.5	0.8	37512	-0.113 [-0.147,-0.084]	>100 [$>100,>100]$
10	0.5	0.9	37512	-0.069 [-0.107,-0.029]	>100 [>100, > 100]
10	0.5	1	37512	-0.024 [-0.062,0.011]	>100 [>100, > 100]
10	1	0.5	73086	-0.114 [-0.164,-0.077]	>100 [$>100,>100]$
10	1	0.6	73086	-0.043 [-0.075,0.003]	>100 [$>100,>100]$
10	1	0.7	73086	0.032 [-0.025,0.074]	>100 [$>100,>100]$
10	1	0.8	73086	0.107 [0.067,0.131]	>100 [>100, >100]
10	1	0.9	73086	0.175 [0.134,0.198]	>100 [$>100,>100]$
10	1	1	73086	0.248 [0.222,0.273]	87 [47,>100]
10	2	0.5	145422	-0.033 [-0.063,-0.003]	>100 [>100, > 100]
10	2	0.6	145422	0.055 [0.023,0.092]	>100 [$>100,>100]$
10	2	0.7	145422	0.147 [0.118,0.168]	>100 [$>100,>100]$
10	2	0.8	145422	0.234 [0.202,0.259]	51 [38,99]
10	2	0.9	145422	0.320 [0.298,0.341]	26 [21,40]
10	2	1	145422	0.407 [0.387,0.425]	17 [15,24]
10	4	0.5	290724	0.002 [-0.035,0.022]	>100 [$>100,>100]$
10	4	0.6	290724	0.094 [0.065,0.120]	>100 [$>100,>100]$
10	4	0.7	290724	0.190 [0.160,0.219]	87 [68,>100]
10	4	0.8	290724	0.283 [0.256,0.315]	$36[31,45]$
10	4	0.9	290724	0.378 [0.361,0.395]	23 [19,27]
10	4	1	290724	0.466 [0.454,0.479]	14 [13,17]

Initial population 20% saturation (80% reduction based on 1 year trapping at 10 trap days/ha, a cost of 170534 trap visits)					
5	0.5	0.5	18756	-0.229 [-0.294,-0.154]	$>100[>100,>100]$
5	0.5	0.6	18756	-0.189 [-0.264,-0.124]	>100 [$>100,>100]$
5	0.5	0.7	18756	-0.159 [-0.226,-0.071]	>100 [$>100,>100]$
5	0.5	0.8	18756	-0.119 [-0.177,-0.040]	>100 [$>100,>100]$
5	0.5	0.9	18756	-0.089 [-0.17,-0.024]	>100 [$>100,>100]$
5	0.5	1	18756	-0.050 [-0.121,0.027]	>100 [>100, >100]
5	1	0.5	36543	-0.109 [-0.171,-0.039]	>100 [$>100,>100]$
5	1	0.6	36543	-0.044 [-0.126,0.008]	>100 [$>100,>100]$
5	1	0.7	36543	0.007 [-0.053,0.069]	>100 [$>100,>100]$
5	1	0.8	36543	0.069 [0.008,0.120]	>100 [$>100,>100]$
5	1	0.9	36543	0.133 [0.076,0.198]	>100 [>100, > 100]
5	1	1	36543	0.190 [0.134,0.240]	>100 [$>100,>100]$
5	2	0.5	72711	-0.004 [-0.069,0.061]	>100 [$>100,>100]$
5	2	0.6	72711	0.083 [0.036,0.141]	>100 [$>100,>100]$
5	2	0.7	72711	0.163 [0.114,0.210]	>100 [$>100,>100]$
5	2	0.8	72711	0.240 [0.201,0.281]	49 [34,>100]
5	2	0.9	72711	0.320 [0.271,0.360]	$26[20,37]$
5	2	1	72711	0.396 [0.365,0.433]	19 [16,26]
5	4	0.5	145362	0.048 [-0.007,0.113]	>100 [$>100,>100]$
5	4	0.6	145362	0.136 [0.095,0.172]	>100 [$>100,>100]$
5	4	0.7	145362	0.226 [0.176,0.277]	$61[45,>100]$
5	4	0.8	145362	0.317 [0.277,0.353]	27 [22,40]
5	4	0.9	145362	0.404 [0.364,0.428]	19 [16,24]
5	4	1	145362	0.475 [0.457,0.498]	13 [10,19]
10	0.5	0.5	37512	-0.136 [-0.221,-0.090]	>100 [$>100,>100]$
10	0.5	0.6	37512	-0.083 [-0.155,0.006]	>100 [$>100,>100]$
10	0.5	0.7	37512	-0.019 [-0.083,0.037]	>100 [$>100,>100]$
10	0.5	0.8	37512	0.031 [-0.026,0.087]	>100 [$>100,>100]$
10	0.5	0.9	37512	0.089 [0.032,0.144]	>100 [$>100,>100]$
10	0.5	1	37512	0.142 [0.072,0.193]	>100 [$>100,>100]$
10	1	0.5	73086	-0.024 [-0.100,0.045]	>100 [$>100,>100]$
10	1	0.6	73086	0.055 [0.002,0.121]	>100 [$>100,>100]$
10	1	0.7	73086	0.136 [0.072,0.193]	>100 [$>100,>100]$
10	1	0.8	73086	0.215 [0.156,0.253]	>100 [>100, > 100]
10	1	0.9	73086	0.282 [0.235,0.323]	70 [25,>100]
10	1	1	73086	0.356 [0.324,0.396]	$26[18,>100]$
10	2	0.5	145422	0.038 [-0.030,0.114]	>100 [>100, >100]
10	2	0.6	145422	0.126 [0.049,0.193]	>100 [$>100,>100]$
10	2	0.7	145422	0.214 [0.165,0.264]	>100 [46,>100]
10	2	0.8	145422	0.296 [0.254,0.346]	30 [24,79]
10	2	0.9	145422	0.380 [0.351,0.415]	19 [16,26]
10	2	1	145422	$0.457[0.430,0.488]$	14 [11,21]
10	4	0.5	290724	0.060 [-0.016,0.103]	>100 [$>100,>100]$
10	4	0.6	290724	0.152 [0.100,0.192]	>100 [>100, > 100]
10	4	0.7	290724	0.242 [0.194,0.273]	60 [43, $>100]$
10	4	0.8	290724	0.327 [0.288,0.371]	27 [22,39]
10	4	0.9	290724	0.410 [0.372,0.439]	18 [15,26]
10	4	1	290724	0.485 [0.466,0.503]	12 [10,16]

