Wildlife Research

Supplementary Material

The potential distribution of the yellow monitor, *Varanus flavescens* (Hardwick & Camp; Gray) under multiple climate, land cover and dispersal scenarios in Nepal

Suraj Baral^{A,B,C,*}, Amar Kunwar^D, Dipendra Adhikari^{E,F}, Kanti Kandel^G, Dev Narayan Mandal^H, Arjun Thapa^F, Dinesh Neupane^{C,I}, and Tej B. Thapa^A

^ACentral Department of Zoology, Tribhuvan University, Kathmandu, Nepal.

^BInternational Union for Conservation of Nature (IUCN) Species Survival Commission (SSC), Monitor Lizard Specialist Group, Gland, Switzerland.

^cResources Himalaya Foundation, Lalitpur, Nepal.

^DCommunity Ecology and Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.

^ENepal Conservation and Research Center, Chitwan, Nepal.

^FSmall Mammals Conservation and Research Foundation, Kathmandu, Nepal.

^GDepartment of National Park and Wildlife Conservation, Shuklaphanta National Park, Mahendranagar, Nepal.

^HMithila Wildlife Trust, Dhanusa, Nepal.

Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences and Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.

*Correspondence to: Suraj Baral Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal Email: baral.hector@gmail.com

Supplementary Files

The potential distribution of the Yellow Monitor, *Varanus flavescens* (Hardwick and Gray, 1827) under multiple climate, landcover, and dispersal scenarios in Nepal.

Suraj Baral A,B,C,* , Amar Kunwar D , Dipendra Adhikari E,F , Kanti Kandel G , Dev Narayan Mandal H , Arjun Thapa F , Dinesh Neupane C,I , Tej B. Thapa A

- A: Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
- B: International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC), Monitor Lizard Specialist Group
- C: Resources Himalaya Foundation, Lalitpur, Nepal
- D: Community Ecology and Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- E: Nepal Conservation and Research Center, Chitwan, Nepal
- F: Small Mammals Conservation and Research Foundation, Kathmandu, Nepal
- G: Department of National Park and Wildlife Conservation, Shuklaphanta National Park
- H: Mithila Wildlife Trust, Dhanusa, Nepal
- I: Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences and Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China

Table S1: Environmental Variables used for modeling the distribution of the Yellow Monitor in Nepal using Ensemble of Small Models

Variable	Source	Original Resolution	Geographical Extent	Temporal Extent
Annual Mean Temperature	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
Mean diurnal temperature range	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
isothermality	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
temperature seasonality	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean daily maximum air temperature of the warmest month	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean daily minimum air temperature of the coldest month	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
annual range of air temperature	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean daily mean air temperatures of the wettest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean daily mean air temperatures of the driest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean daily mean air temperatures of the warmest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean daily mean air temperatures of the coldest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
annual precipitation amount	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
precipitation amount of	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013

the wettest month				
precipitation amount of the driest month	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
precipitation seasonality	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean monthly precipitation amount of the wettest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean monthly precipitation amount of the driest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean monthly precipitation amount of the warmest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
mean monthly precipitation amount of the coldest quarter	https://chelsa-climate.org/	30 arc seconds	Global	1979–2013
Elevation	http://www.worldclim.com/version2	30 m	Global	-
Slope	-	-	Global	-
Distance from Forest	https://modis.gsfc.nasa.gov/	250 m	Global	2019
Distance from Wetland	https://www2.cifor.org/global-wetlands/	30 arc seconds	Tropics	2010-2012
Annual Mean NDVI	modis.gsfc.nasa.gov	250 m	Global	2000-2020
Annual Mean NDWI	modis.gsfc.nasa.gov	250 m	Global	2000-2020
Bulk Density of Soil	OpenLandMap.org	250 m	Global	1950-2017
Coarse Fragment Volumentric	OpenLandMap.org	250 m	Global	1950-2017
Global Human Footprint	https://sedac.ciesin.columbia.edu/	1 km	Global	1995-2004
			•	-

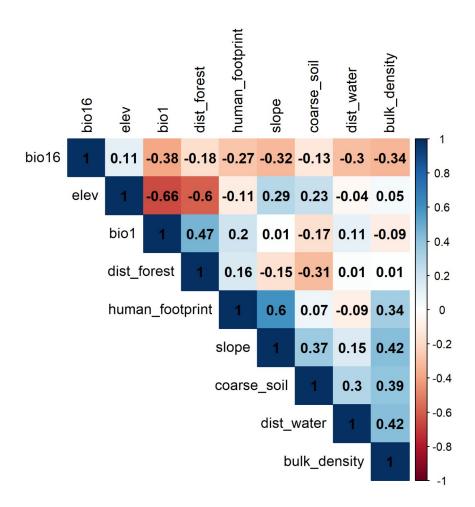


Fig S1: Spearman's Rank Correlation between the final set of variables used for the ensemble of small models for Yellow Monitor Lizard. The variables are coded as bio16: Precipitation of the wettest Quarter, elev: Elevation above mean sea level, bio1: Annual Mean Temperature, dist_forest: Distance to nearest forest, human_footprint: Human Footprint, slope: Slope, coarse_soil: Coarse Fragment Volumetric, dist_water: Distance to water, bulk_density: Bulk Density.