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Appendices 

 

Appendix 1 

We model first arrival dates using a generalized linear model as, 

                                               𝑌𝑡 ∼ 𝑁(μ𝑡 , 𝐷𝑡),                                                   (1) 

With 

                                              μ𝑖,𝑡 = β0 + 𝑋𝑖,𝑡
′ β + θ𝑖 + 𝑒𝑡 ,                                  (2) 

                                            log σ𝑖,𝑡 = 𝑎0 + η𝑖 + ν𝑡 + κ ⋅ 𝑥𝑖,𝑡
𝑠 ,                             (3)                 

                                             𝑒𝑡 = φ ⋅ 𝑒𝑡−1 + ϵ,                                                    (4) 

where 𝑌𝑡 = (𝑌1,𝑡 ,⋯ , 𝑌𝑛,𝑡)
′
denotes the vector of mean arrival dates for the grid cells (𝑖 ∈

{1, ⋯ , 𝑛}; 𝑛 = 23) in our case over years in the study (𝑡 ∈ {1, ⋯ , 𝑇}; 𝑇 = 10) for years 2001-2018. 𝑌𝑖,𝑡 

represents the mean arrival dates for the ith grid cell in the year t. μ𝑡 = (μ1,𝑡 , ⋯ , μ𝑛,𝑡)
′
  denotes the vector 

of the mean arrival process, and 𝐷𝑡 = 𝑑𝑖𝑎𝑔(σ1,𝑡
2 , σ2,𝑡

2 , ⋯ , σ𝑛,𝑡
2 ) denotes the error variance-covariance 

matrix for year t. θ = (θ1, ⋯ , θ𝑛) denotes the spatially-varying mean. β0   is the shared “overall mean”, 

β = (𝑏1, ⋯ , 𝑏𝐾) represents the vector of regressors with elements for K predictor variables and 𝑒𝑡 denotes 

the temporal trend elements. Here we propose an AR(1) indicating autoregressive model of order 1 to 

explain dependence among temporal components of the model in Equation 4. 𝑋𝑖,𝑡 denotes the vector of 

predictor variables for the ith grid cell. Our predictor variables include MODISgreenup, OnsetGDD, 

temperature from February to April, precipitation from January to April, and sampling effort. All the 

predictor variables were centered in advance for the computational convenience.  

We capture the variation for each cell, in each year, based on constant, spatial and temporal 

decomposition of standard deviation. 𝑎0 ∼ 𝑁(0, σ𝑎
2 )denotes the shared log error standard deviation. ηi  

represents the change of log error standard deviation for the ith grid cell. ν𝑡 ∼ 𝑁(0, σ𝑣
2) denotes the log 



error standard deviation for time t. κ denotes the corresponding regression coefficient for 𝑥𝑖,𝑡
𝑠 . In our case, 

sampling effort serves as the only predictor variable for the error standard deviation. 

We consider spatial structure for the geographical parameter θ𝑖based on conditional autoregressive 

modeling (CAR): 

                                        θ𝑙 ∣ θ−𝑙 , τ𝑙
2 ∼ 𝑁(∑ 𝑐𝑙𝑠𝑠∈𝑁𝑙

θ𝑠, τ𝑙
2),                                 (5) 

where 𝑙 , 𝑠 = 1, ⋯ , 𝑛  and θ−𝑙 denotes the vector of spatially-varying parameters for all grid cells except 

the lth grid cell. Also, is the set of neighboring sites for l, and 𝑐𝑙𝑠’s are weights defined such that 𝑐𝑙𝑠 = 1 

for 𝑙 ≠  s, 𝑐𝑞𝑞 =  0 for 𝑞 = 1 ⋯ , 𝑛 and 𝑐𝑙𝑠τ𝑙
2 = 𝑐𝑠𝑙τ𝑠

2. τ𝑙
2 denote precision parameters and are commonly 

assumed to be the same and equal to   𝜏2. 

Similarly, we propose η𝑖 ∼ 𝐶𝐴𝑅(τη
2), where η = (η1, ⋯ , η𝑛) is the vector of spatially-varying 

components for the log measurement error standard deviation, and τη
2 represents the precision parameter 

of the CAR model.  

To properly reflect the uncertainty sourced from the estimation process in the main model, we 

implemented the Bayesian spatio-temporal hierarchical algorithm, where a Markov Chain Monte Carlo 

(MCMC) sample is drawn from posterior distributions of the joint model and used to construct credible 

intervals of parameters during the process. We used non-informative prior and the pre-specified values are 

relative to the size of our analyzing data set. 

𝛽𝑘 ∼ 𝑁(𝜇 = 0, 𝜎2 = 100), 𝑘 = 0,1, ⋯ , 𝐾, 

 

𝜎𝜖
2 ∼ 𝐼𝐺(mean = 1,var = 100) 

Then, we present the following proposed prior distribution of the hyperparameters in the spatial 

structure (CAR priors): 



𝜏2 ∼ Γ(mean = 1,var = 100) 

 

𝜏𝜂
2 ∼ Γ(mean = 1,var = 100) 

 

The following relatively non-informative prior distributions can be used for the remaining unknown 

parameters of the measurement error process model. 

𝜅 ∼ 𝑁(𝑢 = 0, 𝜎 2 = 100) 

 
𝜎𝑢

2 ∼ 𝐼𝐺(mean = 1,var = 100) 

 
𝜎𝑣

2 ∼ 𝐼𝐺(mean = 1,var = 100) 

 
For the structural conciseness and computational efficiency, we carry out the MCMC sampling 

procedure using a popular software, Stan. The sampler is implemented 30,000 iterations generated with 

the first 5,000 as burn-in period. We keep the estimate for further analysis based on the remaining 25,000 

iterations. It is convenient to check the MCMC algorithm converges very rapidly using trace plots of the 

MCMC chains and their autocorrelations. Sensitivity of the results to the variances of the prior densities 

does not play a key factor in the estimation process. 

 

 

 

 

 

 



Appendix 2 

Summary of posterior results for the temporal random effects of our phenology model for Purple martins.  

Year Mean 
Standard 
Deviation 

0.025 
percentile 

0.975 
percentile 

2001  -2.472 1.526 -4.919 1.22 

2002 -1.1 1.522 -3.567 2.62 

2003 0.234 1.61 -2.397 4.2 

2004 1.233 1.63 -1.396 5.238 

2005 2.166 1.56 -0.288 5.963 

2006 0.099 1.577 -2.279 4.052 

2007 1.122 1.684 -1.551 5.126 

2008 1.396 1.657 -1.134 5.496 

2009 2.955 1.631 0.549 7.086 

2010 2.981 1.687 0.238 6.96 

2011 1.492 1.684 -1.106 5.584 

2012 2.244 1.759 -0.671 6.387 

2013 0.353 1.728 -2.239 4.662 

2014 -0.958 1.753 -3.669 3.388 

2015 1.137 1.722 -1.712 5.33 

2016 1.988 1.738 -0.762 6.212 

2017 4.277 1.626 1.668 8.305 

2018 2.109 1.763 -0.619 6.456 
 


