10.1071/WR22074

Wildlife Research

Supplementary Material

Increasing the accuracy and efficiency of wildlife census with unmanned aerial vehicles: a simulation study

Pascal Fust ${ }^{\mathrm{A},{ }^{*}}$, and Jacqueline Loos ${ }^{\mathrm{A}, \mathrm{B}}$
AInstitute of Ecology, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
${ }^{B}$ Social-Ecological Systems Institute, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
*Correspondence to: Pascal Fust Institute of Ecology, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany Email: pascal.fust@leuphana.de

Supplementary figure S1: Visualisation of the different components of the proposed survey design.

Supplementary Table S1: Comparison of modified zigzag and parallel survey approach applied on a survey area layout of four adjacent rectangular areas (area numbering according figure 2)

Rectangular shape $7.5 \times 10 \mathrm{~km}$ - surface area $75 \mathrm{~km}^{2}$

Flight speed UAV : $100 \mathrm{~km} / \mathrm{h}$
Animal speed : $10 \mathrm{~km} / \mathrm{h}$

Rectangle n°	Survey design	Coverage	Survey direction	Flight time	Flight distance	Total transect length	Transect length / Flight distance	Benefit of zigzag
1	Parallel	16.0\%	0°	50 min	81.4 km	60,000 m	74\%	13.1\%
	Modif. zigzag	16.0\%	0°	45 min	72 km	60,138 m	84\%	
2	Parallel	16.0\%	0°	50 min	81.6 km	60,000 m	74\%	12.7\%
	Modif. zigzag	16.0\%	0°	45 min	72.4 km	60,138 m	83\%	
3 (=2)	Parallel	16.0\%	0°	50 min	81.6 km	60,000 m	74\%	12.7\%
	Modif. zig- zag	16.0\%	0°	45 min	72.4 km	60,138 m	83\%	
4 (=1)	Parallel	16.0\%	0°	50 min	81.4 km	60,000 m	74\%	13.1\%
	Modif. zigzag	16.0\%	0°	45 min	72 km	60,138 m	84\%	

Supplementary Table S2: Comparison of modified zigzag and parallel survey approach using different survey directions applied on a survey area layout of four adjacent diamond shaped areas (area numbering according figure 2); greyed cells indicate the most efficient flight plans per area applied in the calculation of the respective benefits

Diamond shape $10 \times 15 \mathrm{~km}$ - surface area $75 \mathrm{~km}^{2}$

Flight speed UAV : $100 \mathrm{~km} / \mathrm{h}$
Animal speed : $10 \mathrm{~km} / \mathrm{h}$

$\begin{gathered} \text { Diamond } \\ n^{\circ} \end{gathered}$	Survey design	Coverage	Survey direction	Flight time	Flight distance	Total transect length	Transect length / Flight distance	Benefit of zigzag
1	Parallel	14.4\%	$304{ }^{\circ}$	44 min	71.9 km	54,000 m	75.1\%	11.1\%
		15.1\%	0°	51 min	82.4 km	56,600 m	68.7\%	
	$\begin{gathered} \text { Modif. zig- } \\ \text { zag } \end{gathered}$	15.1\%	0°	47 min	77.0 km	56,500 m	73.4\%	
		14.2\%	303°	41 min	65.4 km	53,157 m	81.3\%	
		14.3\%	56°	40 min	64.7 km	53,771 m	83.1\%	
2	Parallel	14.4\%	304°	44 min	71.7 km	54,000 m	75.3\%	10.0\%
		15.1\%	0°	55 min	90.6 km	56,600 m	62.5\%	
	Modif. zigzag	15.1\%	0°	53 min	77.3 km	56,500 m	73.1\%	
		14.4\%	303°	46 min	74.6 km	54,000 m	72.4\%	
		14.2\%	57°	40 min	65.2 km	53,771 m	82.5\%	
3	Parallel	14.4\%	304°	53 min	86.4 km	54,000 m	62.5\%	33.5\%
		15.1\%	0°	55 min	90.1 km	56,600 m	62.8\%	
	Modif. zigzag	15.0\%	0°	47 min	74.1 km	56,500 m	76.4\%	
		14.3\%	57°	40 min	64.7 km	53,771 m	83.1\%	
4	Parallel	14.4\%	304°	43 min	70.2 km	54,000 m	76.9\%	9.3\%
	Modif. zigzag	15.0\%	0°	46 min	75.2 km	56,000 m	74.5\%	
		14.2\%	57°	40 min	64.2 km	53,771 m	83.8\%	

Supplementary Table S3: Comparison of modified zigzag and parallel survey approach using different survey directions applied on a survey area arrangement of seven adjacent hexagonal shaped areas (area numbering according figure 2); greyed cells indicate the most efficient flight plans per area applied in the calculation of the respective benefits

Hexagonal shape $9.2 \times 9.2 \mathrm{~km}$ Flight speed UAV : $100 \mathrm{~km} / \mathrm{h}$ Animal speed : $10 \mathrm{~km} / \mathrm{h}$								
Hexagon n°	Survey design	Coverage	Survey direction	Flight time	Flight distance	Total transect length	Transect length / Flight distance	Benefit of zigzag
1	Parallel	15.0\%	330°	47 min	75.9 km	55,700 m	73.4\%	11.8\%
	Modif. zigzag	15.0\%	0°	42 min	67.9 km	55,000 m	81.0\%	
2	Parallel	15.0\%	330°	52 min	85.0 km	55,700 m	65.5\%	11.7\%
	$\begin{gathered} \text { Modif. zig- } \\ \text { zag } \end{gathered}$	15.0\%	0°	48 min	77.2 km	55,000 m	71.2\%	
		15.0\%	300°	47 min	76.1 km	55,000 m	72.3\%	
3	Parallel	15.0\%	330°	54 min	87.6 km	55,700 m	63.6\%	14.1\%
	Modif. zigzag	15.0\%	0°	47 min	76.8 km	55,000 m	71.6\%	
		15.0\%	300°	47 min	76.8 km	55,000 m	71.6\%	
4	Parallel	15.0\%	330°	53 min	86.0 km	55,700 m	64.8\%	12.0\%
	$\begin{gathered} \text { Modif. zig- } \\ \text { zag } \end{gathered}$	15.0\%	0°	47 min	76.8 km	55,000 m	71.6\%	
5	Parallel	15.0\%	330°	53 min	85.4 km	55,700 m	65.2\%	10.6\%
	$\begin{gathered} \text { Modif. zig- } \\ \text { zag } \end{gathered}$	15.0\%	0°	49 min	77.2 km	55,000 m	71.2\%	
6	Parallel	15.0\%	330°	53 min	85.9 km	55,700 m	64.8\%	12.7\%
	$\begin{gathered} \text { Modif. zig- } \\ \text { zag } \end{gathered}$	15.0\%	0°	47 min	76.2 km	55,000 m	72.2\%	
7 (=6)	Parallel	15.0\%	330°	53 min	85.9 km	55,700 m	64.8\%	12.7\%

	Modif. zig- zag	15.0%	0°	47 min	76.2 km	$55,000 \mathrm{~m}$	72.2%	

Supplementary Table S4: Deviations between programmed and realized contour following and flight height in UAV application at different elevations.

	Contour line				
	1,100m ($\mathrm{N}=6,647$)	1,200m ($\mathrm{N}=5,737$)	1,300m ($\mathrm{N}=5,666$)	1,400m ($\mathrm{N}=5,936$)	1,500m ($\mathrm{N}=5,469$)
Distance from contour line (median, standard deviation)	15.7 ± 27.0 m	$11.9 \pm 21.5 \mathrm{~m}$	10.8 ± 18.4 m	$11.2 \pm 21.9 \mathrm{~m}$	$11.2 \pm 18.9 \mathrm{~m}$
Maximum distance from contour line	187.9 m	152.3 m	122.3 m	143.2 m	107.4 m
Flight height (median, standard deviation)	100.4 ± 5.1 m	$102.3 \pm 10.9 \mathrm{~m}$	$103.8 \pm 11.8 \mathrm{~m}$	$109.9 \pm 20.3 \mathrm{~m}$	101.9 ± 16.4 m
Minimum and maximum flight height	89.8-130.2 m	68.4-170.6m	76.1-175.8 m	40.5-199.8 m	55.9-196.5 m

