10.1071/WR20134_AC Wildlife Research

Supplementary material

Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore

Rowena P. Hamer^{A,B,E}, Georgina E. Andersen^A, Bronwyn A. Hradsky^C, Shannon N. Troy^{A,D}, Riana Z. Gardiner^A, Christopher N. Johnson^A and Menna E. Jones^A

^ASchool of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia.

^BTasmanian Land Conservancy, PO Box 2112, Lower Sandy Bay, Tas. 7005, Australia.

^cSchool of Ecosystem and Forest Sciences, Building 122, University of Melbourne, Parkville, Vic. 3010, Australia.

^DDepartment of Primary Industries, Parks, Water and the Environment, GPO Box 44, Hobart, Tas. 7001, Australia.

^ECorresponding author. Email: rowena.hamer@utas.edu.au

1. Field data collection

Table S1Site details, trapping results and population density estimates for the Midlandsstudy sites. Note that capture data was too limited to estimate population density at the Rosstracking site.

	Fragmentation					Cats***		ST Quolls***			
Site	Woodland proportion *	Native veg proportion **	Annual rainfall (mm annum- ¹)	М	F	ρ	М	F	ρ		
Campbell Town	0.35	0.52	531	14	8	0.003 ± 0.001	8	4	0.002 ± 0.001		
Cressy	0.30	0.39	606	8	8	0.010 ± 0.002	6	7	0.007 ± 0.002		
Oatlands	0.20	0.20	540	5	7	0.007 ± 0.002	9	2	0.002 ± 0.001		
Ross	0.10	0.21	505	5	2	-	0	0	-		
Total				32	25		23	13			

* Within 5km radius circle, positioned on the centroid of trap locations at each site

** As above, but includes native grassland as well as woodland

*** M – number of males trapped, F – number of females trapped, ρ – estimated population density (animals ha⁻¹)

Site	Trapping dates	Species	# captured	Fix rate	Successful (total) deployments	Collar model*
Midlands s	ites					
		Spotted-tailed quoll	12	1 /E min	5 (8)	Faunatech Robin Cell
Campbell Town	Sep 2015 – July 2016	Feral cat	- 11	- 1/5/////	1 (3)	Faunatech Robin Cell
	54.9 2020	Feral cat	- 22	1 /15 min	8 (11)	ATS W500
July – Dec		Spotted-tailed quoll	13	1 /E min	4 (5)	ATS G10
Clessy	2016	Feral cat	16	- 1/3 11111	8 (8)	ATS G10
	lan – lune	Spotted-tailed quoll	11		2 (4)	
Oatlands	2017	Feral cat	12**	1/5 min	6 (8)**	ATS G10, Telemetry Solutions
Ross	July – Nov 2016	Feral cat	7	1 /5 min	3 (4)	ATS G10
NW Tasma	nia					
Arthur River	Nov 2012 – Feb 2013; Oct 2013 – Jan 2014	Spotted-tailed quoll		1/ 15 min	10	Telemetry solutions

Table S2 Trapping dates, fix schedules and GPS collar types used at the Midlands (current study) and Arthur River (Andersen et al. 2020) tracking sites.

* All collars were fastened using a corrosive bolt drop-off mechanism, comprising a copper bolt and magnesium washer (Thalmann 2013). Over time, the washer corrodes and allows the loosened bolt to work itself off and the collar to drop off.

** Does not include cats with home-ranges centred on the Oatlands municipal tip

2. Literature review results

Figure S1 Study locations. GPS tracking sites from this study are represented as triangles (see inset): see Table S2 for species tracked at each site. Hollow symbols denote tracking studies of each species which were considered as part of the literature review, but which did not meet the criteria to be considered comparable for use in analyses.

Table S3 Site and details of studies which yielded comparable home-range estimates used in analyses of home-range variation with site productivity. Home-range estimates are presented in Table S4.

Source	Site	Annual rainfall (mm annum ⁻¹⁾	Fix rate (mins bw fixes)	Ave # fixes	Ave # days	Sex	VHF/ GPS	n	Ave body mass (kg)
Feral cat									
Bengsen et al. (2012)	Kangaroo	587	30 or	2/19	73	Female	GPS	4	3.20
	Island, SA	507	150	245	, 5	Male	GPS	9	4.38
						Female	GPS	1	2.90
Buckmaster (2011)	East Gippsland,	1004	60 or				VHF	3	3.57
ζ, γ	VIC					Male	GPS	3	4.37
							VHF	1	5.20
	Campbell	531				Female	GPS	2	4.25
	Town, TAS					Male	GPS	6	3.84
	Cressy, TAS	606	-			Female	GPS	4	2.88
This study			5 or 15	3901	30	Male	GPS	4	4.77
This study	Oatlands,	540				Female	GPS	3	3.17
	TAS		_			Male	GPS	3	4.33
	Ross. TAS	505				Female	GPS	1	3.57
						Male	GPS	2	5.02
Hilmer (2010)	Dirk Hartog	247	10, 40			Female	GPS	4	3.33
· ·	Island, WA		or 80			Male	GPS	11	4.53
Hradsky (unpubl)	Otway Ranges, VIC	805 - 1095	30 or erratic	870	57	Male	GPS	3	4.48
						Female	VHF	9	2.74
Johnston <i>et al.</i> (2012)	Flinders Ranges, SA	341	180	5078	97	Male	GPS	7	4.16
							VHF	7	3.13
Johnston (2012)	Wilsons	959	90	139		Female	GPS	3	2.53
	Prom, VIC					Male	GPS	7	4.06
Johnston <i>et al.</i> (2013)	Pilbara, WA	393		1683	63	Female	GPS	3	2.20

Source	Site	Annual rainfall (mm annum ⁻¹⁾	Fix rate (mins bw fixes)	Ave # fixes	Ave # days	Sex	VHF/ GPS	n	Ave body mass (kg)
			15 or 180			Male	GPS	6	3.67
Johnston <i>et al.</i> (2014)	Roxby	173	15 or 60	1927	28	Female	GPS	7	3.04
. ,	Downs, SA					Male	GPS	11	4.21
Robley <i>et al</i> . (2010)	Anglesea,	668	30	237		Female	GPS	2	3.30
	VIC					Male	GPS	7	4.57
Spotted-tailed quoll									
(Andersen <i>et al.</i> 2020)	Arthur	1139	15	666	33	Female	GPS	3	
	River, TAS					Male	GPS	7	
	Campbell	531				Female	GPS	2	2.58
	Town, TAS					Male	GPS	2	3.21
This study (Midlands)	Cressy, TAS	606	5	2187	26	Female	GPS	3	3.17
						Male	GPS	1	4.49
	Oatlands, TAS	540	-			Male	GPS	1	2.43
	Guy Fawkes NP, NSW	948	24 fixes/ dav.			Female	GPS	4	1.68
Körtner <i>et al.</i> (2016)	Tuggolo SF,	1095	variable	297	34	Female	GPS	1	3.04
	NSW	1095	mervar			Male	GPS	2	3.04
Troy (2014)	Woolnorth, TAS	864	120	203	30	Female	GPS	7	

3. Home-range estimates

The choice of home-range estimator can significantly affect the size of home-range reported (Plotz *et al.* 2016, Table S3). Three alternative home-range estimates were calculated for individuals tracked in this study (details on calculations below). Within the Midlands and Arthur River sites, movement-based kernel density estimates based on fine-scale tracking data (mKDE95) were consistently smaller than the subsampled kernel density estimates used in regression analyses (KDE95_1H, Table S3). The mKDE95 estimates are more tightly linked to actual tracking locations (Benhamou 2011), and therefore did not include areas of unsuitable habitat adjacent to or interspersed throughout the habitats used (e.g. Mitchell and Powell 2008). In all analyses, the choice of home-range estimator did not affect the direction or significance of the relationship between home-range size and productivity (data not shown), so the KDE95_1H estimator was chosen for consistency with previous studies. It does, however, affect the management implications of this study: while KDE95_1H estimates indicate that female spotted-tailed quoll home-ranges in the Midlands are up to 10 times greater than recorded in other regions, mKDE95 estimates indicate that the actual amount of native vegetation required by each female is only up to five times greater.

Calculation details

Firstly, home-ranges were estimated using 100% minimum convex polygons (MCP100, Mohr 1947). Although this method is prone to overestimating the true area used by an animal and is very sensitive to differences in sampling strategy, duration and data outliers (Fieberg and Börger 2012; Laver and Kelly 2008), it was the most consistently reported metric and was the only metric used in several VHF-based telemetry studies (e.g. Claridge *et al.* 2005; Glen and Dickman 2006; Jones and Coman 1982).

Secondly, we calculated 95% kernel density estimates (KDE95_1H) for feral cats and spotted-tailed quolls from the Midlands and Arthur River sites. Telemetry data were subset to 1 fix per hour for the purposes of comparison with previous studies and to minimise temporal autocorrelation.

Lastly, 95% movement-based kernel density estimates (mKDE95%) were calculated for feral cats and spotted-tailed quolls from the Arthur River and Midlands sites, using the full, detailed tracking data (1 fix per 5 mins or 1 fix per 15 mins, parameters Tmax = 1h, Lmin = 20m, hmin = 50m). These estimates were not used in analyses as they are not comparable with any previous studies. They are reported in Table S3 as a more accurate indication of the amount of suitable habitat required within the larger KDE95_1H home-range estimates, and for the purposes of comparison with future studies.

Table S4 Individual home-range estimates used in regression analyses. All home-range estimates used in analyses are calculated using 95% kernel density estimates (KDE95) unless otherwise indicated. Tracking data from Arthur River, Campbell Town, Cressy, Ross and Oatlands were subsampled to 1 fix per 1h for standardisation purposes. Alternative home-range estimates (100% MCP and 95% mKDE or movement-based kernel density estimates, both based on the full dataset) are also provided for purposes of comparison.

Reasons for excluding individuals from analyses are given in the right-hand column. Note Roxby Downs individuals are only from the Johnston et al (2014) study, as the Moseby et al (2009) tracking data included range shifts by individuals responding to baiting in nearby areas.

Site	ID	Sex	Weight (kg)	Track nights	KDE95 (ha)	Excluded	MCP (ha)	mKDE (ha)
			Spo	otted-taile	d quoll			
Tuggolo SF,	M-1644	Male		42	1503		2466	
NSW (Körtner <i>et al</i>	M-1644	Male		26	1327		2203	
2016)	M-3F02	Male		43	637	Failed site fidelity test	1518	
	M-401C	Male		17	359		423	
	M-6346	Male		43	771		1404	
	M-6737	Male		38	547	Failed site fidelity test	2607	
	M-2411	Male		12	848		610	
	F-9768	Female		43	554		2203	
	M-0307	Male		19	689	Failed site fidelity test	819	
Guy Fawkes	F-0001	Female		38	381		704	
NP, NSW (Körtner <i>et al</i>	F-202A	Female	le 41 231	342				
2016)	F-202A	Female		46	235		382	
	F-716E	Female		32	459		504	
Woolnorth,	1	Female			152		229	
TAS (Trov 2014)	2	Female		- –	349		386	
(110) 2011)	3	Female		. –	382		470	
	4	Female		- (28 36)	485		439	
	5	Female			163		191	
	6	Female		- –	380		427	
	7	Female		- –	343		464	
Arthur River,	Bear	Male		21	534		438	265
TAS (Andersen <i>et</i>	Calypso	Female		46	555		609	327
al. 2020)	Capella	Female		50	168		148	98
	Chillax	Male		15	1619	Failed site fidelity test	1047	228
	Dino	Male		22	531		534	284
	Dipper	Male		50	962		975	435
	Helena	Female		37	458		523	254
	Pegasus	Male		51	634		503	292

Site	ID	Sex	Weight (kg)	Track nights	KDE95 (ha)	Excluded	MCP (ha)	mKDE (ha)
	Pluto	Male		15	1519		1277	371
	Saturn	Male		14	487	Failed site fidelity & asymptote test	259	139
Campbell	Banzai	Female	2.71	29	2486		2093	945
Town, Midlands TAS	Georgia	Female	2.44	46	1729		1782	946
(This study)	Mufasa	Male		6	10382	Collar failed after 6d	3809	820
	Pacha	Male	2.62	15	1882		2367	885
	Xavier	Male	3.8	16	3136	Failed site fidelity test	2663	799
Cressy,	Betel	Female	2.46	38	789		808	461
Midlands TAS (This study)	Hazelnut	Female	3.16	30	550		576	394
	Nutmeg	Female	3.9	12	943		738	418
	Waldo	Male	4.49	50	1108		1191	707
Oatlands, Midlands TAS (This study)	Aravis	Female	2.2	26	731	Limited data due to collar malfunction	417	223
	Caspian	Male	2.43	13	2481		1987	644
Feral cat								
Campbell Town,	Agusto	Male		32	8421	Failed site fidelity test	4333	828
Midlands TAS	Barnaby	Male	3.9	40	681		761	297
(This study)	Bronwyn	Female	4.5	29	598		833	336
	Donald	Male	3.53	21	952		1200	479
	Eric	Male	3.5	37	978		1257	413
	Joe	Male	4.93	32	1298		1422	749
	Mamo	Male	2.85	32	785		1252	452
	Pauline	Female	4	29	101		182	96
	Tony	Male	4.3	29	1191		1323	653
Cressy,	Attilla	Male	5	16	661		588	368
Midlands TAS (This study)	Bellatrix	Female	2.07	18	26		133	56
(1110 00000)	Cruella	Female	3.23	7	188		257	179
	Jabba	Male	5.1	18	1197		950	468
	Joker	Male	4.5	30	903		1010	510
	Petunia	Female	2.7	17	379		269	186
	Rumpelstiltskin	Male	4.46	46	1235		1389	732
	Umbridge	Female	3.5	20	207		187	150
	ChairmanMiao	Male	4.73	20	272		567	154

Site	ID	Sex	Weight (kg)	Track nights	KDE95 (ha)	Excluded	MCP (ha)	mKDE (ha)
Ross, Midlands TAS	MadameMiao	Female	3.57	6	143	Did not reach asymptote	233	105
(This study)	Rasputin	Male	5.3	10	1920	Failed site fidelity test	615	174
Oatlands,	Godzilla	Male	5.43	39	1320		1266	826
Midlands TAS (This study)	Goliath	Male	4.49	33	398		522	274
(This study)	Gremlin	Male	3.08	59	486		436	212
	Mordred	Female	3	42	228		343	234
	Pontiak	Female	2.72	20	600		533	348
	Ursula	Female	3.8	42	29		81	37
	Gomez	Male	3.3	32	2	Cats	61	7
	Gorgon	Female	2	35	3	confined to	35	9
	Medusa	Female	3.2	8	6	municipal	12	10
	Morticia	Female	4.1	57	7	J	64	14
Kangaroo	Bm1	Male	3.8	54	186*		194	
Island, SA (Bengsen <i>et al</i>	Bf1	Female	2.7	78	275*		287	
(bengsen et ul. 2012)	Bm2	Male	3.6	104	362*		392	
	Bm3	Male	3.8	69	518*		782	
	Bm4	Male	3.8	106	861*		1455	
	Bm5	Male	5.4	92	1620*		1922	
	Pf1	Female	4.3	71	284*		363	
	Pf2	Female	3.2	72	459*		597	
	Pm2	Male	4.4	20	503*		534	
	Pm1	Male	5.1	66	511*		522	
	Pf3	Female	2.6	85	645*		818	
	Pm3	Male	3.3	64	652*		780	
	Pm4	Male	6.2	64	936*		957	
Dirk Hartog	DH5	Male	5.1	75	387**			
Island, WA (Hilmer 2010)	DH5.1	Male	4.25	66	715**			
(1111101 2010)	DH12	Male	5	>21	1110**			
	DH17	Male	5	>21	1854**			
	DH27	Male	5.1	>21	1193**			
	DH27.2	Male	4.5	>21	595**			
	DH29	Male	4.75	>21	1285**			
	MB8	Male	5.5	>21	888**			
	MB2	Male	2.7	>21	2622**			
	MB3	Male	3.2	>21	721**			
	MB6	Male	4.7	>21	410**			
	B2	Female	3.5	>21	367**			

Site	ID	Sex	Weight (kg)	Track nights	KDE95 (ha)	Excluded	MCP (ha)	mKDE (ha)
	MB5	Female	2.6	>21	1579**			
	B3	Female	3.7	>21	637**			
	MB7	Female	3.5	>21	274**			
East	Karen (F)	Female		42	179		141	
Gippsland, VIC	Neil (M)	Male		~150	546		410	
2011)	Hans (M)	Male		~90	446		370	
	Olof (M)	Male		~270	595		816	
	Liz (F)	Female		~570	137	VHF only	166	
	Chris (M)	Male		~540	246	VHF only	226	
	Hayley (F)	Female		~330	58	VHF only	53	
	Danielle (F)	Female		~420	90	VHF only	60	
Otway Ranges,	Ash	Male	4.5	30	818		653	
VIC (Hradsky	Klaus	Male	4.45	29	820		724	
unpubl.)	Neko	Male	4.5	115	1735		1428	
Flinders	890	Male	3.7	88	397**			
Ranges, SA	470	Male	3.8	107	678**			
(Johnston <i>et</i> al. 2012)	1580	Male	4.5	113	684**			
	80	Male	4.5	79	886**			
	3580	Male	4.6	99	912**			
Pilbara, NT	150.178	Male	4.7	72	1260**			
(Johnston <i>et</i>	150.285	Male	3.3	60	1320**			
ui. 2013)	150.003	Male	3.7	62	1630**			
	150.161	Male	2.6	67	660**			
	150.245	Male	3.8	56	670**			
	150.344	Female	2.9	56	430**			
Roxby Downs,	2	Female	3.4	27	200**			
SA (Johnston <i>et</i>	18	Male	3.5	13	210**			
al. 2014)	12	Male	5.1	15	260**			
	6	Female	2.2	17	280**			
	17	Female	3.7	32	280**			
	7	Female	3	45	290**			
	4	Male	4.3	40	300**			
	3	Male	4.9	18	330**			
	14	Female	3	41	400**			
	1	Male	4.3	42	420**			
	11	Male	3.4	23	450**			
	9	Female	2.5	18	480**			

Site	ID	Sex	Weight (kg)	Track nights	KDE95 (ha)	Excluded	MCP (ha)	mKDE (ha)
	15	Male	3.7	16	480**			
	10	Male	4.4	16	540**			
	5	Male	5	46	850**			
	16	Male	5	40	1050**			
	8	Female	3.5	20	1120**			
Wilsons Prom,	8	Female	2.8	31	294**			
VIC (Johnston	2	Male	3.5	90	370**			
2012)	6	Male	3.8	45	499**			
	9	Male	3.7	28	653**			
	1	Male	4.3	96	778**			
	10	Male	4.7	30	800**			
	3	Male	3.6	90	1362**			

Home-ranges calculated using: *adaptive nearest local convex hulls (LoCoH); ** 95% minimum convex polygons (MCP)

4. Model comparison sets for all analyses

Table S5 Model comparisons for all formal statistical analyses. K indicates the number of parameters in the model. Home-range size (HR) was calculated using 95% kernel density estimates (KDE95_1H) in all analyses. All save population density analyses use AIC_c adjusted for small sample sizes. In population density analyses AIC was used without adjustment following suggestions in the secr package documentation that AIC may perform better even with small sample sizes (Turek and Fletcher 2012). Where models are within 2 AIC_c units, the most parsimonious model is taken as the top model. For mixed-model analyses, the conditional R² term (R²_{GLMM(c)}) reflects the variance explained by the entire model, including fixed and random effects.

Analysis	Dataset	Model		Model c	omparisc	n	Goodne	ss of fit
	Spotted-tailed quoll		К	AICc	dAICc	AlCcwt	LL	R ² _{GLMM(c)}
	Data from 4	Log ₁₀ (HR) ~ Sex + AnnRain + 1 Site	5	5.02	0.00	0.63	3.60	0.61
	comprising 33 animals	Log ₁₀ (HR) ~ Sex * AnnRain + 1 Site	6	6.82	1.80	0.26	4.20	0.63
e size	from 7 tracking sites.	$Log_{10}(HR) \sim Sex + 1 Site$	4	9.04	4.02	0.08	0.19	0.67
-rang		Log ₁₀ (HR) ~ AnnRain + 1 Site	4	12.47	7.45	0.02	-1.52	0.65
home-1		Log ₁₀ (HR) ~ 1 Site		13.48	8.46	0.01	-3.32	0.65
y vs h	Feral cat		K	AICc	dAICc	AlCcwt	LL	R ² GLMM(c)
Ictivit	Data from 10	Cuberoot(HR) ~ Sex * AnnRain + 1 Site	6	380.31	0.00	0.74	-183.69	0.39
rodu	comprising 97 animals	Cuberoot(HR) ~ Sex + 1 Site	4	383.63	3.33	0.14	-187.60	0.34
ш.	from 12 tracking sites.	Cuberoot(HR) ~ Sex + AnnRain + 1 Site	5	383.87	3.56	0.12	-186.60	0.35
		Cuberoot(HR) ~ 1 Site	3	410.97	30.67	0.00	-202.36	0.16
		Cuberoot(HR) ~ AnnRain + 1 Site	4	411.93	31.62	0.00	-201.75	0.16

Analysis	Dataset	Model				Model c	ompariso	n	Goodness of fit
	Spotted-tailed quoll				K	AIC	dAIC	AlCwt	
	Data from 3 sites in the	Density ~ Site	g0~1	detection scale(σ) ~ Site	7	2050.56	0.00	0.63	
	(Cressy, Campbell	Density ~ Site + Sex	g0~1	detection scale(σ) ~ Site + Sex	9	2051.70	1.14	0.36	
Isity	Town and Oatlands) with trap history for	Density ~ Sex	g0~1	detection scale(σ) ~ Sex	5	2059.86	9.30	0.01	
s population de	both species.	Density ~ Site + Sex	g0~1	detection scale(σ) ~ Sex	7	2060.06	9.50	0.01	
		Density ~ Site	g0~1	detection scale(σ) ~ 1	5	2065.09	14.53	0.00	
		Density ~ 1	g0~1	detection scale(σ) ~ 1	3	2065.57	15.01	0.00	
te) vs	Feral cat				К	AIC	dAIC	AlCwt	
ity (si	Data from 3 sites in the	Density ~ Site + Sex	g0~1	detection scale(σ) ~ Sex	7	889.26	0.00	0.35	
uctiv	(Cressy, Campbell	Density ~ Site	g0~1	detection scale(σ) ~ 1	5	889.53	0.26	0.30	
Prod	Town and Oatlands) with trap history for	Density ~ Site + Sex	g0~1	detection scale(σ) ~ Site + Sex	9	891.60	2.34	0.11	
	both species.	Density ~ Sex	g0~1	detection scale(σ) ~ Sex	5	891.78	2.52	0.10	
		Density ~ 1	g0~1	detection scale(σ) ~ 1	3	891.83	2.56	0.10	
		Density ~ Site	g0~1	detection scale(σ) ~ Site	7	893.11	3.85	0.05	

Analysis	Dataset	Model		Model c	ompariso	on	Goodne	ss of fit
	Both species		К	AICc	dAICc	AlCcwt	LL	R ² GLMM(c)
	Data from 22 cats and	Log(HR) ~ Spp * Sex + 1 Site	6	82.22	0	0.4	-33.36	0.59
Analysis Data Both Data 8 spu acro Tasn Pog	across 4 sites in the	Log(HR) ~ Spp + Sex + 1 Site	5	82.55	0.33	0.34	-35.08	0.54
	Tasmanian Midlands	Log(HR) ~ log(BodyMass) + Spp + Sex + 1 Site	6	85.18	2.96	0.09	-34.84	0.55
ize		Log(HR) ~ log(BodyMass) * Spp + Sex + 1 Site	7	85.39	3.18	0.08	-33.26	0.59
lge s		Log(HR) ~ log(BodyMass) + Spp * Sex + 1 Site	7	85.49	3.27	0.08	-33.31	0.59
home-ran		Log(HR) ~ log(BodyMass) * Spp + 1 Site	6	93.33	11.11	0	-38.91	0.40
		Log(HR) ~ log(BodyMass) + Spp + 1 Site	5	94.06	11.85	0	-40.83	0.36
ass vs		Log(HR) ~ Sex + 1 Site	4	95.22	13.01	0	-42.84	0.23
¥ Z		Log(HR) ~ log(BodyMass) * Spp * Sex + 1 Site	10	95.36	13.15	0	-32.18	0.62
Boc		Log(HR) ~ Spp + 1 Site	4	96.06	13.84	0	-43.26	0.22
		Log(HR) ~ log(BodyMass) + Sex + 1 Site	5	97.44	15.23	0	-42.52	0.24
		Log(HR) ~ Null + 1 Site	3	100.32	18.11	0	-46.72	0.00
		Log(HR) ~ log(BodyMass) * Sex + 1 Site	6	100.54	18.32	0	-42.52	0.24
		Log(HR) ~ log(BodyMass) + 1 Site	4	102.56	20.34	0	-46.51	0.01

Analysis Dataset		Model		Model comparison			Goodness of fit	
	Both species		К	AICc	dAICc	AlCcwt	LL	R ² _{Adj}
Home-range size vs nightly movement	Data from 22 cats and 16 spotted-tailed quolls across 5 sites with fine- scale tracking data (4 in the Tasmanian	AveDist ~ Species * HR + nightl	6	647.50	0	0.78	-316.39	0.52
		AveDist ~ Species * HR + Sex + nightl	7	650.47	2.97	0.18	-316.37	0.51
		AveDist ~ HR + nightl	4	655.93	8.43	0.01	-323.36	0.35
		AveDist ~ Species * Sex + HR + nightl	7	655.97	8.47	0.01	-319.12	0.43
		AveDist ~ Sex + HR + nightl	5	656.33	8.83	0.01	-322.23	0.37
	Midlands, 1 in Arthur River)	AveDist ~ Species * HR * Sex + nightl	10	657.36	9.86	0.01	-314.61	0.51
		AveDist ~ Species + HR + nightl	5	657.59	10.09	0	-322.86	0.35
		AveDist ~ Species + HR + Sex + nightl	6	658.60	11.10	0	-321.94	0.36
		AveDist ~ Sex * HR + nightl	6	659.16	11.66	0	-322.22	0.35
		AveDist ~ Species + Sex * HR + nightl	7	661.62	14.12	0	-321.94	0.34
		AveDist ~ Species * Sex + nightl	6	662.60	15.11	0	-323.95	0.29
		AveDist ~ Sex + nightl	4	665.00	17.50	0	-327.89	0.18
		AveDist ~ Species + Sex + nightl	5	667.10	19.60	0	-327.61	0.17
		AveDist ~ nightl	3	669.05	21.55	0	-331.17	0.05
		AveDist ~ Null	2	669.74	22.25	0	-332.70	0.00
		AveDist ~ Species + nightl	4	671.13	23.63	0	-330.96	0.04

References

Andersen, G. E., Johnson, C. N., and Jones, M. E. (2020). Space use and temporal partitioning of sympatric Tasmanian devils and spotted-tailed quolls. *Austral Ecology*.

Andrew, D. (2005) Ecology of the tiger quoll Dasyurus maculatus in coastal New South Wales. MSc Thesis. (University of Wollongong.)

Belcher, C. A. and Darrant, J. P. (2004). Home-range and spatial organization of the marsupial carnivore, *Dasyurus maculatus maculatus* (Marsupialia: Dasyuridae) in south-eastern Australia. *Journal of Zoology* **262**, 271-280.

Bengsen, A. J., Butler, J. A., and Masters, P. (2012). Applying home-range and landscape-use data to design effective feral-cat control programs. *Wildlife Research* **39**, 258-265.

Benhamou, S. (2011). Dynamic Approach to Space and Habitat Use Based on Biased Random Bridges. *PLOS ONE* **6**, e14592.

Buckmaster, A. J. (2011) Ecology of the feral cat (*Felis catus*) in the tall forests of Far East Gippsland. PhD Thesis. (University of Sydney.)

Burnett, S. E. (2001) Ecology and conservation status of the northern spot-tailed quoll, *Dasyurus maculatus* with reference to the future of Australia's marsupial carnivores. PhD Thesis. (James Cook University.)

Burrows, N. D., Algar, D., Robinson, A. D., Sinagra, J., Ward, B., and Liddelow, G. (2003). Controlling introduced predators in the Gibson Desert of Western Australia. *Journal of Arid Environments* **55**, 691-713.

Claridge, A. W., Paull, D., Dawson, J., Mifsud, G., Murray, A. J., Poore, R., and Saxon, M. J. (2005). Home-range of the spotted-tailed quoll (*Dasyurus maculatus*), a marsupial carnivore, in a rainshadow woodland. *Wildlife Research* **32**, 7-14.

Edwards, G. P., De Preu, N., Shakeshaft, B. J., Crealy, I. V., and Paltridge, R. M. (2001). Home-range and movements of male feral cats (Felis catus) in a semiarid woodland environment in central Australia. *Austral Ecology* **26**, 93-101.

Fieberg, J. and Börger, L. (2012). Could you please phrase "home-range" as a question? *Journal of Mammalogy* **93**, 890-902.

Glen, A. S. and Dickman, C. R. (2006). Home-range, denning behaviour and microhabitat use of the carnivorous marsupial *Dasyurus maculatus* in eastern Australia. *Journal of Zoology* **268**, 347-354. Godsell, J. (1983) Ecology of the eastern quoll, *Dasyurus viverrinus* (Dasyuridae, Marsupialia). PhD Thesis. (Australian National University: Canberra.)

Hilmer, S. S. (2010) Ecophysiology of feral cats (*Felis catus*) in Australia. PhD Thesis. (Johann Wolfgang Goethe Universität: Lübeck, Frankfurt.)

Johnston, M. (2012). Field assessment of the Curiosity^(R) bait for management of feral cats after fire at Wilsons Promontory National Park: Black Saturday Victoria 2009 - Natural values fire recovery program. (Ed. Department of Sustainability and Environment): Heidelberg, Victoria.)

Johnston, M., Bould, L., O'Donoghue, M., Holdsworth, M., Marmion, P., Bilney, R., Reside, A. E., Caldwell, D., Gaborov, R., and Gentles, T. (2014). Field efficacy of the Curiosity^(R) bait for management of a feral cat population at Roxby Downs, South Australia. In 'Technical Report Series No. 253'. (Ed. Department of Sustainability and Environment). (Arthur Rylah Institute for Environmental Research: Heidelberg, Victoria.)

Johnston, M., Gigliotti, F., O'Donoghue, M., Holdsworth, M., Robinson, S., Herrod, A., and Eklom, K. (2012). Field Assessment of the Curiosity^(R) bait for management of feral cats in the semi-arid zone (Flinders Ranges National Park). In 'Technical Report Series No. 234'. (Ed. Department of Sustainability and Environment). (Arthur Rylah Institute for Environmental Research: Heidelberg, Victoria.)

Johnston, M., O'Donoghue, M., Holdsworth, M., Robinson, S., Herrod, A., Eklom, K., Bould, L., and Little, N. (2013). Field assessment of the Curiosity^(R) bait for managing feral cats in the Pilbara. In

'Technical Report Series No. 245'. (Ed. Department of Sustainability and Environment). (Arthur Rylah Institute for Environmental Research: Heidelberg, Victoria.)

Jones, E. and Coman, B. J. (1982). Ecology of the Feral Cat, Felis catus (L.), in South-Eastern Australia III. Home-ranges and Population Ecology in Semiarid North-West Victoria. *Australian Wildlife Research* **9**, 409-420.

Körtner, G., Holznagel, N., Fleming, P. J. S., and Ballard, G. (2016). Home-range and activity patterns measured with GPS collars in spotted-tailed quolls. *Australian Journal of Zoology* **63**, 424-431. Laver, P. N. and Kelly, M. J. (2008). A Critical Review of Home-range Studies. *Journal of Wildlife Management* **72**, 290-298.

McGregor, H. W., Legge, S., Potts, J., Jones, M. E., and Johnson, C. N. (2015). Density and homerange of feral cats in north-western Australia. *Wildlife Research* **42**, 223-231.

Mitchell, M. S. and Powell, R. A. (2008). Estimated home-ranges can misrepresent habitat relationships on patchy landscapes. *Ecological Modelling* **216**, 409-414.

Mohr, C. O. (1947). Table of Equivalent Populations of North American Small Mammals. *The American Midland Naturalist* **37**, 223-249.

Molsher, R., Dickman, C., Newsome, A., and Müller, W. (2005). Home-ranges of feral cats (Felis catus) in central-western New South Wales, Australia. *Wildlife Research* **32**, 587-595.

Moseby, K. E., Stott, J., and Crisp, H. (2009). Movement patterns of feral predators in an arid environment – implications for control through poison baiting. *Wildlife Research* **36**, 422-435. Pemberton, D. (1990) Social organisation and behaviour of the Tasmanian devil, *Sarcophilus harrisii*. PhD Thesis. (University of Tasmania.)

Plotz, R. D., Grecian, W. J., Kerley, G. I. H., and Linklater, W. L. (2016). Standardising Home-range Studies for Improved Management of the Critically Endangered Black Rhinoceros. *PLOS ONE* **11**, e0150571.

Robley, A., Gormley, A., Woodford, L., Lindeman, M., Whitehead, B., Albert, R., Bowd, M., and Smith, E. (2010). Evaluation of camera trap sampling designs used to determine change in occupancy rate and abundance of feral cats. In 'Technical Report No. 201'. (Ed. Department of Sustainability and Environment). (Arthur Rylah Institute for Environmental Research: Heidelberg, Victoria.) Robley, A., Ramsey, D., Woodford, L., Lindeman, M., Johnston, M., and Forsyth, D. (2008). Evaluation of detection methods and sampling designs used to determine the abundance of feral cats. In 'Technical Report Series No. 181'. (Ed. Department of Sustainability and Environment). (Arthur Rylah

Institute for Environmental Research: Heidelberg, Victoria.)

Schwartz, E. (1995) Habitat use in a population of mainland Tasmanian feral cats, Felis catus. Honours Thesis. (University of Tasmania.)

Thalmann, S. (2013). Evaluation of a degradable time-release mechanism for telemetry collars. *Australian Mammalogy* **35**, 241-244.

Troy, S. N. (2014) Spatial Ecology of the Tasmanian Spotted-tailed Quoll. PhD Thesis. (University of Tasmania.)

Turek, D. and Fletcher, D. (2012). Model-averaged Wald confidence intervals. *Computational Statistics & Data Analysis* 56, 2809-2815.