Supplementary Material

Seasonal habitat suitability models for a threatened species: the Gunnison sage-grouse

Anthony D. Apa^{A,H}, Kevin Aagaard^B, Mindy B. Rice^C, Evan Phillips^D, Daniel J. Neubaum^A, Nathan Seward^E, Julie R. Stiver^F and Scott Wait^G

^AColorado Parks and Wildlife, 711 Independent Avenue, Grand Junction, CO 81505, USA.

^BColorado Parks and Wildlife, 317 W Prospect Road, Fort Collins, CO 80526, USA.

^cU.S. Fish & Wildlife Service, National Wildlife Refuge System Inventory & Monitoring Initiative, 1201 Oakridge Drive, Suite 320, Fort Collins, CO 80525, USA.

^DColorado Parks and Wildlife, 2300 South Townsend Avenue, Montrose, CO 81401, USA.

^EColorado Parks and Wildlife; 300 West New York Avenue, Gunnison, CO, 81230, USA.

^FColorado Parks and Wildlife, 4255 Sinton Road, Colorado Springs, CO, 80907, USA.

^GColorado Parks and Wildlife, 415 Turner Drive, Durango, CO, 81303, USA.

^HCorresponding author. Email: tony.apa@state.co.us

Fig. S1. The average distance moved (m) per day from capture and release (first record) of resident (blue; 1991-2016) and translocated (red; 2000-2014) Gunnison sage-grouse in five isolated populations in southwestern Colorado, USA. The sold lines represent the quadratic expression prediction curve.

Fig. S2. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the breeding season (15 March–15 July) for the Crawford, Colorado, USA Gunnison sage-grouse population (1995–2014). Distance buffer (m) is in parentheses followed by the covariate name. TRI; terrain ruggedness index.

Fig. S3. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the summer season (16 July–30 September) for the Crawford, Colorado, USA Gunnison sage-grouse population (1995–2014). Distance buffer (m) is in parentheses followed by the covariate name. TRI, terrain ruggedness index.

Fig. S4. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the breeding season (15 March–15 July) for the Dove Creek, Colorado, USA Gunnison sage-grouse population (1995–2011). Distance buffer (m) is in parentheses followed by the covariate name. TRI, terrain ruggedness index.

Fig. S5. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the breeding season (15 March–15 July) for the Piñon Mesa, Colorado, USA population Gunnison sage-grouse population (1991–2015). Distance buffer (m) is in parentheses followed by the covariate name. TRI, terrain ruggedness index.

Fig. S6. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the summer season (16 July–30 September) for the Piñon Mesa, Colorado, USA Gunnison sage-grouse population (1991–2015). Distance buffer (m) is in parentheses followed by the covariate name. TRI, terrain ruggedness index.

Fig. S7. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the breeding season (15 March–15 July) for the Poncha Pass, Colorado, USA Gunnison sage-grouse population (1999–2002). Distance buffer (m) is in parentheses followed by the covariate name.

Figure S8. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the summer season (16 July–30 September) for the Poncha Pass, Colorado, USA Gunnison sage-grouse population (1999–2002). Distance buffer (m) is in parentheses followed by the covariate name.

Fig. S9. The final linear logistic regression model standardised coefficient response curves in relation to use (1) and available (0) locations during the breeding season (15 March–15 July) for the San Miguel, Colorado, USA Gunnison sage-grouse population (1995–2016). Distance buffer (m) is in parentheses followed by the covariate name. TRI, terrain ruggedness index.

Fig. S10. The final linear logistic regression formula standardised coefficient response curves in relation to use (1) and available (0) locations during the summer season (16 July–30 September) for the San Miguel, Colorado, USA Gunnison sage-grouse population (1995–2016). Distance buffer (m) is in parentheses followed by the covariate name.

Table S1. Mean daily movement and the number of use and available locations used for seasonalhabitat models for five isolated Gunnison sage-grouse populations

The breeding (15 March–15 July) and summer (16 July–30 September) seasons for each population in southwestern Colorado, USA (1991–2016).

		Mean daily		
		movement	Use locations	Available locations
Population	Season	(m)	(n)	(n)
Crawford	Breeding	121	195	10 000
	Summer	100	140	10 000
Dove Creek	Breeding	86	121	10 000
Piñon Mesa	Breeding	188	685	10 000
	Summer	192	646	10 000
Poncha Pass	Breeding	154	130	10 000
	Summer	107	149	10 000
San Miguel	Breeding	276	5258	10 000
	Summer	192	1816	10 000

Table S2. Colorado vegetation classification project spatial layer descriptions and combined classes for Gunnison sage-
grouse seasonal habitat models

Spatial layer developed from 35-m Landsat imagery in Colorado, USA, 1993–1995.

	Combined class for
Description and summary of classes ^A	model development
Irrigated crops and fields, dryland agriculture, orchards.	Agriculture
Coniferous forest dominated or co-dominated by douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus	Forest
contorta), limber pine (Pinus flexilis), engleman spruce (Picea engelmannii), white fir (Abies concolor), or	
bristlecone pine (<i>Pinus aristata</i>), alpine meadow, forb or grass dominated > 11,500 feet and snowfields,	
wooded or herbaceous riparian dominated by cottonwood (Populus spp.), poplar (Populus balsamifera),	
mixed conifer species, with sedge (Carex spp.) understory.	
Deciduous forest dominated by aspen (Populus tremuloides), co-dominate aspen and Gambel oak deciduous	Forest shrubland
woodland.	
Rangeland dominated by mixed shrubs, annual and perennial grasses, co-dominated by grasses and forbs,	Grassland
disturbed or sparse vegetation.	
Sagebrush, Gambel oak (Quercus gambelii) mix, snowberry (Symphoriocarpus albus), mesic mountain	Mountain shrub
shrubs, serviceberry (Amelanchchierr alnifolia), grass and forb understory.	
High-density residential areas, lawns, planted trees, parking lots, buildings, lakes, reservoirs, rivers, streams,	Non-habitat
sand dune, barren land, rock outcrops, talus slopes.	
Gambel oak, mountain mahogany dominate or co-dominate.	Oakbrush

Twoneedle piñon (Pinus edulis) and Rocky Mountain juniper (Juniperis scopulorum) dominant or co-	Piñon-juniper
dominate mix with sagebrush, Gamble oak, mountain mahogany (Cercocarpus spp,), <25% juniper, pinyon,	
sagebrush and rock.	
Shrub riparian dominate or co-dominate by willow (Salix spp.), saltcedar (Tamarix ramosissima), Russian	Riparian
olive (Elaeagnus angustifolia), and herbaceous areas dominated or co-dominated by herbaceous vegetation	
and sedge (Carex spp.).	
Sagebrush (Artemisia spp.) with rabbitbrush and bitterbrush (Purshia tridentata) with perennial grass and	Sagebrush
forb understory and mix.	
Low elevation saline alluvial fans, shrub community dominated or co-dominated by greasewood (Sarcobatus	Shrubland
vermiculatus), broom snakeweed (Gutierrezia sarothrae), rabbitbrush (Chrysothamnus spp), and winterfat	
(Krascheninnikovia lanata).	

^AFor a complete description of vegetation communities see

https://www.arcgis.com/home/item.html?id=893739745fcd4e05af8168b7448cda0c.

Table S3. Number of individuals and use locations from translocated and resident Gunnison sage-grouse todevelop seasonal habitat models

Individuals and locations are identified for breeding (15 March–15 July) and summer (16 July–30 September) seasons for the final habitat use models by population in southwestern, Colorado, USA, 1991–2016.

		Number of	locations	Number of individuals		Number of individuals
Population	Status	Breeding	Summer	Breeding	Summer	common across seasons
Crawford						
	Resident	74	47	13	9	7
	Translocated	121	93	23	28	23
Dove Creek						
	Resident	106		21		
	Translocated	15		8		
Piñon Mesa						
	Resident	168	48	21	10	10
	Translocated	517	598	42	38	35
Poncha Pass						
	Resident	15	18	2	2	2
	Translocated	115	131	15	15	13
San Miguel						
	Resident	4684	1455	185	77	66
	Translocated	574	361	46	42	35

Table S4. Covariates included in the final seasonal habitat models for Gunnison sage-grouse populations

Covariates are identified for each population and distance buffer for breeding (15 March-15 July) and summer (16 July-30

				Buffer	distance (m)				
CoverieteA	12	20	27	'5	100	00	4000	4000	
Covariate	Breeding	Summer	Breeding	Summer	Breeding	Summer	Breeding	Summer	
Agriculture			DC						
Elevation	PM	PM							
Forest	РР	PP	PM				SM	PP	
Forest shrubland			РР					PP	
Grassland						PP	DC, SM	SM	
Mountain shrub			SM				РР		
Non-habitat			DC		SM	SM			
Oakbrush								CR	
Piñon-juniper		PP			CR	CR	SM	PM, SM	
Riparian			PM	PM					
Road density	PM	PM					SM	CR, SM	
Sagebrush	PP		SM				CR, PP, PM		
Shrubland		PP		SM					
TRI	SM, PM	PM	DC		CR	CR	DC		

September) in southwestern Colorado, USA (1991–2016).

^ACR, Crawford; DC, Dove Creek, PM, Piñon Mesa; PP, Poncha Pass; SM, San Miguel.

Table S5. Seasonal habitat model selection rank for the Gunnison sage-grouse in the Crawford population The ranking includes the top five habitat models for the breeding (15 March–15 July) and summer (16 July–30 September) seasons (1995–2015). Models are ranked by change in the Bayesian Information Criterion (Δ BIC) indicating the best of those considered (breeding *n* = 128, summer *n* = 32). BIC weights (*w_i*) indicate the weight of evidence that model *i* is the best approximating model given the data and set of candidate models, K= number of parameters. The model averaging procedure was used for models < 2 Δ BIC from the top model. See text and Table S2

BREEDING MODEL ^A	K	BIC	ΔBIC	Wi	Rank
PJ_1000 + SAGE_4000 + TRI_1000	4	1522.61	0.00	0.68	1
$PJ_{1000} + RD_{4000} + SAGE_{4000} + TRI_{1000}$	5	1524.83	2.22	0.22	2
$PJ_{1000} + SAGE_{4000} + TRI_{1000} + TRI_{4000}$	5	1528.36	5.75	0.04	3
$PJ_{1000} + RD_{4000} + SAGE_{4000}$	4	1529.86	7.24	0.02	4
$PJ_{1000} + SAGE_{4000}$	3	1530.49	7.88	0.01	5
SUMMER MODEL ^A					
PJ_1000 + RD_4000 + TRI_1000 + OAK_4000	5	1264.24	0.00	0.64	1
$PJ_{1000} + RD_{4000} + TRI_{1000}$	4	1266.03	1.79	0.26	2
PJ_1000 + RD_4000 + TRI_1000 + NONHAB_275 + OAK_4000	6	1270.91	6.67	0.02	3
$PJ_{1000} + TRI_{1000} + OAK_{4000}$	4	1271.00	6.75	0.02	4
PJ_1000 + RD_4000 + TRI_1000 + NONHAB_275	5	1271.05	6.81	0.02	5

for covariate descriptions.

^AOAK, Gamble oak; NONHAB, non-habitat; PJ, piñon-juniper; RD, road density; SAGE, sagebrush; TRI, terrain ruggedness index. Covariate followed by the distance buffer (m).

Table S6. The estimated posterior covariate standardised coefficients for final seasonal

habitat model for the Gunnison sage-grouse population in Crawford Standardised coefficients include β , and the 95% lower (LCI) and upper (UCI) credible intervals during the breeding (15 March–15 July) and summer (16 July–30 September)

Covariate ^A	Breeding					
	β	LCI	UCI	β	LCI	UCI
Intercept	-7.368	-8.026	-6.736	-7.186	-7.932	-6.573
Oakbrush_4000				0.142	-1.216	0.508
Piñon-juniper_1000	-2.507	-3.610	-1.592	-3.300	-4.248	-1.735
Road density_4000				0.843	0.117	1.400
Sagebrush_4000	0.772	0.439	1.122			
TRI_1000	-0.539	-0.912	-0.253	-1.776	-2.316	-1.259

season (1995-2014).

Table S7. Breeding and summer habitat model summary statistics for Gunnison sage-grouse use and available locations in Crawford

Values included the covariate mean and standard error in parentheses for the top habitat model during the breeding (15 March-

Covariate ^A	Breeding Available		Summer	Available
Oakbrush_4000 (proportion)			0.013 (0.001)	0.026 (0.000)
Piñon-juniper_1000 (proportion)	0.004 (0.000)	0.072 (0.001)	0.006 (0.001)	0.070 (0.001)
Road density_4000 (km km ⁻²)			0.631 (0.040)	0.605 (0.001)
Sagebrush_4000 (proportion)	0.379 (0.004)	0.300 (0.001)		
Terrain ruggedness index_1000 (m)	165.000 (1.110)	192.000 (0.370)	164.000 (1.100)	192.000 (0.370)

15 July) and summer (16 July-30 September) seasons, Crawford, Colorado, USA (1995-2014).

Table S8. Seasonal habitat model selection and rank for the Gunnison sage-grouse Dove Creek population
The ranking includes the top five models for the breeding (15 March-15 July) season model (1995-2011). Models are
ranked by change in the Bayesian Information Criterion (Δ BIC) indicating the best of those considered ($n = 128$). BIC
weights (w_i) indicate the weight of evidence that model <i>i</i> is the best approximating model given the data and set of
candidate models, K= number of parameters. The model averaging procedure was used for models $< 2 \Delta BIC$ from the top
model. See text and Table S2 for covariate descriptions.

BREEDING MODEL ^A	K	BIC	ΔBIC	Wi	Rank ^b
NONHAB_275 + AGR_275 + GRASS_4000 + TRI_275	5	1174.65	0.00	0.49	1
$TRI_4000 + NONHAB_275 + AGR_275 + GRASS_4000 + TRI_275$	6	1175.25	0.60	0.36	2
$AGR_275 + GRASS_4000 + TRI_275$	4	1179.14	4.48	0.05	3
PJ_1000 + TRI_4000 + NONHAB_275 + AGR_275 + GRASS_4000 + TRI_275	7	1180.14	5.49	0.03	4
$TRI_4000 + AGR_275 + GRASS_4000 + TRI_275$	5	1180.84	6.18	0.02	5

^AAGR, agriculture; GRASS, grassland; NONHAB, non-habitat; PJ, piñon-juniper; SHRUB, shrubland; TRI, terrain ruggedness index followed by the distance buffer (m). Ranked models 1 and 2 were subject to model averaging and TRI_4000 ultimately was included in the top model.

Table S9. The estimated posterior covariate standardised coefficients for the final seasonal habitat model for the Gunnison sage-grouse population in Dove Creek Standardised coefficients included β, and 95% lower (LCI) and

upper (UCI) credible intervals for the breeding (15 March-15 July

season	(1995–2011).
--------	--------------

Covariate ^A	β	LCI	UCI
Intercept	-5.868	-6.185	-5.519
Agriculture_275	-0.727	-1.003	-0.450
Grassland_4000	-0.617	-0.901	-0.327
Non-habitat_275	-0.816	-1.318	-0.347
TRI_275	-1.025	-1.322	-0.700
TRI_4000	-0.423	-0.704	-0.145

Table S10. Breeding and summer final habitat model summary statistics for Gunnison sage-grouse sue and available locations in Dove Creek

Values included the covariate mean and standard errors in parentheses for the final habitat model during the breeding (15 March-15 July) season (1995-2011).

Covariate ^A	Breeding	Available
Agriculture_275 (proportion)	0.171 (0.026)	0.264 (0.003)
Grassland_4000 (proportion)	0.090 (0.004)	0.125 (0.001)
Non-habitat_275 (proportion)	0.006 (0.001)	0.014 (0.000)
Terrain ruggedness index_275 (m)	84.300 (2.570)	116.000 (0.413)
Terrain ruggedness index_4000 (m)	103.000 (2.380)	122.000 (0.331)

Table S11. Seasonal habitat model selection rank for the Gunnison sage-grouse Piñon Mesa population

The ranking includes the top five models for the breeding (15 March–15 July) and summer (16 July–30 September) seasons (1991–2015). Models are ranked by change in the Bayesian Information Criterion (Δ BIC) indicating the best of those considered (breeding *n* = 128, summer *n* = 32). BIC weights (*w_i*) indicate the weight of evidence that model *i* is the best approximating model given the data and set of candidate models, K= number of parameters. The model averaging procedure was used for models < 2 Δ BIC from the top model.

BREEDING ^A	Κ	BIC	ΔBIC	Wi	Rank
SAGE_4000 + FOR_275 + ELEV_120 + RIP_275 + RD_120 + TRI_120	7	3824.32	0.00	0.95	1
$SAGE_4000 + FOR_275 + ELEV_120 + RD_120 + TRI_120$	6	3830.29	5.97	0.05	2
$SAGE_4000 + ELEV_120 + RIP_275 + RD_120 + TRI_120$	6	3843.28	18.95	0.00	3
$FOR_275 + ELEV_120 + RD_120 + TRI_120$	5	3858.38	34.05	0.00	4
$SAGE_4000 + ELEV_120 + RD_120 + TRI_120$	5	3861.45	37.13	0.00	5
SUMMER ^A					
ELEV_120 + RIP_275 + RD_120 + TRI_120 + PJ_4000	6	3005.45	0.00	1.00	1
$ELEV_120 + RIP_275 + RD_120 + TRI_120$	5	3021.60	16.14	0.00	2
$ELEV_120 + RD_120 + TRI_120 + PJ_4000$	5	3057.26	51.80	0.00	3
$ELEV_{120} + RD_{120} + TRI_{120}$	4	3069.09	63.63	0.00	4
$ELEV_{120} + RIP_{275} + RD_{120} + PJ_{4000}$	5	3240.76	235.30	0.00	5

^AELEV, elevation; FOR=forest; PJ, piñon-juniper; RIP, riparian; RD, Road density; SAGE, sagebrush; TRI, terrain ruggedness index. Covariate name followed by the distance buffer (m).

Table S12. The estimated posterior covariate standardised coefficients for final seasonalhabitat model for Gunnison sage-grouse population in Piñon Mesa

Standardised coefficients include β , and the 95% lower (LCI) and upper (UCI) credible intervals for the breeding (15 March–15 July) and summer (16 July–30 September) seasons (1991–2015).

Covariate ^A	Breeding Summ			Summer		
-	β	LCI	UCI	β	LCI	UCI
Intercept	-5.282	-5.608	-4.878	-7.700	-8.194	-7.291
Elevation_120	1.380	1.167	1.591	4.560	4.219	4.827
Forest_275	-1.697	-2.341	-1.004			
Piñon-juniper_4000				1.303	0.816	1.655
Riparian_275	-0.089	-0.246	0.062	0.043	-0.079	0.173
Road density_120	0.761	0.617	0.911	1.073	0.905	1.251
Sagebrush_4000	-0.432	-0.614	-0.242			
TRI_120	-1.394	-1.599	-1.192	-1.363	-1.563	-1.142

Table S13. Breeding and summer final habitat model summary statistics for Gunnison sage-grouse use andavailable locations in Piñon Mesa

Values include the covariate mean and standard error in parentheses for the final seasonal habitat models during the

Covariate ^A	Breeding	Available	Summer	Available
Elevation_120 (m)	2670.000 (8.480)	2430.000 (2.930)	0.000 (2.930) 2760.000 (4.770)	
Forest_275 (proportion)	0.001 (0.000)	0.009 (0.000)		
Piñon-juniper_4000 (proportion)			0.110 (0.002)	0.190 (0.001)
Riparian_275 (proportion)	0.007 (0.000)	0.012 (0.000)	0.006 (0.000)	0.012 (0.000)
Road density_120 (km km ⁻²)	0.606 (0.001)	0.584 (0.000)	0.603 (0.001)	0.584 (0.000)
Sagebrush_4000 (proportion)	0.154 (0.002)	0.228 (0.001)		
Terrain ruggedness index_120 (m)	155.000 (1.690)	178.000 (0.761)	163.000 (1.440)	179.000 (0.765)

Table S14. Seasonal habitat model selection rank for the Gunnison sage-grouse Poncha Pass population

The ranking includes the top five habitat models for the breeding (15 March–15 July) and summer (16 July-30 September) seasons (1999–2002). Models are ranked by change in the Bayesian Information Criterion (Δ BIC) indicating the best of those considered (breeding *n* = 128, summer *n* = 256). BIC weights (*w_i*) indicate the weight of evidence that model *i* is the best approximating model given the data and set of candidate models, K= number of parameters. The model averaging procedure was used for models < 2 Δ BIC from the top model.

BREEDING ^A	K	BIC	ΔBIC	Wi	Rank ^b
SAGE_4000 + FOR_120 + MTSHB_4000 + SAGE_120 + FORSHB_275	6	1002.48	0.00	0.71	1
SAGE_4000 + FOR_120 + MTSHB_120 + MTSHB_4000 + SAGE_120 + FORSHB_275	7	1005.30	2.82	0.17	2
SAGE_4000 + FOR_120 + GRASS_1000 + MTSHB_4000 + SAGE_120 + FORSHB_275	7	1007.52	5.04	0.06	3
$SAGE_4000 + FOR_120 + MTSHB_4000 + SAGE_120$	5	1007.98	5.50	0.05	4
$SAGE_4000 + FOR_120 + GRASS_1000 + MTSHB_4000 + SAGE_120$	6	1012.11	9.63	0.01	5
SUMMER ^A					
GRASS_1000 + FOR_4000 + PJ_120 + FORSHB_4000 + SHRUB_120	6	1207.61	0.00	0.39	1
$GRASS_{1000} + FOR_{4000} + FORSHB_{4000} + SHRUB_{120}$	5	1208.04	0.43	0.31	2
$FOR_120 + GRASS_1000 + FOR_4000 + PJ_120 + FORSHB_4000 + SHRUB_120$	7	1209.17	1.56	0.18	3
$FOR_120 + GRASS_1000 + FOR_4000 + FORSHB_4000 + SHRUB_120$	6	1211.52	3.90	0.06	4
$GRASS_1000 + FOR_4000 + OAK_4000 + PJ_120 + FORSHB_4000 + SHRUB_120$	7	1212.58	4.97	0.03	5

^AFOR, forest; FORSHB, forest shrubland; OAK, Gamble oak; GRASS, grassland; MTSHB, mountain shrubland; PJ, piñonjuniper; SAGE, sagebrush; SHRUB, shrubland; TRI, terrain ruggedness index followed by the distance buffer (m). Ranked summer models 1, 2, and 3 were subject to model averaging and FOR 120 ultimately was included in the top model.

Table S15. The estimated posterior covariate standardised coefficients for final seasonal habitat models for Gunnison sage-grouse in the Poncha Pass population

Standardised coefficients include β , and the 95% lower (LCI) and upper (UCI) credible intervals for the breeding (15 March–15 July) and summer (16 July–30 September) seasons (1999–2002).

Covariate ^A		Breeding			Summer	
	eta	LCI	UCI	β	LCI	UCI
Intercept	-7.645	-8.989	-6.412	-6.744	-7.157	-6.288
Forest_120	-7.941	-11.218	-4.724	-1.149	-1.904	-0.065
Forest_4000				-1.200	-1.932	-0.438
Forest shrubland_275	-0.178	-1.072	0.138			
Forest shrubland_4000				-4.884	-5.673	-3.954
Grassland_1000				0.508	0.337	0.675
Mountain shrub_4000	0.771	0.540	0.999			
Piñon-juniper_120				0.320	0.095	0.519
Sagebrush_120	-0.590	-0.970	-0.190			`
Sagebrush_4000	1.094	0.580	1.489			
Shrubland_120				-0.590	-0.860	-0.314

Table S16. Breeding and summer final habitat model summary statistics for Gunnison sage-grouse use and available locations in Poncha Pass

Values include the covariate mean and standard error in parentheses for the final seasonal habitat models during the breeding (15 March–15 July) and summer (16 July–30 September) seasons (1999–2002).

Covariate ^A	Breeding	Available	Summer	Available
Forest_120 (proportion)	0.008 (0.003)	0.055 (0.002)	0.023 (0.007)	0.060 (0.002)
Forest_4000 (proportion)			0.039 (0.005)	0.092 (0.002)
Forest shrubland_275 (proportion)	0.030 (0.011)	0.048 (0.001)		
Forest shrubland_4000 (proportion)			0.028 (0.005)	0.055 (0.001)
Grassland_1000 (proportion)			0.101 (0.006)	0.032 (0.001)
Mountain shrub_4000 (proportion)	0.094 (0.004)	0.107 (0.001)		
Piñon-juniper_120 (proportion)			0.024 (0.005)	0.101 (0.002)
Sagebrush_120 (proportion)	0.388 (0.027)	0.333 (0.003)		
Sagebrush_4000 (proportion)	0.438 (0.013)	0.260 (0.002)		
Shrubland_120 (proportion)			0.161 (0.011)	0.178 (0.002)

Table S17. Seasonal habitat model selection rank for the Gunnison sage-grouse San Miguel population

The rankings include the top five habitat models for the breeding (15 March–15 July) and summer (16 July–30 September) seasons (1995–2016). Models are ranked by change in the Bayesian Information Criterion (Δ BIC) indicating the best of those considered (breeding *n* = 512, summer *n* = 128). BIC weights (*w_i*) indicate the weight of evidence that model *i* is the best approximating model given the data and set of candidate models, K= number of parameters. The model averaging procedure was used for models < 2 Δ BIC from the top model.

BREEDING ^A	K	BIC	ΔBIC	Wi	Rank
RD_4000 + GRASS_4000 + TRI_120 + PJ_4000 + ELEV_4000 + MTSHB_275 +					
$NONHAB_{1000} + SAGE_{275}$	9	14984.60	0.00	0.99	1
$RD_4000 + GRASS_4000 + FOR_275 + TRI_120 + PJ_4000 + ELEV_4000 + MTSHB_275 + CRSS_4000 + FOR_275 + CRSS_4000 + FOR_275 + CRSS_4000 + FOR_275 + CRSS_4000 + CRSS_400 + CRSS_4000 + CRSS_400 $					
NONHAB_1000 + SAGE_275	10	14994.20	9.61	0.01	2
$RD_{4000} + TRI_{120} + PJ_{4000} + ELEV_{4000} + MTSHB_{275} + NONHAB_{1000} + ONHAB_{1000} +$					
SAGE_275	8	14994.63	10.03	0.01	3
$RD_{4000} + FOR_{275} + TRI_{120} + PJ_{4000} + ELEV_{4000} + MTSHB_{275} + NONHAB_{1000}$					
+ SAGE_275	9	15004.25	19.66	0.00	4
$RD_{4000} + GRASS_{4000} + PJ_{4000} + ELEV_{4000} + MTSHB_{275} + NONHAB_{1000} + ORASS_{4000} + ORASS_{4000$					
SAGE_275	8	15010.55	25.95	0.00	5
SUMMER ^A					
RD_4000 + GRASS_4000 + PJ_4000 + NONHAB_1000 + SHRUB_275	6	7751.21	0.00	0.80	1
$RD_{4000} + SAGE_{4000} + GRASS_{4000} + PJ_{4000} + NONHAB_{1000} + SHRUB_{275}$	7	7756.69	5.48	0.05	2
$RD_{4000} + TRI_{1000} + GRASS_{4000} + PJ_{4000} + NONHAB_{1000} + SHRUB_{275}$	7	7757.13	5.92	0.04	3
$RD_{4000} + TRI_{1000} + PJ_{4000} + NONHAB_{1000}$	5	7757.21	6.00	0.04	4
RD 4000 + PJ 4000 + NONHAB 1000 + SHRUB 275	5	7758.37	7.16	0.02	5

^AELEV, elevation; FOR, forest; GRASS, grassland; MTSHB, mountain shrubland; NONHAB, non-habitat; PJ, piñon-juniper; RD, road density; SAGE, sagebrush; SHRUB, shrubland; TRI, terrain ruggedness index. Covariate followed by the distance buffer (m).

Table S18. The estimated posterior covariate standardised coefficients for final seasonalhabitat models for Gunnison sage-grouse in the San Miguel population

Standardised coefficient include β , and the 95% lower (LCI) and upper (UCI) credible intervals during the breeding (15 March–15 July) and summer (16 July–30 September)

Covariate ^A		Breeding				
	β	LCI	UCI	β	LCI	UCI
Intercept	-2.073	-2.232	-1.926	-3.951	-4.238	-3.690
Elevation_4000	0.382	0.237	0.530			
Grassland_4000	-0.112	-0.256	0.031	-0.209	-0.350	-0.056
Mountain shrub_275	-0.241	-0.386	-0.096			
Non-habitat_1000	0.160	0.037	0.271	0.203	0.064	0.339
Piñon-juniper_4000	-2.091	-2.262	-1.924	-3.194	-3.582	-2.843
Road density_4000	-0.994	-1.160	-0.843	-1.376	-1.618	-1.148
Sagebrush_275	0.649	0.509	0.785			
Shrubland_275				-0.286	-0.446	-0.121
TRI_120	0.127	-0.002	0.259			

seasons (1995–2016).

^ACovariate name followed by distance buffer (m)

_

_

Table S19. Breeding and summer habitat summary statistics for Gunnison sage-grouse use and available locations in San Miguel

Values include covariate mean and standard error in parentheses for the final habitat models for breeding (15

Covariate ^A	Breeding	Available	Summer	Available
Elevation_4000 (m)	2320.000 (2.660)	2220.000 (2.650)		
Grassland_4000 (proportion)	0.121 (0.001)	0.101 (0.001)	0.121 (0.001)	0.101 (0.001)
Mountain shrub_275 (proportion)	0.100 (0.001)	0.112 (0.001)		
Non-habitat_1000 (proportion)	0.034 (0.001)	0.013 (0.000)	0.052 (0.003)	0.013 (0.000)
Piñon-juniper_4000 (proportion)	0.069 (0.001)	0.162 (0.001)	0.064 (0.001)	0.164 (0.001)
Road density_4000 (km km ⁻²)	0.580 (0.000)	0.607 (0.001)	0.572 (0.001)	0.607 (0.001)
Sagebrush_275 (proportion)	0.305 (0.003)	0.259 (0.002)		
Shrubland_275 (proportion)			0.312 (0.006)	0.245 (0.002)
Terrain ruggedness index_275 (m)	115.000 (0.635)	111.000 (0.450)		

March-15 July) and summer (16 July-30 September) seasons (1995-2016).