Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Spatial patterns of road mortality of medium–large mammals in Mato Grosso do Sul, Brazil

Fernando Ascensão A B C H , Arnaud L. J. Desbiez D E , Emília P. Medici F G and Alex Bager A
+ Author Affiliations
- Author Affiliations

A Brazilian Center for Road Ecology (CBEE), Ecology Sector, Department of Biology, Federal University of Lavras, Campus Universitário, CP 3037, Lavras, MG CEP 37200-000, Brazil.

B Infraestruturas de Portugal Biodiversity Chair – CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Tapada da Ajuda, 1349-017 Lisboa, Portugal.

C CEABN/InBio, Centro de Ecologia Aplicada ‘Professor Baeta Neves’, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.

D Royal Zoological Society of Scotland, Murrayfield, Edinburgh, EH12 6TS, Scotland, United Kingdom.

E Instituto de Conservação de Animais Silvestres ICAS- Rua Licuala, 622, Damha 1, Campo Grande, CEP: 79046-150, Mato Grosso do Sul, Brazil.

F International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Tapir Specialist Group (TSG), Rua Licuala, 622, Damha 1, Campo Grande, CEP: 79046-150, Mato Grosso do Sul, Brazil.

G IPÊ (Instituto de Pesquisas Ecológicas; Institute for Ecological Research), Caixa Postal 47, Nazaré Paulista, CEP: 12960-000, São Paulo, Brazil.

H Corresponding author. Email: fernandoascensao@gmail.com

Wildlife Research 44(2) 135-146 https://doi.org/10.1071/WR16108
Submitted: 6 June 2016  Accepted: 25 February 2017   Published: 20 March 2017

Abstract

Context: Brazil has one of the richest biodiversity and one of the most extensive road networks in the world. Several negative impacts emerge from this interaction, including wildlife–vehicle collisions (WVC), which may represent a significant source of non-natural mortality in several species. The understanding of the main drivers of WVC is, therefore, crucial to improve the safe coexistence between human needs (transportation of goods and people) and animal populations.

Aims: We aimed to (1) evaluate the relative influence of land-cover patterns on the distribution of WVC, (2) assess whether WVCs are clustered forming hotspots of mortality, and, if so, (3) evaluate the benefits of mitigating only hotspot sections.

Methods: We collected WVC data involving medium–large mammals (4–260 kg) along three road transects (920 km), fortnightly over 1 year (n = 1006 records). We used boosted regression trees to relate the WVC locations with a set of environmental variables including a roadkill index, reflecting overall habitat suitability and landscape connectivity, while accounting for spatial autocorrelation effects. We identified hotspots of mortality using Ripley’s K statistic and testing whether data follow a random Poisson distribution correcting for Type I error.

Key results: We found a strong association between WVC probability and roadkill index for all focal species. Distance to riparian areas, tree cover, terrain ruggedness and distance to urban areas were also important predictors, although to a lesser extent. We detected 21 hotspots of mortality, yet with little spatial overlapping as only four road sections (2%) were classified as hotspot for more than one species.

Conclusions: Our results supported that WVC mainly occur in road sections traversing areas with more abundant and diverse mammal communities. Hotspots of mortality may provide important information to prioritise road sections for mitigation, but this should be used in complement with roadkill indexes accounting for overall mortality.

Implications: The results support focusing on hotspots and habitat quality and landscape connectivity for a better assessment of road mortality. At the local scale, a larger number and improved road passages with exclusionary fencing of appropriate mesh size in riparian areas may provide safe crossings for many species and constitute a promising mitigation measure.

Additional keywords: hotspots, road management, road mitigation, spatial clustering, wildlife–vehicle collisions.


References

Ascensão, F., Clevenger, A., Santos-Reis, M., Urbano, P., and Jackson, N. (2013). Wildlife–vehicle collision mitigation: is partial fencing the answer? An agent-based model approach. Ecological Modelling 257, 36–43.
Wildlife–vehicle collision mitigation: is partial fencing the answer? An agent-based model approach.Crossref | GoogleScholarGoogle Scholar |

Ascensão, F., Grilo, C., LaPoint, S., Tracey, J., Clevenger, A. P., and Santos-Reis, M. (2014). Inter-individual variability of stone marten behavioral responses to a highway. PLoS One 9, e103544.
Inter-individual variability of stone marten behavioral responses to a highway.Crossref | GoogleScholarGoogle Scholar |

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., and Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711–728.
Köppen’s climate classification map for Brazil.Crossref | GoogleScholarGoogle Scholar |

Bardos, D. C., Guillera-Arroita, G., and Wintle, B. A. (2015). Valid auto-models for spatially autocorrelated occupancy and abundance data. Methods in Ecology and Evolution 6, 1137–1149.
Valid auto-models for spatially autocorrelated occupancy and abundance data.Crossref | GoogleScholarGoogle Scholar |

Beaudry, F., DeMaynadier, P. G., and Hunter, M. L. (2010). Identifying hot moments in road-mortality risk for freshwater turtles. The Journal of Wildlife Management 74, 152–159.
Identifying hot moments in road-mortality risk for freshwater turtles.Crossref | GoogleScholarGoogle Scholar |

Benítez-López, A., Alkemade, R., and Verweij, P. A. (2010). The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biological Conservation 143, 1307–1316.
The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological 57, 289–300.

Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., and Baxter, R. (2008). Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling 216, 47–59.
Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland.Crossref | GoogleScholarGoogle Scholar |

Bertassoni, A. (2012). Perception and popular reports about giant anteaters (Myrmecophaga tridactyla Linnaeus, 1758) by two Brazilian traditional communities. Edentata 13, 10–17.
Perception and popular reports about giant anteaters (Myrmecophaga tridactyla Linnaeus, 1758) by two Brazilian traditional communities.Crossref | GoogleScholarGoogle Scholar |

Bissonette, J. A., Kassar, C. A., and Cook, L. J. (2008). Assessment of costs associated with deer-vehicle collisions: human death and injury, vehicle damage, and deer loss. Human-Wildlife Conflicts 2, 17–27.

Bivand, R., and Piras, G. (2015). Comparing implementations of estimation methods for spatial econometrics. Journal of Statistical Software 63, 1.

Borda-de-Água, L., Grilo, C., and Pereira, H. M. (2014). Modeling the impact of road mortality on barn owl (Tyto alba) populations using age-structured models. Ecological Modelling 276, 29–37.
Modeling the impact of road mortality on barn owl (Tyto alba) populations using age-structured models.Crossref | GoogleScholarGoogle Scholar |

Brooks, T. M., Mittermeier, R. A., Fonseca, G. A. B., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D., and Rodrigues, A. S. L. (2006). Global biodiversity conservation priorities. Science 313, 58–61.
Global biodiversity conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFWisLg%3D&md5=6b317a5a76ca44db49f01e727dadcc68CAS |

Bueno, C., Sousa, C. O. M., and Freitas, S. R. (2015). Habitat or matrix: which is more relevant to predict road-kill of vertebrates? Brazilian Journal of Biology 75, 228–238.
Habitat or matrix: which is more relevant to predict road-kill of vertebrates?Crossref | GoogleScholarGoogle Scholar |

Caceres, N. C. (2011). Biological characteristics influence mammal road kill in an Atlantic Forest–cerrado interface in south-western Brazil. Italian Journal of Zoology 78, 379–389.
Biological characteristics influence mammal road kill in an Atlantic Forest–cerrado interface in south-western Brazil.Crossref | GoogleScholarGoogle Scholar |

Cáceres, N. C., Carmignotto, A. P., Fischer, E., and Santos, C. F. (2008). Mammals from Mato Grosso do Sul, Brazil. Check List 4, 321–335.
Mammals from Mato Grosso do Sul, Brazil.Crossref | GoogleScholarGoogle Scholar |

Cáceres, N. C., Hannibal, W., Freitas, D. R., Silva, E. L., Roman, C., and Casella, J. (2010). Mammal occurrence and roadkill in two adjacent ecoregions (Atlantic Forest and Cerrado) in south-western Brazil. Zoologia 27, 709–717.
Mammal occurrence and roadkill in two adjacent ecoregions (Atlantic Forest and Cerrado) in south-western Brazil.Crossref | GoogleScholarGoogle Scholar |

Clevenger, A. P., and Waltho, N. (2005). Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biological Conservation 121, 453–464.
Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals.Crossref | GoogleScholarGoogle Scholar |

Clevenger, A. P., Chruszcz, B., and Gunson, K. E. (2001). Highway mitigation fencing reduces wildlife-vehicle collisions. Wildlife Society Bulletin 29, 646–653.

Clevenger, A. P., Chruszcz, B., and Gunson, K. E. (2003). Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biological Conservation 109, 15–26.
Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations.Crossref | GoogleScholarGoogle Scholar |

Coelho, I. P., Kindel, A., and Coelho, A. V. P. (2008). Roadkills of vertebrate species on two highways through the Atlantic Forest Biosphere Reserve, southern Brazil. European Journal of Wildlife Research 54, 689–699.
Roadkills of vertebrate species on two highways through the Atlantic Forest Biosphere Reserve, southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Colino-Rabanal, V. J., Lizana, M., and Peris, S. J. (2011). Factors influencing wolf Canis lupus roadkills in northwest Spain. European Journal of Wildlife Research 57, 399–409.
Factors influencing wolf Canis lupus roadkills in northwest Spain.Crossref | GoogleScholarGoogle Scholar |

Costa, L. P., Leite, Y. L. R., Mendes, S. L., and Ditchfield, A. D. (2005). Mammal conservation in Brazil. Conservation Biology 19, 672–679.
Mammal conservation in Brazil.Crossref | GoogleScholarGoogle Scholar |

D’Amico, M., Román, J., de los Reyes, L., and Revilla, E. (2015). Vertebrate road-kill patterns in Mediterranean habitats: who, when and where. Biological Conservation 191, 234–242.
Vertebrate road-kill patterns in Mediterranean habitats: who, when and where.Crossref | GoogleScholarGoogle Scholar |

de Freitas, C. H., Justino, C. S., and Setz, E. Z. F. (2014a). Road-kills of the giant anteater in south-eastern Brazil: 10 years monitoring spatial and temporal determinants. Wildlife Research 41, 673–680.
Road-kills of the giant anteater in south-eastern Brazil: 10 years monitoring spatial and temporal determinants.Crossref | GoogleScholarGoogle Scholar |

de Freitas, S. R., Nepomuceno De Oliveira, A., Ciocheti, G., Vieira, M. V., Maria, D., and Matos, S. (2014b). How landscape features influence road-kill of three species of mammals in the Brazilian savanna? Oecologia Australis 18, 35–45.
How landscape features influence road-kill of three species of mammals in the Brazilian savanna?Crossref | GoogleScholarGoogle Scholar |

de Souza, J. C., Cunha, V. P., and Markwith, S. H. (2015). Spatiotemporal variation in human-wildlife conflicts along highway BR-262 in the Brazilian pantanal. Wetlands Ecology and Management 23, 227–239.
Spatiotemporal variation in human-wildlife conflicts along highway BR-262 in the Brazilian pantanal.Crossref | GoogleScholarGoogle Scholar |

De’ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology 88, 243–251.
Boosted trees for ecological modeling and prediction.Crossref | GoogleScholarGoogle Scholar |

Desbiez, A. L. J., Bodmer, R. E., and Tomas, W. M. (2010). Mammalian densities in a neotropical wetland subject to extreme climatic events. Biotropica 42, 372–378.
Mammalian densities in a neotropical wetland subject to extreme climatic events.Crossref | GoogleScholarGoogle Scholar |

Diniz, M. F., and Brito, D. (2013). Threats to and viability of the giant anteater, Myrmecophaga tridactyla (Pilosa: Myrmecophagidae), in a protected cerrado remnant encroached by urban expansion in central Brazil. Zoologia 30, 151–156.
Threats to and viability of the giant anteater, Myrmecophaga tridactyla (Pilosa: Myrmecophagidae), in a protected cerrado remnant encroached by urban expansion in central Brazil.Crossref | GoogleScholarGoogle Scholar |

DNIT (2016). ‘Plano Nacional de Contagem de Tráfego – PNCT.’ Available at http://www.dnit.gov.br/planejamento-e-pesquisa/planejamento/contagem-de-trafego#Historico [verified 27 April 2016]

Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Kissling, W. D., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., and Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628.
Methods to account for spatial autocorrelation in the analysis of species distributional data: a review.Crossref | GoogleScholarGoogle Scholar |

Eberhardt, E., Mitchell, S., and Fahrig, L. (2013). Road kill hotspots do not effectively indicate mitigation locations when past road kill has depressed populations. The Journal of Wildlife Management 77, 1353–1359.
Road kill hotspots do not effectively indicate mitigation locations when past road kill has depressed populations.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Graham, C. H., Anderson, P. R., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, A. B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Townsend Peterson, A., Phillips, J. S., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., and Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151.
Novel methods improve prediction of species’ distributions from occurrence data.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Leathwick, J. R., and Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813.
A working guide to boosted regression trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cvgsFOqsQ%3D%3D&md5=b5393610da395bca3259d9fbaea83f9cCAS |

Faleiro, F. V., and Loyola, R. D. (2013). Socioeconomic and political trade-offs in biodiversity conservation: a case study of the Cerrado Biodiversity Hotspot, Brazil. Diversity & Distributions 19, 977–987.
Socioeconomic and political trade-offs in biodiversity conservation: a case study of the Cerrado Biodiversity Hotspot, Brazil.Crossref | GoogleScholarGoogle Scholar |

Faria-Corrêa, M., Balbueno, R. A., Vieira, E. M., and de Freitas, T. R. O. (2009). Activity, habitat use, density, and reproductive biology of the crab-eating fox (Cerdocyon thous) and comparison with the pampas fox (Lycalopex gymnocercus) in a Restinga area in the southern Brazilian Atlantic Forest. Mammalian Biology 74, 220–229.
Activity, habitat use, density, and reproductive biology of the crab-eating fox (Cerdocyon thous) and comparison with the pampas fox (Lycalopex gymnocercus) in a Restinga area in the southern Brazilian Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |

Finder, R. A., Roseberry, J. L., and Woolf, A. (1999). Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landscape and Urban Planning 44, 77–85.
Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois.Crossref | GoogleScholarGoogle Scholar |

Frair, J. L., Merrill, E. H., Beyer, H. L., and Morales, J. M. (2008). Thresholds in landscape connectivity and mortality risks in response to growing road networks. Journal of Applied Ecology 45, 1504–1513.
Thresholds in landscape connectivity and mortality risks in response to growing road networks.Crossref | GoogleScholarGoogle Scholar |

Freitas, S. R., Souza, C. O. M., and Bueno, C. (2013). Effects of landscape characteristics on roadkill of mammals, birds and reptiles in a highway crossing the Atlantic Forest in southeastern Brazil. In ‘2013 International Conference on Ecology and Transportation’, 23–27 June 2013, Scottsdale, AZ.

Gibbs, J. P., and Shriver, W. G. (2005). Can road mortality limit populations of pool-breeding amphibians? Wetlands Ecology and Management 13, 281–289.
Can road mortality limit populations of pool-breeding amphibians?Crossref | GoogleScholarGoogle Scholar |

Grilo, C., Ascensão, F., Santos-Reis, M., and Bissonette, J. A. (2011). Do well-connected landscapes promote road-related mortality? European Journal of Wildlife Research 57, 707–716.
Do well-connected landscapes promote road-related mortality?Crossref | GoogleScholarGoogle Scholar |

Gunson, K. E., Mountrakis, G., and Quackenbush, L. J. (2011). Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects. Journal of Environmental Management 92, 1074–1082.
Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects.Crossref | GoogleScholarGoogle Scholar |

Haines, A. M., Tewes, M. E., Laack, L. L., Horne, J. S., and Young, J. H. (2006). A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biological Conservation 132, 424–436.
A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States.Crossref | GoogleScholarGoogle Scholar |

Herrera, E., and Macdonald, D. (1989). Resource utilization and territoriality in group-living capybaras (Hydrochoerus hydrochaeris). Journal of Animal Ecology 58, 667–679.
Resource utilization and territoriality in group-living capybaras (Hydrochoerus hydrochaeris).Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., Phillips, S., Leathwick, J., and Elith, J. (2015). ‘dismo: Species Distribution Modeling. R Package Version 1.0-12.’ Available at http://CRAN.R-project.org/package=dismo [accessed 9 November 2015].

Hobday, A. J. (2010). Nighttime driver detection distances for Tasmanian fauna: informing speed limits to reduce roadkill. Wildlife Research 37, 265–272.
Nighttime driver detection distances for Tasmanian fauna: informing speed limits to reduce roadkill.Crossref | GoogleScholarGoogle Scholar |

Holderegger, R., and Di Giulio, M. (2010). The genetic effects of roads: a review of empirical evidence. Basic and Applied Ecology 11, 522–531.
The genetic effects of roads: a review of empirical evidence.Crossref | GoogleScholarGoogle Scholar |

Huijser, M. P., Duffield, J. W., Clevenger, A. P., Ament, R. J., and McGowen, P. T. (2009). Cost–benefit analyses of mitigation measures aimed at reducing collisions with large ungulates in the United States and Canada; a decision support tool. Ecology and Society 14, art15.
Cost–benefit analyses of mitigation measures aimed at reducing collisions with large ungulates in the United States and Canada; a decision support tool.Crossref | GoogleScholarGoogle Scholar |

Huijser, M. P., Abra, F. D., and Duffield, J. W. (2013). Mammal road mortality and cost–benefit analyses of mitigation measures aimed at reducing collisions with capybara (Hydrochoerus hydrochaeris) in São Paulo, Brazil. Oecologia Australis 17, 129–146.
Mammal road mortality and cost–benefit analyses of mitigation measures aimed at reducing collisions with capybara (Hydrochoerus hydrochaeris) in São Paulo, Brazil.Crossref | GoogleScholarGoogle Scholar |

Jackson, N. D., and Fahrig, L. (2011). Relative effects of road mortality and decreased connectivity on population genetic diversity. Biological Conservation 144, 3143–3148.
Relative effects of road mortality and decreased connectivity on population genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Jaeger, J. G., and Fahrig, L. (2004). Effects of road fencing on population persistence. Conservation Biology 18, 1651–1657.
Effects of road fencing on population persistence.Crossref | GoogleScholarGoogle Scholar |

Jaeger, J. G., Bowman, J., Brennan, J., Fahrig, L., Bert, D., Bouchard, J., Charbonneau, N., Frank, K., Gruber, B., and von Toschanowitz, K. T. (2005). Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecological Modelling 185, 329–348.
Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior.Crossref | GoogleScholarGoogle Scholar |

Jarvis, A., Reuter, H., Nelson, A., and Guevara, E. (2008). ‘Hole-filled SRTM for the Globe Version 4.’ From the CGIAR–CSI SRTM 90m Database. Available at http://srtm.csi.cgiar.org/ [verified 5 April 2016]

Kühn, I. (2007). Incorporating spatial autocorrelation may invert observed patterns. Diversity & Distributions 13, 66–69.
Incorporating spatial autocorrelation may invert observed patterns.Crossref | GoogleScholarGoogle Scholar |

Laurance, W. F., and Balmford, A. (2013). A global map for road building. Nature 495, 308–309.
A global map for road building.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlGmt7c%3D&md5=635420ca713721eeffc7fdac583b88d1CAS |

Laurance, W. F., Goosem, M., and Laurance, S. G. W. (2009). Impacts of roads and linear clearings on tropical forests. Trends in Ecology & Evolution 24, 659–669.
Impacts of roads and linear clearings on tropical forests.Crossref | GoogleScholarGoogle Scholar |

Lees, A. C., and Peres, C. A. (2008). Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conservation Biology 22, 439–449.
Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals.Crossref | GoogleScholarGoogle Scholar |

Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology 74, 1659–1673.
Spatial autocorrelation: trouble or new paradigm?Crossref | GoogleScholarGoogle Scholar |

Lesbarrères, D., and Fahrig, L. (2012). Measures to reduce population fragmentation by roads: what has worked and how do we know? Trends in Ecology & Evolution 27, 374–380.
Measures to reduce population fragmentation by roads: what has worked and how do we know?Crossref | GoogleScholarGoogle Scholar |

Lester, D. (2015). Effective wildlife roadkill mitigation. Journal of Traffic and Transportation Engineering 3, 42–51.
Effective wildlife roadkill mitigation.Crossref | GoogleScholarGoogle Scholar |

Licona, M., McCleery, R., Collier, B., Brightsmith, D. J., and Lopez, R. (2011). Using ungulate occurrence to evaluate community‐based conservation within a biosphere reserve model. Animal Conservation 14, 206–214.
Using ungulate occurrence to evaluate community‐based conservation within a biosphere reserve model.Crossref | GoogleScholarGoogle Scholar |

Malo, J. E., Suarez, F., and Díez, A. (2004). Can we mitigate animal–vehicle accidents using predictive models? Journal of Applied Ecology 41, 701–710.
Can we mitigate animal–vehicle accidents using predictive models?Crossref | GoogleScholarGoogle Scholar |

Medici, E. P., and Desbiez, A. L. J. (2012). Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes. Integrative Zoology 7, 356–372.
Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes.Crossref | GoogleScholarGoogle Scholar |

Mimet, A., Houet, T., Julliard, R., and Simon, L. (2013). Assessing functional connectivity: a landscape approach for handling multiple ecological requirements. Methods in Ecology and Evolution 4, 453–463.
Assessing functional connectivity: a landscape approach for handling multiple ecological requirements.Crossref | GoogleScholarGoogle Scholar |

Mourão, G., and Medri, Í. M. (2007). Activity of a specialized insectivorous mammal (Myrmecophaga tridactyla) in the Pantanal of Brazil. Journal of Zoology 271, 187–192.
Activity of a specialized insectivorous mammal (Myrmecophaga tridactyla) in the Pantanal of Brazil.Crossref | GoogleScholarGoogle Scholar |

Muñoz, P. T., Torres, F. P., and Megías, A. G. (2015). Effects of roads on insects: a review. Biodiversity and Conservation 24, 659–682.
Effects of roads on insects: a review.Crossref | GoogleScholarGoogle Scholar |

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=83f32f773e3df8d88747e2c116d1624cCAS |

Neumann, W., Ericsson, G., Dettki, H., Bunnefeld, N., Keuler, N. S., Helmers, D. P., and Radeloff, V. C. (2012). Difference in spatiotemporal patterns of wildlife road-crossings and wildlife–vehicle collisions. Biological Conservation 145, 70–78.
Difference in spatiotemporal patterns of wildlife road-crossings and wildlife–vehicle collisions.Crossref | GoogleScholarGoogle Scholar |

Olsson, M. P. O., and Widen, P. (2008). Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden. Wildlife Biology 14, 111–117.
Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden.Crossref | GoogleScholarGoogle Scholar |

Paglia, A. P., Rylands, A. B., Herrmann, G., Aguiar, L. M. S., Chiarello, A. G., Leite, Y. L. R., Costa, L. P., Siciliano, S., Kierulff, M. C. M., Mendes, S. L., da C. Tavares, V., Mittermeier, R. A., and Patton, J. L. (2012). ‘Lista Anotada dos Mamíferos do Brasil (Annotated Checklist of Brazilian Mammals).’ 2nd edn. (Conservation International: Arlington, VA.)

Philcox, C. K., Grogan, A. L., and Macdonald, D. W. (1999). Patterns of otter Lutra lutra road mortality in Britain. Journal of Applied Ecology 36, 748–761.
Patterns of otter Lutra lutra road mortality in Britain.Crossref | GoogleScholarGoogle Scholar |

Poessel, S. A., Burdett, C. L., Boydston, E. E., Lyren, L. M., Alonso, R. S., Fisher, R. N., and Crooks, K. R. (2014). Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape. Biological Conservation 180, 224–232.
Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape.Crossref | GoogleScholarGoogle Scholar |

Polak, T., Rhodes, J. R., Jones, D., and Possingham, H. P. (2014). Optimal planning for mitigating the impacts of roads on wildlife. Journal of Applied Ecology 51, 726–734.
Optimal planning for mitigating the impacts of roads on wildlife.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2016). ‘R: a Language and Environment for Statistical Computing (Version 3.2.2).’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at http://www.R-project.org.

Ramp, D., and Ben-Ami, D. (2006). The effect of road-based fatalities on the viability of a peri-urban swamp wallaby population. The Journal of Wildlife Management 70, 1615–1624.
The effect of road-based fatalities on the viability of a peri-urban swamp wallaby population.Crossref | GoogleScholarGoogle Scholar |

Ramp, D., Caldwell, J., Edwards, K., Warton, D., and Croft, D. (2005). Modelling of wildlife fatality hotspots along the Snowy Mountain Highway in New South Wales, Australia. Biological Conservation 126, 474–490.
Modelling of wildlife fatality hotspots along the Snowy Mountain Highway in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Reed, D. H., Nicholas, C., and Stratton, G. E. (2007). Genetic quality of individuals impacts population dynamics. Animal Conservation 10, 275–283.
Genetic quality of individuals impacts population dynamics.Crossref | GoogleScholarGoogle Scholar |

Ridgeway, G. (2015). ‘gbm: Generalized Boosted Regression Models. R Package Version 2.1.1.’ Available at http://CRAN.R-project.org/package=gbm.

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., and Wirsing, A. J. (2014). Status and ecological effects of the world’s largest carnivores. Science 343, 1241484.
Status and ecological effects of the world’s largest carnivores.Crossref | GoogleScholarGoogle Scholar |

Romin, L. A., and Bissonette, J. A. (1996). Deer: vehicle collisions: status of state monitoring activities and mitigation efforts. Wildlife Society Bulletin 24, 276–283.

Row, J. R., Blouin-Demers, G., and Weatherhead, P. J. (2007). Demographic effects of road mortality in black ratsnakes (Elaphe obsoleta). Biological Conservation 137, 117–124.
Demographic effects of road mortality in black ratsnakes (Elaphe obsoleta).Crossref | GoogleScholarGoogle Scholar |

Rytwinski, T., and Fahrig, L. (2013). Why are some animal populations unaffected or positively affected by roads? Oecologia 173, 1143–1156.
Why are some animal populations unaffected or positively affected by roads?Crossref | GoogleScholarGoogle Scholar |

Rytwinski, T., Soanes, K., Jaeger, J. A. G., Fahrig, L., Findlay, C. S., Houlahan, J., van der Ree, R., and van der Grift, E. A. (2016). How effective is road mitigation at reducing road-kill? A meta-analysis. PLoS One 11, e0166941.
How effective is road mitigation at reducing road-kill? A meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., and Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494.
Inbreeding and extinction in a butterfly metapopulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFemsrw%3D&md5=56d080b12685ff591c9ce4bcbbcd9e5dCAS |

Santos, S. M., Carvalho, F., and Mira, A. (2011). How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys. PLoS One 6, e25383.
How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCjsrzE&md5=252a38efa76768d56d2b6ee8dbc4f311CAS |

Santos, S. M., Lourenço, R., Mira, A., and Beja, P. (2013). Relative effects of road risk, habitat suitability, and connectivity on wildlife roadkills: the case of tawny owls (Strix aluco). PLoS One 8, e79967.
Relative effects of road risk, habitat suitability, and connectivity on wildlife roadkills: the case of tawny owls (Strix aluco).Crossref | GoogleScholarGoogle Scholar |

Santos, S. M., Marques, J. T., Lourenço, A., Medinas, D., Barbosa, A. M., Beja, P., and Mira, A. (2015). Sampling effects on the identification of roadkill hotspots: implications for survey design. Journal of Environmental Management 162, 87–95.
Sampling effects on the identification of roadkill hotspots: implications for survey design.Crossref | GoogleScholarGoogle Scholar |

Santos, R. A. L., Santos, S. M., Santos-Reis, M., Picanço de Figueiredo, A., Bager, A., Aguiar, L. M. S., and Ascensão, F. (2016). Carcass persistence and detectability: reducing the uncertainty surrounding wildlife–vehicle collision surveys. PLoS One 11, e0165608.
Carcass persistence and detectability: reducing the uncertainty surrounding wildlife–vehicle collision surveys.Crossref | GoogleScholarGoogle Scholar |

Selva, N., Kreft, S., Kati, V., Schluck, M., Jonsson, B. G., Mihok, B., Okarma, H., and Ibisch, P. L. (2011). Roadless and low-traffic areas as conservation targets in Europe. Environmental Management 48, 865–877.
Roadless and low-traffic areas as conservation targets in Europe.Crossref | GoogleScholarGoogle Scholar |

Silva, J. F., Farinas, M. R., Felfili, J. M., and Klink, C. A. (2006). Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. Journal of Biogeography 33, 536–548.
Spatial heterogeneity, land use and conservation in the cerrado region of Brazil.Crossref | GoogleScholarGoogle Scholar |

Silva, J. S. V., Pott, A., Abdon, M. M., Pott, V., and Santos, K. (2011). ‘Projeto GeoMS: Cobertura Vegetal e Uso da Terra do Estado de Mato Grosso do Sul.’ (Embrapa Informática Agropecuária: Campinas, Brazil.)

Soanes, K., Lobo, M. C., Vesk, P. A., McCarthy, M. A., Moore, J. L., and van der Ree, R. (2013). Movement re-established but not restored: inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biological Conservation 159, 434–441.
Movement re-established but not restored: inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use.Crossref | GoogleScholarGoogle Scholar |

Stahl, M., Osmann, C., Ortmann, S., Kreuzer, M., Hatt, J. M., and Clauss, M. (2012). Energy intake for maintenance in a mammal with a low basal metabolism, the giant anteater (Myrmecophaga tridactyla). Journal of Animal Physiology and Animal Nutrition 96, 818–824.
Energy intake for maintenance in a mammal with a low basal metabolism, the giant anteater (Myrmecophaga tridactyla).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslWrs77E&md5=af8a44f0c3a8a7244854287b6fdc3049CAS |

Teixeira, F. Z., Coelho, A. V. P., Esperandio, I. B., and Kindel, A. (2013). Vertebrate road mortality estimates: effects of sampling methods and carcass removal. Biological Conservation 157, 317–323.
Vertebrate road mortality estimates: effects of sampling methods and carcass removal.Crossref | GoogleScholarGoogle Scholar |

Teixeira, F. Z., Kindel, A., Hartz, S. M., Mitchell, S., and Fahrig, L. (2017). When road‐kill hotspots do not indicate the best sites for road‐kill mitigation. Journal of Applied Ecology , in press.
When road‐kill hotspots do not indicate the best sites for road‐kill mitigation.Crossref | GoogleScholarGoogle Scholar |

Trombulak, S. C., and Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology 14, 18–30.
Review of ecological effects of roads on terrestrial and aquatic communities.Crossref | GoogleScholarGoogle Scholar |

van der Ree, R., Grilo, C., and Smith, D. J. (Eds) (2015). ‘Handbook of Road Ecology.’ (John Wiley & Sons: Chichester, UK.)

Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography 36, 2290–2299.
Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models.Crossref | GoogleScholarGoogle Scholar |

Visconti, P., Pressey, R. L., Giorgini, D., Maiorano, L., Bakkenes, M., Boitani, L., Alkemade, R., Falcucci, A., Chiozza, F., and Rondinini, C. (2011). Future hotspots of terrestrial mammal loss. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 2693–2702.
Future hotspots of terrestrial mammal loss.Crossref | GoogleScholarGoogle Scholar |

Westemeier, R. L. (1998). Tracking the long-term decline and recovery of an isolated population. Science 282, 1695–1698.
Tracking the long-term decline and recovery of an isolated population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslGgs7g%3D&md5=d6cc4ebe3149619ce7d9148568994dbeCAS |