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ABSTRACT 

Background. To effectively reduce future wildfire risk, several management strategies must be 
evaluated under plausible future scenarios, requiring models that provide estimates of how likely 
wildfires are to spread to community assets (wildfire likelihood) in a computationally efficient 
manner. Approaches to quantifying wildfire likelihood using fire simulation models cannot 
practically achieve this because they are too computationally expensive. Aim. This study 
aimed to develop an approach for quantifying wildfire likelihood that is both computationally 
efficient and able to consider contagious and directionally specific fire behaviour properties 
across multiple spatial ‘neighbourhood’ scales. Methods. A novel, computationally efficient index 
for quantifying wildfire likelihood is proposed. This index is evaluated against historical and 
simulated data on a case study in South Australia. Key results. The neighbourhood index explains 
historical burnt areas and closely replicates patterns in burn probability calculated using land-
scape fire simulation (ρ = 0.83), while requiring 99.7% less computational time than the simulation- 
based model. Conclusions. The neighbourhood index represents patterns in wildfire likelihood 
similar to those represented in burn probability, with a much-reduced computational time. 
Implications. By using the index alongside existing approaches, managers can better explore 
problems involving many evaluations of wildfire likelihood, thereby improving planning processes 
and reducing future wildfire risks.  

Keywords: burn probability, fire behaviour, fire management, fire simulation modelling, 
neighbourhood index, planning, risk, wildfire likelihood. 

Introduction 

Wildfires can have significant negative impacts on community ‘assets’ (Gill et al. 2013), 
including loss of life and damage to infrastructure, cultural values and the environment. 
These impacts can be seen across the globe (Gill et al. 2013), including in south-eastern 
Australia (Filkov et al. 2020), and are likely to get worse due to climate change. The 
changing climate has already resulted in an increase in the intensity and frequency of 
global wildfire weather (Jones et al. 2022), has already caused a notable increase in the 
area burnt in Australian forests (Canadell et al. 2021) and will increasingly reduce the 
efficacy of landscape interventions, such as fuel treatments (Clarke et al. 2022). A key 
component in planning to reduce the likelihood of these impacts is quantifying the 
relative likelihood of any wildfire spreading to specific assets or locations of interest 
(henceforth referred to as ‘wildfire likelihood’). 

To understand wildfire likelihood, it is important to understand the way fire spreads 
across a landscape. The spread of fire is commonly considered a multi-scaled (McKenzie 
et al. 2011) and spatially contagious process (Peterson 2002; McKenzie and Kennedy 
2011; Newman et al. 2019). Contagion is a function of both connectivity and momentum 

For full list of author affiliations and 
declarations see end of paper 

*Correspondence to: 
Douglas A. G. Radford 
The University of Adelaide, Adelaide, SA, 
Australia 
Email: douglas.radford@adelaide.edu.au  

Received: 25 April 2023 
Accepted: 4 April 2024 
Published: 26 April 2024 

Cite this: Radford DAG et al. (2024) An 
efficient, multi-scale neighbourhood index 
to quantify wildfire likelihood. 
International Journal of Wildland Fire 
33, WF23055. doi:10.1071/WF23055 

© 2024 The Author(s) (or their employer(s)). 
Published by CSIRO Publishing on behalf of 
IAWF.  
This is an open access article distributed 
under the Creative Commons Attribution 
4.0 International License (CC BY). 

OPEN ACCESS  
Collection: Fire & Climate 

https://www.publish.csiro.au/
https://www.publish.csiro.au/
https://doi.org/10.1071/WF23055
www.publish.csiro.au/wf
www.publish.csiro.au/wf
https://orcid.org/0000-0003-2237-4807
mailto:douglas.radford@adelaide.edu.au
https://doi.org/10.1071/WF23055
https://creativecommons.org/licenses/by/4.0/


(McKenzie and Kennedy 2011; Newman et al. 2019). 
Connectivity describes the spatial arrangement of fuels 
that may transmit fire spread across a landscape, and 
momentum describes the potential energy driving fire 
spread. To quantify the momentum of fire spread, much 
effort has been spent to understand the relationships 
among weather, fuels and topography factors and their 
joint influence on the potential behaviour of wildfires 
(Rothermel 1983; Cruz et al. 2015). These factors are com-
monly considered as either top-down (i.e. climate and 
weather) or bottom-up (i.e. fuel and topography) in the 
way they influence fire behaviour (Heyerdahl et al. 2001;  
Parisien et al. 2010; Falk et al. 2011). Relevant quantitative 
measures of fire behaviour include potential rate of spread 
(ROS), head fire intensity (HFI) and ember-generation prop-
erties. In general, higher magnitude fire behaviour propert-
ies are related to the increased spread of fires and higher 
wildfire likelihood, either through faster fire spread or a 
reduced ability to suppress intense wildfires. 

Landscape managers can reduce wildfire likelihood by 
taking actions that might reduce the potential momentum 
of fire spread (i.e. fire behaviour) or interrupt connectivity 
and stop the spread of fire toward an asset. These actions 
can reduce (or remove completely) fuel loads, change fuel 
structure and/or improve the ability to suppress fire. When 
considering these options at the landscape level, managers 
must make decisions across several dimensions (Ott et al. 
2023). These include (i) where to locate treatments (e.g. 
whether close to assets or in the open landscape) and how 
large the treatment area will be, (ii) what style of intervention 
will be carried out (e.g. prescribed burn, mechanical fuel load 
reduction, or other activity), and (iii) when the intervention 
will be carried out, which is often based on both timing with 
fire seasons and scheduling alongside other actions. Given 
these different dimensions of decision making, acting to reduce 
wildfire likelihood is a complex planning problem. 

To support these complex planning decisions, managers 
can simulate and evaluate available treatment options using 
different models that represent wildfire likelihood (Miller 
and Ager 2013). These models fall into two broad classes: 
landscape fire simulation or asset-centric models. 

Landscape fire simulation models are the most widely 
used to assist decision making. A review by Parisien et al. 
(2019) considered almost 50 studies that explore fuel treat-
ments using the burn probability outputs of landscape fire 
simulation models. Such models make use of fire growth 
simulators (for example, FARSITE (Finney 1998), Prometheus 
(Tymstra et al. 2010), Phoenix (Tolhurst et al. 2008) or Spark 
(Miller et al. 2015)) to model many individual fire events 
across a landscape, simulated under different combinations of 
input ignition and weather parameters (Finney 2005; Miller 
and Ager 2013). The relative number of times a location is 
burnt by one of these fire events can be aggregated to create a 
map of simulated burn probability, which is a direct measure 
of wildfire likelihood (Parisien et al. 2019). Because fire 

simulation models aim to represent the physics of wildfires 
as realistically as possible, they are able to represent the 
contagious nature of fire spread (Peterson 2002) and exhibit 
a range of observed, directionally specific and physically 
realistic patterns, such as fire shadows (Finney 2005). 
These patterns are a result of top-down and bottom-up inter-
actions of fire behaviour that occur across multiple spatial 
scales (Parisien et al. 2010; Parks et al. 2011). 

The major disadvantage of using landscape fire simula-
tion models is that they are computationally expensive, 
sometimes taking in the order of days or weeks to run 
(Parisien et al. 2019). This high computational time stems 
from the need to simulate many thousands of fire events, 
depending on factors such as the size of the study area and 
the combination(s) of ignition points and weather condi-
tions considered. Although computationally possible, espe-
cially when cloud or supercomputing facilities are used 
(Parisien et al. 2019), the computational feasibility of this 
approach decreases significantly where the generation of a 
large number of burn probability maps is required. These 
types of problems are common in socio-environmental con-
texts, including problems with future uncertainties such as 
scenario analysis, those exploring model or system sensitiv-
ities and those involving the consideration of many alterna-
tive combinations of management options, such as 
optimisation. Landscape fire simulation models have been 
used successfully to explore some of these problems, includ-
ing those exploring fuel treatment prioritisation (Ager et al. 
2010), temporal dynamics in vegetation succession (Barros 
et al. 2019) and/or other future scenarios (Gazzard et al. 
2020; Ager et al. 2021), but this has only been done for 
systems with limited complexity. In addition, more computa-
tionally expensive analyses, such as the optimisation of treat-
ment options at a landscape scale, are not feasible in realistic 
problem settings (Miller and Ager 2013; Chung 2015). 

To overcome the computational cost associated with gen-
erating the burn probability outputs of landscape fire simu-
lation models, especially when exploring more complex, 
multi-faceted decision-making problems, asset-centric models 
can be used. In contrast to simulation-based models, asset- 
centric models do not directly simulate fire events moving 
across a landscape. Instead, they survey local features in the 
vicinity of assets to provide a measure of wildfire likelihood at 
the location of the asset. These features are often linked to the 
momentum or connectivity of the surrounding region and their 
effect on wildfire likelihood. For example, the presence of 
certain features at or near assets can increase wildfire likeli-
hood (e.g. high momentum due to high potential ROS or HFI 
fuels) or decrease it (e.g. low connectivity due to barriers to 
spread such as water bodies). Similarly, the absence of certain 
features can increase wildfire likelihood (e.g. fuel breaks) or 
decrease it (e.g. burnable fuels). To consider these local fea-
tures, the structure of asset centric models is typically based on 
user-defined (heuristic asset-centric models) or statistically 
informed relationships (statistical asset-centric models). 
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Heuristic asset-centric models, such as those presented by  
Beverly et al. (2021), Verde and Zêzere (2010) and Liberatore 
et al. (2021), use process-based or expert-informed rules to 
define the model structure. For example, Beverly et al. (2021) 
make use of the empirical evidence that highly ‘local’ features 
influence wildfire likelihood and subsequent building losses 
(Caggiano et al. 2020). They present a model that spatially 
aggregates the presence or absence of hazardous fuels within 
a predefined radius of an asset (for example, within 500 m) 
and provide a novel methodology for examining the direc-
tionally specific landscape arrangement of these hazardous 
fuels relative to a point of interest (Beverly and Forbes 2023). 
Alternatively, Verde and Zêzere (2010) combine several cho-
sen weather, fuel and topography factors in a multiplicative 
fashion to provide a measure of wildfire likelihood, and  
Liberatore et al. (2021) use the connectivity of treatable 
fuel polygons as a surrogate for wildfire likelihood. These 
heuristic models have the flexibility to allow for the inclusion 
of expert-informed knowledge of wildfire processes and tend 
to have the desirable property of being easy to interpret. 

Statistical asset-centric models have substantially 
increased in use across several wildfire management con-
texts, including wildfire likelihood (sometimes referred to as 
wildfire susceptibility) estimation (Jain et al. 2020; Arif 
et al. 2021). Statistical asset-centric models, such as those 
provided by Sharma et al. (2022) and Price et al. (2015a), 
quantify wildfire likelihood by calibrating statistical or 
machine-learning models on observed wildfire activity and 
underlying input features such as weather, fuel and topog-
raphy. For example, Sharma et al. (2022) calibrate six dif-
ferent machine-learning algorithms on satellite-detected 
wildfire hotspots to create a model for wildfire likelihood. 
These statistical models can explore the complex top-down 
and bottom-up interactions of weather, fuel and topography 
factors that influence wildfires without necessarily requiring 
a priori knowledge of how these factors interact 
(Leuenberger et al. 2018). Alternatively, the model pro-
posed by Price et al. (2015a) incorporates both an a priori 
heuristic model structure (that fire must spread from an 
ignition point to a receiver point) and a statistical model 
structure (statistically derived relationships between input 
variables, including those on a linear path between ignition 
and receiver points). This model is calibrated on historical 
ignition points and burnt areas and was found to be highly 
accurate for the historical validation data within the study 
region presented. Statistical models have also been com-
bined with burn probability outputs to either provide 
regional guidance on intervention effectiveness (Penman 
et al. 2014; Cirulis et al. 2020) or to analyse the drivers of 
burn probability (Parks et al. 2011; Furlaud et al. 2018). 

Because asset-centric models do not rely on the simula-
tion of thousands of fire events, they are typically signifi-
cantly more computationally efficient than landscape fire 
simulation models, in some cases reducing run times from 
the order of days or weeks to hours or seconds. This 

computational saving is critical when exploring problems 
such as scenario and sensitivity analysis or optimisation 
that rely on many evaluations of wildfire likelihood at a 
given time, as mentioned above. In fact, the use of asset- 
centric models has made it possible to tackle optimisation- 
based decision-making problems (Lauer et al. 2017; Williams 
et al. 2017; Liberatore et al. 2021) that would most likely be 
computationally infeasible when using landscape fire simula-
tion models (Chung 2015). For example, the treatment place-
ment optimisation problem formulated by Liberatore et al. 
(2021), which describes the connectivity of treatable poly-
gons as a surrogate for wildfire likelihood, takes only seconds 
to run when asset-centric models are used. 

However, this increase in the computational efficiency of 
asset-centric models comes at the expense of the ability to 
represent contagious and directionally specific patterns in 
wildfire likelihood with the same level of detail as landscape 
fire simulation models. The first reason for this is that asset- 
centric models generally consider a fixed spatial scale, such as 
the use of a fixed neighbourhood radius (Beverly et al. 2021), 
fixed polygons (Liberatore et al. 2021) or a fixed resolution of 
input variables (Sharma et al. 2022). Fixed scale models like 
these are unable to represent the multi-scale nature of conta-
gious fire spread processes that influence wildfire likelihood 
(Parisien et al. 2010; Parks et al. 2011; Thompson and Calkin 
2011). The second reason is that asset-centric models gener-
ally do not consider the directionally specific interactions of 
weather, fuel and topography factors that govern wildfire 
processes (Beverly et al. 2021). Asset-centric models that do 
not consider directionality are unable to represent patterns in 
wildfire likelihood such as fire shadows (Parisien et al. 2020), 
which are inherently directionally specific. As a result, many 
asset-centric models do not accurately reflect wildfire likeli-
hood or the influence of barriers to fire spread, including 
those created by the interventions implemented by managers 
(Parisien et al. 2020). The model of Price et al. (2015a) is an 
exception, because it is able to incorporate multiple scales and 
directionally specific interactions between weather, fuel and 
topography factors into an estimate of wildfire likelihood, 
making it suitable for problems like evaluating landscape 
interventions (Price and Bedward 2020). However, this 
model only considers linear paths between ignition and 
receiver points, making it incapable of accounting for fire to 
spread in a variety of directions, including around obstacles. 

Given the low computational efficiency of landscape fire 
simulation models and the reduced level of detail with 
which asset-centric models represent certain wildfire pro-
cesses, there is an opportunity to develop a new modelling 
approach that can overcome these limitations. Such an 
approach would make it possible to perform computation-
ally demanding analyses such as sensitivity and scenario 
analysis or optimisation, as mentioned earlier, while repre-
senting wildfire processes with an increased level of detail. 
Consequently, the first objective of this paper is to introduce a 
novel approach to quantifying wildfire likelihood that is both 
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computationally efficient and able to represent wildfire pro-
cesses in a more detailed manner. This is achieved by propos-
ing a neighbourhood index that is conceptually similar to 
heuristic asset-centric models, and hence computationally 
efficient, but unlike existing asset-centric models, is able to 
represent the contagious, multi-scale and directionally spe-
cific interactions of fire behaviour factors that govern wildfire 
processes explicitly. The second objective of this paper is to 
assess the utility of the proposed neighbourhood index for a 
case study region in the Adelaide Hills in South Australia by: 
(i) comparing estimates of wildfire likelihood obtained using 
the proposed neighbourhood index with (a) corresponding 
burn probability estimates obtained using simulation-based 
models and (b) historical burnt areas; and (ii) comparing the 
computational effort required to obtain estimates of wildfire 
likelihood using the proposed neighbourhood index with that 
required by a simulation-based model. 

To achieve the above objectives, the remainder of this 
paper is structured as follows: First, the conceptual basis for 
the proposed neighbourhood index is outlined. The study 
area is then introduced, including the input data used for the 
study and the process of applying the proposed index to the 
study area, followed by the approach used to test the utility 
of the proposed neighbourhood index. The case study results 
are then presented and discussed, followed by a summary, 
conclusions and recommended future research directions. 

Methods 

Proposed neighbourhood index 

The proposed neighbourhood index describes whether and 
how easily fire may spread toward a point of interest (point i 
within map X) from its ‘local’ neighbourhood surroundings 
(points j Ji

w) defined under a given set of specific weather 
conditions (denoted by the super script w). The formulation 
of the index reflects several key principles of fire spread and 
likelihood, including multi-scalar momentum and connec-
tivity associated with contagion, directionally specific fire 
spread and top-down controls of fire weather. 

In order to capture the multi-scale nature of wildfires and 
their ability to spread over these scales, the proposed index 
aggregates fire behaviour properties (denoted by fbpj for 
point j) across several neighbourhoods of different spatial 
scales surrounding the point of interest i (Fig. 1). The poten-
tial momentum driving fire spread at different scales is 
directly captured through this aggregation of fire behaviour 
properties within each neighbourhood. This aggregation 
also implicitly considers connectivity, because cells within 
a neighbourhood that cannot burn do not contribute to the 
momentum within the neighbourhood. 

Neighbourhoods are designed to capture local momen-
tum and connectivity in the areas that have the biggest 
influence on wildfire likelihood at the point of interest. 

The sizes of the neighbourhoods can be calibrated to local 
conditions to reflect known relationships between fire size 
and frequency (Hantson et al. 2015), for example, by con-
sidering the distribution of observed fire sizes within the 
local region. In addition, the index is calculated under dif-
ferent weather conditions and then probabilistically aggre-
gated, thereby accounting for the top-down control of 
weather on potential fire behaviour and spread. 

Specifically, the above factors are incorporated into the 
neighbourhood index through a four-step process, an over-
view of which is given in Fig. 1. This process can be followed 
to calculate the neighbourhood index for any point of inter-
est, such as at specific assets for which the arrival of a fire may 
be adverse, or for all points in a landscape. The first three steps 
are completed separately for each distinct set of weather con-
ditions (indexed by w = 1, …, W, where W is the total number 
of unique weather conditions considered), and the fourth step 
aggregates across the entire set of weather conditions. To 
undertake the first three steps, a raster map X of input proper-
ties is required, where the input properties fbpj i

w
, reflect the 

potential fire behaviour or momentum driving fire spread from 
point j toward point i under specific weather conditions w. 

In the first step, the number, size, shape and spatial 
resolution of neighbourhoods (indexed by n = 1, …, N) 
are defined with respect to local conditions (Step 1;  
Fig. 1). In the second step, individual neighbourhood indices 
NIi

n w, are calculated for the point of interest i (for weather 
condition w and neighbourhood n) by summing potential 
weather- and topography-adjusted fire behaviour properties 
(fbpj i

w
, properties of raster map X) within each neighbourhood 

of cells j Ji
n w, (Step 2; Fig. 1). In the third step, the weather- 

specific neighbourhood index NIi
w is calculated as a weighted 

sum of the normalised index value of each individual neigh-
bourhood (Step 3; Fig. 1). Normalisation in this step ensures 
that the contribution of each neighbourhood to the weather- 
specific index value is adjusted for each neighbourhood’s size. 
Finally, the weather-specific neighbourhood index is probabil-
istically aggregated over the weather conditions considered 
(NIi, Step 4; Fig. 1). In addition to the overview of each of 
these steps provided in Fig. 1, greater detail is provided by the 
mathematical formulation of each step below.   

Step 1. Define Neighbourhoods: Select the number of 
neighbourhoods N, and for each neighbourhood 
n = 1, …, N, specify the set of cells belonging to that 
neighbourhood J Xi

n w, for each given weather con-
dition w = 1, …, W. 

As shown in Fig. 1, the first step involves the determination 
of each neighbourhood set Ji

n w, J X( )i
n w, for all points i, 

weather conditions w and neighbourhoods n = 1, …, N. The 
spatial resolution at which neighbourhood level n is defined, 
with corresponding map denoted as Xn, is controlled by the 
resolution factor RFn, which is assigned during the 
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Step 1: De�ne neighbourhoods

Step 2: Calculate individual neighbourhood indices, NIi
n,w

NIi
1,w

NIi
1 NIi

W

= NIi

NIi
2,w NIi

N,w NIi
w

Step 3: Calculate weather-speci�c neighbourhood index, NIi
w

Step 4: Aggregate over weather conditions to calculate the overall neighbourhood index, NIi

Example
wind

direction

de�ned by
αn and Dn

Input �re behaviour properties
(e.g. Potential rate of spread)

re-sample

dx ´ RFn = dx¢

n = 1
high
α:D

w = 1, w = W

n = N
low
α:D

n = 2, ...

...

,

...

+ +

+ + + =+

,

...

... ...

,

Point i

Dn

Set Ji
n,w

αn

Fig. 1. Calculation of the neighbourhood 
index for a point of interest, i.   
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parameterisation of the index (note that Xn is a uniformly 
down-sampled version of X, where cell properties of the 
coarser resolution Xn correspond to averaged values of the 
cells in X). A higher resolution ensures local, bottom-up fire 
behaviour features are captured, but is also more computa-
tionally expensive (i.e. the highest resolution is where 
Xn = X). A lower resolution will capture broader-scale land-
scape features more efficiently, at the expense of local features. 
The set of cells within each neighbourhood is controlled by 
neighbourhood shape, which is defined by the user. In this 
study, the neighbourhoods are circular sectors defined by 
shape and distance parameters, denoted as α and D, respec-
tively. The α parameter dictates the ‘field of view’ or angular 
range deviation from the direction of prevailing wind to be 
considered. The D parameter dictates the distance from 
the point of interest to be considered. That is, for point i 
(xi = (xi,yi) in Euclidian space) and wind direction θw for 
weather condition w, the representation of the shape parame-
terised by α and D in Euclidian space is given by 

{
}

x x x

x x

x y D( , ) : ,

2
arg( )

2

i

i
w

where x = (x,y), and the sets Ji
n w, are clearly indices of dis-

crete points in this space (note that here, arg is defined in the 
2-D real vector space). Jointly, the α and D parameters reflect 
the directionally specific spread of fire and represent a similar 
concept to the length-to-breadth ratio that is used to describe 
the spread of fire in elliptical models (Van Wagner 1969). A 
larger α:D ratio represents the possibility that over the defined 
distance, fires may be expected to reach the point of interest 
from a larger range of directions (Fig. 1). A smaller α:D ratio 
represents a narrower range of directions from which fires are 
expected to reach the point of interest over the given distance 
(Fig. 1). At relatively small distances, fires may typically arrive 
as heading fires, flanking fires and/or backing fires, so α is 
typically larger (see n = 1; Fig. 1). At relatively large distances, 
the fires that reach the point of interest are assumed to have 
largely travelled as heading fires in the direction of prevailing 
winds, so α is typically smaller (see n = N; Fig. 1).   

Step 2. Calculate Individual Neighbourhood Indices: 
Calculate NIi

n w, , the neighbourhood index of point i 
for the nth neighbourhood under weather conditions 
w, as the sum of fire behaviour properties fbpj i

w
, at 

points Ji
n w, . That is, 

NI = fbpi
n w

j J
j i
w,
,

i
n w,

In the second step, potential fire behaviour properties 
calculated at the cells within each neighbourhood are aggre-
gated to calculate a neighbourhood index for each individ-
ual neighbourhood NIi

n w, . Potential fire behaviour properties 

(fbpj) may be represented by measures such as HFI or ROS, 
because these measures incorporate weather, fuel and topo-
graphic interactions that directly drive fire spread. 
Relatively high fire behaviour properties reflect high 
momentum and a higher likelihood that fire will continue 
to spread through each cell within the neighbourhood, for 
example, due to fast-spreading (high ROS) or intense burn-
ing (high HFI) fuels. Relatively low or zero values (i.e. 
barriers such as dense urban areas or water bodies) reflect 
lower momentum and/or connectivity and a lower likeli-
hood that a fire will continue to spread through each cell 
within the neighbourhood. Prior to aggregation, fire beha-
viour properties may be adjusted for a specific wind direc-
tion and local topography acting between points i and j 
(i.e. to compute fbpj i

w
, from fbpj) using the apparent slope 

metric (Duff and Penman 2021). Within Step 2, the aggrega-
tion process disregards the spatial distribution of fire beha-
viour properties inside each neighbourhood. However, 
features in the spatial distribution of fire behaviour properties 
that are considered to have a potentially significant effect on 
wildfire likelihood may be captured through appropriate 
parameterisation of the neighbourhoods in Step 1.   

Step 3. “Calculate Weather specific Neighbourhood Index: 
Calculate NIi

w, the weather-specific neighbourhood 
index of point i under weather conditions w. Each 
NIi

n w, is normalised by the maximum index value at 
any point i ∈ X (denoted as NIn w

max
, ) and weighted by 

pn w, , the neighbourhood's relative importance, given 
weather condition w, and is given by”:   

pNI =
NI
NIi

w

n

N
n w i

n w

n w
=1

,
,

max
,

i
k
jjjjj

y
{
zzzzz

where NI = max{NI }n w
i X i

n w
max
, , , p0 1n w, , and n

N
=1

p = 1n w, . 

In the third step, the multi-scale nature of wildfire likeli-
hood is captured by considering the combination of the set of 
N neighbourhood index values NIi

n w, . The aggregation of these 
neighbourhoods is controlled by the relative importance of 
each neighbourhood in influencing the spread of fire to the 
point of interest (the weight term pn w, used in Step 3). 

Once calculated for a given set of weather conditions, a 
relatively higher weather-specific neighbourhood index 
(NIi

w in Step 3) suggests higher wildfire likelihood due to 
higher connectivity and momentum acting in the direction 
of the point of interest from within the neighbourhoods. 
That is, higher connectivity and momentum within the 
neighbourhoods increase the likelihood of a fire spreading 
to the point of interest from within the considered neigh-
bourhoods. A lower index suggests lower wildfire likelihood 
due to either lower momentum acting in the direction of the 
point of interest and/or barriers to spread that interrupt 
connectivity within the neighbourhoods, thus decreasing 
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the likelihood of a fire spreading to the point of interest from 
within the neighbourhood(s). Interventions in the landscape 
may be evaluated by their ability to reduce momentum (i.e. 
fire behaviour) and/or interrupt the connectivity of fuels 
within the neighbourhoods, consequently reducing wildfire 
likelihood as represented by the neighbourhood index.   

Step 4. Aggregate over Weather Conditions: Repeat steps 
1–3 across all weather conditions w = 1, …, W, aggre-
gate and weight by the relative probability of each set 
of weather conditions occurring (pw):  

pNI = NIi
w

W
w

i
w

=1

where p p0 1, = 1w
w
W w

=1 . 

In the final step, the weather-specific neighbourhood indices 
calculated for each set of weather conditions are probabil-
istically aggregated to provide the overall neighbourhood 
index (NIi). Each weather-specific neighbourhood index is 
multiplied by the relative probability of its weather condi-
tions occurring pw. As a result, NIi is the expected value of 
NIi

w across the different weather conditions considered 
w = 1, …, W. This enables the overall neighbourhood index 
to reflect the top-down and probabilistic control of climate and 
weather conditions driving fire spread in specific directions 
with different degrees of momentum. For example, even if a 
point of interest is exposed to highly hazardous fire behaviour 
properties to the east, if dangerous fire weather does not 
frequently occur from this direction then it may be less likely 

for fire to spread to assets from that direction. Weather condi-
tions that are considered within this step can be informed by 
statistical analysis of historical weather patterns, expected 
future weather patterns or the priorities of the user. 

Study area 

The case study area within which the utility of the proposed 
neighbourhood index is assessed is the Adelaide Hills region 
of South Australia (Fig. 2). The Adelaide Hills region is 
located to the east of the city of Adelaide, the capital of 
South Australia. Given the coincidence of high wildfire activity 
and human populations within the region, there exists a need 
for tools that support proactive planning of treatments to 
reduce wildfire likelihood. The region itself covers approxi-
mately 140,000 ha (Fig. 2) and has a growing population of 
approximately 80,000 people (Australian Bureau of Statistics 
2021). Development within the region is typical of the peri- 
urban interface, with residential housing often scattered 
throughout densely vegetated sclerophyllous landscapes 
(Bardsley et al. 2015). In addition to people and infrastructure, 
the landscape also contains significant value for cultural con-
nection and biodiversity conservation (Bardsley et al. 2015). 
Grasslands and eucalypt forests are the predominant fuel types 
across the landscape (Fig. 3). Prior to colonial invasion, wild-
fire risk in this area was likely reduced by landscape manage-
ment undertaken by local Indigenous Peoples (Fletcher et al. 
2021), here including the Peramangk, Ngarrindjeri, Ngadjuri 
and Kaurna (Bardsley et al. 2019). Since colonial invasion and 
urban development in the Adelaide hills, wildfires have caused 
significant recorded burnt area and losses. 

30 km

Adelaide

Melbourne

Hobart

Sydney

N

Fig. 2. Adelaide Hills case study region in the geographical context of south eastern Australia.   
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The governmental records of wildfire activity used in this 
study contain 242 wildfire events of size greater than 1 ha, 
which have intersected with the region since 1955 
(Department for Environment and Water 2021). Over this 
time, the cumulative area burnt is almost 100,000 ha 
(Fig. 3). Importantly, and as summarised by others (Gill 
and Allan 2008), the majority of historical burnt area in 
the region is due to only a small number of extreme wildfire 
events (Fig. 3). One such event was the Cudlee Creek fire in 
December 2019 (Fig. 3), in which over 20,000 ha were burnt 
and 85 homes were lost (South Australian Country Fire 
Service 2022). 

Input data 

Vegetation mapping of 30 m resolution was provided by the 
South Australian Department for Environment and Water 
(DEW, pers. comm.). The mapping of vegetation communi-
ties provided was last updated in 2019. Vegetation classes 
were reclassified into relevant fire behaviour models 
(Fig. 3). Fire behaviour models were selected from Cruz 
et al. (2015), except for the Pine model, which was adapted 
from Wang et al. (2017). Locally calibrated Olson curves 
(DEW, pers. comm.) were used to estimate fuel loads. 
A constant fuel age of 30 years was assumed to reflect a 
‘worst-case’ scenario of fuel load accumulation. This 

Historical wild�res
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Urban Shrubland Waterbody
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Fig. 3. Top: historical wildfires intersecting the Adelaide Hills region (left). The Cudlee Creek fire is depicted in a darker shade as a 
notable recent historical occurrence. Fire behaviour models (middle) and topographic elevation (right) are also shown. Bottom: 
Cumulative annual burnt area of recorded fires intersecting the study area. Separate fire polygons representing events are delineated 
by alternating colours within the stacked bar chart.   
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scenario is consistent with maximum fuel load scenarios 
used within south-eastern Australia (State of Victoria 
2015; Gazzard et al. 2020). The maximum fuel scenario 
was also chosen to reflect a limited effect of historical fires 
on moderating fire spread within the region, as exemplified 
by the absence of, or low and negative, ‘leverage’ (Price 
et al. 2015b) and the limited influence of fuel age on pre-
venting fire spread in similar Australian sclerophyll land-
scapes (Price and Bradstock 2010). Vegetation classes that 
reflect urban and other developed land uses (e.g. mine sites) 
were considered ‘unburnable’ and assigned a potential ROS 
of zero. 

To source information on weather for the study region, 
the Bureau of Meteorology Atmospheric high-resolution 
Regional Reanalysis for Australia (BARRA) dataset was 
used (Su et al. 2019). This dataset contains hourly and 
sub-hourly information for temperature, relative humidity, 
wind speed and direction at a 1.5 km resolution across the 
study region. For use in this study, the spatially and tempo-
rally explicit weather data were aggregated to form repre-
sentative weather streams. Representative weather streams 
and their relative probability of occurrence are provided in  
Table 1 (AH1–AH8). To generate these streams using the 
BARRA dataset, the days on record that constitute days of 
potential fire danger are determined using a threshold for 
the Forest Fire Danger Index (McArthur 1967; Noble et al. 
1980) at which more than 95% of the historical burnt area 
had occurred. The values of each weather parameter across 
the landscape on potential fire danger days from the hours 
of 12–5 pm were extracted. Wind direction was split into 
eight classes (W = 8) based on cardinal and ordinal wind 
directions, and the remaining parameters were split into 
quantiles for a total of 512 data bins (eight sets of three 
variables, each with four quantile classes). Each bin is rep-
resented by the median value of the parameters within that 
bin. The frequency of weather parameters falling into each 
bin at each timestep was recorded. The most common bin of 
weather parameters from each wind direction was selected 
to be used as the eight representative weather conditions, 

with the relative probability of occurrence normalised to 
one (Table 1). 

The topographic information required for model imple-
mentation was sourced from a Digital Elevation Model 
(DEM) provided by Geoscience Australia (2010) and 
resampled to the same resolution as the vegetation map 
(30 m; Fig. 3). Slope and apparent slope were calculated 
using this DEM and the terra package (Hijmans 2022) in R 
(R Core Team 2022). 

Neighbourhood index application 

To calculate the neighbourhood index for the study region, a 
publicly available GitHub repository (Firehoods, https:// 
github.com/DougRadford/Firehoods) has been created. 
The repository provides a function written in R (R Core 
Team 2022) using the terra package (Hijmans 2022), 
which takes as inputs a wind direction, a raster layer of 
properties to be aggregated (for example, the ROS adjusted 
for topography and wind direction using apparent slope) 
and a parameter table of the same format as Table 2. The 
parameters within this table (N, Dn, αn and RFn) match those 
described in Step 1 of the neighbourhood index formulation 
(Fig. 1) and are determined for the Adelaide Hills study 
region as outlined below. 

The relevant number of neighbourhoods (N; Table 2) was 
determined to be nine (N = 9) using a power–law analysis 
of the frequency-size distribution (Grassberger and Manna 
1990; Hantson et al. 2015) of historical wildfires that have 
intersected the study region (Fig. 4). This approach to defin-
ing classes was chosen because it provides a link between 
the multiple scales of wildfire events and their relative 
frequency or importance (Hantson et al. 2015). It is noted 
that within the analysis, historical wildfires smaller than 
1 ha in size were omitted, because these do not represent 
spreading wildfires and would overly influence the 
power–law fit (Hantson et al. 2015). 

To generate the distance parameters (Dn; Table 2), 
bounding boxes around each historical fire scar were 

Table 1. Aggregated weather parameters and relative probabilities for the study region.        

Weather 
code, w 

Wind 
direction 

(°) 

Temperature  
(°C) 

Relative 
humidity 

(%) 

Wind 
magnitude 

(km/h) 

Relative 
probability 

(pw,%)   

AH1  0  37.5  10.1  15.3  19 

AH2  45  23.8  42.1  27.4  19 

AH3  90  23.8  42.1  27.4  22 

AH4  135  23.8  42.1  15.3  6 

AH5  180  33.0  15.3  10.4  5 

AH6  225  33.0  15.3  10.4  7 

AH7  270  23.8  21.5  27.4  6 

AH8  315  37.5  10.1  27.4  16   
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created, recording the length of the diagonal. The median 
diagonal length of each nth class defined in the power–law 
analysis was used as the distance parameter for the corre-
sponding neighbourhood (Dn; Table 2). 

The appropriate shape parameters (αn; Table 2) were 
estimated based on the distance parameter of each neigh-
bourhood (Table 2) and the approximately inverse relation-
ship between the α and distance parameters discussed in the 
formulation of the neighbourhood index. That is, relatively 
small distance parameters are assigned larger α parameters 
(e.g. D1 = 300 m, α1 = 360°), and larger distance parame-
ters are given smaller α parameters (e.g. D9 = 25,810 m, 
α1 = 11.25°). As discussed, this reflects the assumption 
that across small distances, wildfires may arrive as heading, 
flanking or backing fires, whereas across larger distances, it 
is more likely they arrive only as heading fires travelling 
with the prevailing wind direction. 

The resolution factors (RFn; Table 2) were set to keep the 
ratio between the distance parameters and the resolution of 

the input properties for each neighbourhood approximately 
constant. Where the resolution factor is greater than one, the 
resolution of input properties (originally 30 m) was reduced 
by averaging these properties to the lower resolution (e.g. 
for a resolution factor of two this involves averaging four 
30 m cells up to a new input layer at 60 m resolution). The 
utility of this approach was demonstrated by calculating and 
comparing the neighbourhood index with and without any 
adjustment to the resolution (Fig. A1). 

Within the second step (Fig. 1), it was necessary to 
define the fire behaviour properties to be aggregated. 
Two configurations of the neighbourhood index were 
tested, using either the ROS or HFI as the input properties. 
These properties were adjusted for the apparent slope 
(fbp )j i

w
, with respect to each wind direction prior to neigh-

bourhood aggregation. A computational simplification was 
made such that the direction from j to i is always consid-
ered as the direction of the prevailing wind. This general-
isation holds true for most cells j within large 
neighbourhoods of low α values but is less valid for neigh-
bourhoods with high α values. 

In the third step (Fig. 1), the relative importance of each 
neighbourhood was considered equal in weight 
p n N( = , = 1, …, )n w

N
, 1 , given the linear relationship 

between bins in the power–law analysis (Fig. 4) used to 
define neighbourhoods. 

In the fourth step (Fig. 1), the weather-specific neigh-
bourhood indices calculated under each set of weather con-
ditions (AH1–AH8; Table 1) were multiplied by the relative 
probability (pw) of the weather conditions occurring and 
then summed. The result is NIi, the overall neighbourhood 
index of the point of interest. To distinguish between the 
overall neighbourhood indices calculated using different fire 
behaviour properties, we label the overall neighbourhood 
index calculated using ROS as NI-ROS and that calculated 
using HFI as NI-HFI. 

Table 2. Parameterisation of neighbourhood index.      

Neighbourhood 
scale (n) 

Distance, 
Dn (m) 

αn (°) Resolution 
factor, RFn   

1  300  360.00  1 

2  500  360.00  1 

3  830  360.00  2 

4  1650  360.00  4 

5  2690  180.00  8 

6  5040  90.00  16 

7  9620  45.00  32 

8  12,600  22.50  40 

9  25,810  11.25  80   
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Fig. 4. Power–law function relating wildfire size 
and frequency in Adelaide Hills region, as calculated 
using historical wildfires of size greater than 1 ha 
that intersect the region (total number = 242).   
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We note that the process described above is only one 
possible approach for parameterising the neighbourhood 
index. Within the above approach, chosen parameters and 
neighbourhood weights are not varied by weather condit-
ions D D p w W( = , = , RF =RF , = , =1,…, )n w n n w n n w n n w, , , , 1

9 , 
given the historically based power–law analysis undertaken 
was independent of weather conditions, making it suitable 
for long-term strategic analyses. 

Assessment of the utility of the neighbourhood 
index 

To evaluate whether the proposed neighbourhood index 
provides reasonable and computationally efficient estimates 
of contagious wildfire likelihood, its values were compared 
with historical burnt areas and simulated burn probability 
using both quantitative metrics and visual inspection (see  
Fig. 5). The former provides an indication of the ability of 
the neighbourhood index to distinguish between areas that 
historically have been burnt and those that have not, 
whereas the latter provides an indication of the ability of 
the index to estimate simulated burn probability values. 

The advantage of comparing against historical burnt 
areas is that these areas are reflective of real fire spread. 
However, the limitation of the comparison with historical 
burnt areas is that burnt areas are influenced by the stochas-
tic chance of ignition occurrences (Parisien et al. 2020) and 
are representations of only one possible realisation of the 
past. Furthermore, limited data were available within our 
study area to reflect this past and any changes in landscape 
composition over time (i.e. changes in vegetation classes 
were not available). In comparison, the advantages of test-
ing each index against simulated burn probability are 

several. Firstly, landscape fire simulation models represent 
directionally specific and contagious wildfire spread, with 
their simulated burn probability outputs representing desir-
able observed patterns like fire shadows. Secondly, when 
comparing against simulated outputs, the input data is con-
trolled and identical to that used to calculate the neighbour-
hood index. Finally, there is no influence of stochasticity 
related to ignition points, because these are sufficiently 
enumerated within the structured Monte Carlo process 
used to calculate burn probability. The limitation of com-
paring against simulated burn probability is that the pat-
terns in wildfire likelihood represented are limited in 
realism to that of the underlying fire growth simulator and 
conditions modelled. 

The pre-processing of historical data, calculation of sim-
ulated burn probability and quantitative metrics used to 
evaluate the performance of the two variants of the pro-
posed neighbourhood index considered (Fig. 5) are dis-
cussed in detail in the subsequent sections. When 
evaluating the performance of each index variant, the quan-
titative tests do not consider cells that are assigned unburn-
able fuel types (e.g. reservoirs). 

Comparison with historical burnt areas 

To quantitatively evaluate the performance of each variant 
of the neighbourhood index considered against historical 
burnt areas, the Receiver-Operator Characteristic (ROC) 
test and Area Under the Curve (AUC-ROC) metric were 
chosen. The ROC test was chosen due to its applicability 
to natural hazard models (Beguería 2006) and prior appli-
cation to wildfire studies (Parisien and Moritz 2009; Sharma 
et al. 2022). To undertake the ROC test, the number of times 
each cell within the study area has burnt within the entire 

Evaluation approach

Historical burnt areas
Does the index explain the presence or absence of

historical !res?

NI-ROS
neighbourhood

index

NI-HFI
neighbourhood
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Simulated

burn
probability

NI-HFI
neighbourhood
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Pearson
correlation
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Spearman’s
rank
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Areas burnt
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Metrics Indices
tested

Compared
against

Metrics

Simulated burn probability
Does the index represent contagious patterns in wild!re
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Fig. 5. Overview of the two-part validation approach used to test two variants of the neighbourhood index, 
calculated with either ROS (NI-ROS) or HFI (NI-HFI) as the aggregated fire behaviour properties. Each index 
version is tested independently against historical burnt areas and simulated burn probability.   

www.publish.csiro.au/wf                                                                          International Journal of Wildland Fire 33 (2024) WF23055 

11 

https://www.publish.csiro.au/wf


record (1955–2021) was summed. Within the study area, 
approximately 41% of burnable cells had burnt at least once, 
9% at least twice and 1% the maximum of three times. The 
ROC test is a binary classification test, so was undertaken 
independently against areas burnt: (i) at least once; (ii) at 
least twice; or (iii) three times. These three independent 
ROC tests help to account for the influence of stochasticity 
of historical ignition occurrences and to assess the ability of 
each index variant to discriminate areas that have burnt 
more frequently (assumed to be more indicative of higher 
wildfire likelihood). When evaluating each index variant 
using the AUC-ROC metric, values less than 0.7 are consid-
ered a poor discrimination between areas burnt or unburnt, 
and values above 0.7, 0.8 and 0.9 are considered acceptable, 
excellent and outstanding, respectively (Hosmer et al. 
2013). Only the results of the best-performing neighbour-
hood index variant are presented in the body of the paper, 
with the results for the other variant provided in Table A1. 

Comparison with simulated burn probability 

To evaluate the neighbourhood index performance against 
simulated burn probability, quantitative correlation metrics 
were used alongside a qualitative visual assessment of 
model agreement. Correlation metrics were used because 
they provide a quantitative measure of the strength of the 
relationship between the two variants of the proposed 
neighbourhood index and burn probability, though this is 
spatially aggregated across the study region. In contrast, the 
visual assessment provides a spatially explicit depiction of 
model performance and allows for the assessment of how 
well the index captures contagious and directional patterns 
in burn probability (i.e. fire shadows), albeit in a qualitative 
manner. Additionally, to quantify the relative computa-
tional efficiency of the proposed neighbourhood index and 
landscape fire simulation models, the run time of each 
model was compared. Runtimes were recorded as the wall 
clock runtime without parallelisation on an Intel® Core™ i9- 
12900KF CPU @3200 Mhz machine with 16 Cores and 
128 Gb RAM. 

To calculate burn probability, a basic implementation of 
Spark version 1.1.3 (Miller et al. 2015) was used to simulate 
a total of 54,000 fires, each assumed to be 5 h in duration. 
Potential ignition points were arranged in a uniform grid, 
which was constructed iteratively to ensure that edge effects 
were removed within the study region and that the ignition 
density was sufficient to reduce uncertainty in output burn 
probability. For each set of weather conditions (AH1–AH8;  
Table 1), the number of times each cell was burnt by a 
simulated wildfire was calculated. This was then aggregated 
across weather conditions by multiplying by the relative 
probability (pw; Table 1) of each set of weather conditions 
occurring and summing across these weather conditions. 
Next, the burn probability was calculated by rescaling the 
probability adjusted number of times burnt to the range 

[0, 1], aligning with the scales of the neighbourhood 
index. Note that although Spark has the flexibility to 
model more complex processes related to wildfire spread 
(i.e. suppression and ember-based spread), these are not 
included in this study. 

The Pearson and Spearman’s rank correlations were used 
to measure the strength of the relationship between each 
variant of the neighbourhood index and simulated burn 
probability. The Pearson correlation was used to test the 
strength of the linear relationship between the index and 
burn probability, and Spearman’s rank correlation was used 
to test the strength of this relationship without assuming 
linearity. Higher correlations indicate a stronger relation-
ship between the index and burn probability. Only the 
results of the best-performing index variant are presented 
in the body of the paper, with the results for the other 
variant provided in Table A2. 

To visually assess the spatially explicit ability of the 
neighbourhood index to capture the contagious patterns in 
wildfire likelihood represented by burn probability outputs 
(i.e. fire shadows), the relative magnitude of each measure 
of wildfire likelihood across the study area was compared. 
To achieve this, each measure of wildfire likelihood was 
divided into five equal classes using quintiles, because this 
has been shown to be the most reliable symbology for pre-
senting burn probability maps (Beverly and McLoughlin 
2019). To explore differences among maps, the difference 
between the quintile classes of each measure of wildfire 
likelihood at each cell was calculated, termed quintile 
class difference. To further assess areas of agreement or 
disagreement, as represented by the quintile class differ-
ences between the neighbourhood index and burn probabil-
ity, the quintile classes of each individual neighbourhood’s 
index value (NIi

n w, , Step 2; Fig. 1) were also explored. 

Results and discussion 

Historical burnt areas 

The performance of the neighbourhood index (NI-HFI) is 
strongly dependent on the frequency with which the areas 
compared against have burned (shown in Fig. 6). The neigh-
bourhood index performs poorly (AUC-ROS = 0.64) when 
discriminating against any area that has only been burnt 
once; however, this performance increases monotonically to 
the category of acceptable (AUC-ROC = 0.77) or excellent 
(AUC-ROC = 0.82) when comparing against only areas that 
have burnt at least twice or the maximum of three times, 
respectively. As the threshold for the number of times a cell 
has been burnt increases, the neighbourhood index becomes 
increasingly better at discriminating that cell as having a 
relatively higher wildfire likelihood. This suggests that the 
neighbourhood index captures the landscape contagion 
properties that have led to certain cells being burnt 
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repeatedly. The poorer performance of the neighbourhood 
index on areas burnt only once may reflect the high depen-
dency of these areas on where ignitions have occurred and 
under what conditions, aligning with the limitations of 
historical comparisons discussed by Parisien et al. (2020). 
This is also reflected by the relatively large area assigned to 
the highest likelihood of burning by the neighbourhood 
index (Likelihood zone 3, Fig. 6), which suggests that even 
though not all areas have burnt frequently, their neighbour-
hood properties suggest they might have done so under a 
different realisation of the past. 

The neighbourhood index calculated using HFI properties 
(NI-HFI Average AUC-ROC = 0.744) performed signifi-
cantly better than the neighbourhood index calculated 
using ROS properties (NI-ROS Average AUC-ROC = 0.420;  
Table A1). This suggests that aggregating high HFI propert-
ies across multiple scales using the neighbourhood index is 
more informative for identifying areas that have burnt 
repeatedly within the region considered. This is likely 
because the region contains significant suppression 
resources and the NI-HFI implicitly captures processes asso-
ciated with intense fires that cannot be easily suppressed 
(Hirsch and Martell 1996) and spread faster through higher 
ember production (Rothermel 1983). These considerations 
are not represented by the NI-ROS version of the neighbour-
hood index. The ability of the NI-HFI to implicitly represent 
these processes is an advantage of the proposed neighbour-
hood index over landscape fire simulation models, which 

must explicitly model suppression and ember spread during 
fire growth, if at all. Explicitly incorporating more informa-
tion about suppression (e.g. Telfer 2019) or ember produc-
tion potential (e.g. Roberts et al. 2021) into the 
neighbourhood index may improve its performance further. 
Because the proposed neighbourhood index shows explana-
tory power with respect to historical burnt areas, there 
exists potential to incorporate the neighbourhood index 
into statistical asset-centric models, such as that of Price 
et al. (2015a). 

Simulated burn probability 

Results indicate that the proposed neighbourhood index 
(NI-ROS) is highly correlated with the burn probability 
results (Pearson correlation, ρ = 0.83 and Spearman rank 
correlation, ρ = 0.85). This suggests that the neighbourhood 
index is able to capture the contagious patterns in wildfire 
likelihood that are represented in landscape fire simulation 
models with a high degree of similarity (Fig. 7). This is a 
significant finding because it is the first example of an asset- 
centric model providing estimates of contagious wildfire 
likelihood that are comparable to those of simulation- 
based models. 

In contrast to the comparison with historical burnt areas, 
the neighbourhood index calculated using ROS properties 
(NI-ROS) out-performs the neighbourhood index calculated 
using HFI properties when comparing against simulated 
burn probability (NI-HFI Pearson correlation ρ = −0.24;  
Table A2). This is likely because the fire growth model 
used to calculate burn probability in this study simulates 

Historical

Times burnt or Likelihood zone: N.A. 1 2 3

Times burnt
Neighbourhood
Asset–centric

Fig. 6. Historical Burnt Areas (left) and the wildfire likelihood zones 
generated using the best-performing neighbourhood index (NI-HFI, 
right). Likelihood zones 1, 2 and 3 are generated for visualising the 
results of each asset-centric model using thresholds defined follow-
ing a similar method to that of  Parisien and Moritz (2009) and based 
on the AUC-ROC tests against areas burnt at least once, twice or 
three times.  

Burn probability

Likelihood class: 1 2 3 4 5

Landscape �re
simulation

Neighbourhood
Asset–centric

Fig. 7. Comparison of the best-performing neighbourhood index 
(NI-ROS) against simulated burn probability. Likelihood classes are 
defined by the quintiles of the simulated burn probability and neigh-
bourhood index separately.  
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fire spread as a function of ROS only and does not incorpo-
rate ember-based spread modes or the effect of suppression 
on reducing the spread of low-intensity fires. This reinforces 
that the neighbourhood index has the potential to capture 
contagious and directionally specific processes of fire 
spread, as represented in either historical occurrences or 
burn probability outputs, provided it is parameterised 
appropriately. 

Although the neighbourhood index estimates the relative 
wildfire likelihood portrayed by the burn probability results 
well across the Adelaide Hills region (as shown by high 
correlations), there remain areas of disagreement due to 
differences in the model representation of fire spread pro-
cesses in ‘unburnable’ areas, as seen in Fig. 8. In this figure, 
areas of over-prediction are commonly down-wind of large 
areas that have zero rate of spread (i.e. urban areas or 
reservoirs; Fig. 3). This is due to the different handling of 
these unburnable areas in the fire growth model and the 
calculation of the neighbourhood index. In the basic setup of 
the fire growth model used in this study (Spark), the 
‘unburnable’ barriers to spread are explicitly represented 
and interrupt the connectivity of the landscape. The differ-
ence between a low ROS patch of fuel and a zero ROS urban 
area is significant (a simulated fire may still propogate 
across a low ROS patch, but a zero ROS patch acts as a 
hard barrier). By contrast, in the proposed neighbourhood 
index, barriers to spread and landscape connectivity are 
only implicitly represented. For the neighbourhood index, 

the difference between a low ROS patch of fuel and a zero 
ROS urban area is not as significant in the summation of the 
fire behaviour properties within larger neighbourhoods 
(Step 2; Fig. 1). 

Although it is unlikely that the urban areas are truly 
‘unburnable’ as currently configured in Spark, and conse-
quently that fire shadows may be over-represented in the 
simulated burn probability map, they may also be under- 
represented by the neighbourhood index. Two areas of nota-
ble over-prediction of wildfire likelihood that exemplify this 
include the fire shadows on the down-wind side of both the 
Mt Barker and Woodside regions (shown by the quintile 
class difference; Fig. 9). These fire shadows are both clearly 
present in the simulated burn probability results and are 
created by urban settlements. The first, Mt Barker, is a 
densely populated urban area. Its fire shadow is only slightly 
discernable in the weather-specific neighbourhood index 
(NI-ROSw=AH1, Fig. 8) and some of the individual neigh-
bourhood index values (NI-ROSn, w=AH1, 5 ≤ n ≤ 9, Fig. 9), 
though at different distances downwind of Mt Barker. By 
contrast, the Woodside region is an area with several less 
dense, urban centres (Woodside, Lobethal and Charleston), 
and its fire shadow is not consistently discernible in the 
weather-specific neighbourhood index, nor the individual 
neighbourhood index values. More explicitly incorporating 
barriers to spread into the formulation of the neighbourhood 
index may further improve its ability to estimate simulated 
burn probability. The methodology of O’Donnell et al. (2011) 

Burn probability

Likelihood
class 1 2 3 4 5

Class
difference –4 –3 –2 –1 0 1 2 3 4

Landscape �re
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Neighbourhood Class
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Fig. 8. Comparison of the weather-specific neighbourhood index (NI-ROSw=AH1) with the simulated 
burn probability results under a single set of weather conditions (AH1 for all panels). White cells 
indicate unburnable fuel types. Quintile class difference is calculated by subtracting the quintile class 
(1–5) of the simulated burn probability from the quintile class of the neighbourhood index on a cell- 
by-cell basis. A zero quintile class difference represents areas of broad agreement. Positive or 
negative difference indicates that the neighbourhood index over-predicts or under-predicts burn 
probability, respectively.   
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presents an example where barriers to spread have been 
explicitly represented in wildfire studies previously. 

A further explanation for areas of disagreement between 
the neighbourhood index and burn probability may be 
related to the complex interactions across different scales 
of fire spread, which influence wildfire likelihood. Across 
these scales, any given location can present significantly 
different individual neighbourhood properties (Fig. 9). 
This is consistent with the emergent nature of wildfire 
likelihood, which is influenced by contagious processes 
occurring across different scales (Newman et al. 2019). 
The region south of Mt Bold reservoir (highlighted in  
Fig. 9), for example, shows high individual neighbourhood 
index values (NI-ROSn,w=AH1) across small-to-medium 
scales (1 ≤n ≤ 6) and very low individual neighbourhood 
index values at large scales (7 ≤n ≤ 9). Both the landscape 
fire simulation and asset-centric models identify this area as 
having relatively low wildfire likelihood, with only a slight 
over-prediction in some areas by the weather-specific neigh-
bourhood index (NI-ROSw=AH1). Conversely, the 
Kanmantoo region shows low individual neighbourhood 
index values across the same small-to-medium scales and 
high individual neighbourhood index values at large scales, 
with the weather-specific neighbourhood index (NI- 
ROSw=AH1) under-predicting wildfire likelihood as repre-
sented by burn probability. An improved estimation against 
simulated burn probability that may better account for these 
interactions between scales may be achieved by calibrating 
the neighbourhood index parameters (i.e. Dn, αn, pn,w) 
against the simulated burn probability results directly – 
and by allowing for interactions between the neighbour-
hood indices of different scales in the mathematical 
formulation of the proposed neighbourhood index. These 

improvements may be achieved by increasing the complex-
ity with which neighbourhoods are aggregated, for example, 
by using statistical models such as machine learning algo-
rithms that take the individual neighbourhood indices as 
inputs. Such an approach may address the slight non- 
linearity in the relationship between the neighbourhood 
index and burn probability currently observed, indicated 
by the Spearman’s rank correlation exceeding Pearson’s 
correlation. Furthermore, alternative approaches to calibrat-
ing the neighbourhood index may remove the reliance of the 
presented methodology on historical observations and allow 
for studies that explore future wildfire likelihood. 

Although it provides an estimate of wildfire likelihood 
that is highly correlated with simulated burn probability, 
the neighbourhood index is significantly more computation-
ally efficient than the landscape fire simulation modelling 
approach. The neighbourhood index (NI-ROS) provides its 
estimate of wildfire likelihood in 0.26% of the computa-
tional time (7.9 min) required by the simulation-based 
model (3071.3 min). This is because the asset-centric neigh-
bourhood index does not require the simulation of many 
individual fire events to estimate wildfire likelihood and 
only considers the fire behaviour properties within the 
neighbourhoods surrounding each point. 

The neighbourhood index appears to be able to represent 
contagious patterns in wildfire likelihood and has a low 
computational cost, so it is useful for answering problems 
that require many evaluations of wildfire likelihood, such as 
scenario and sensitivity analysis or the optimisation of fuel 
treatment placement. The reduced computational cost of the 
proposed neighbourhood index may also make it useful for 
other cases that require fast runtimes, including use in work-
shop planning settings, calculation of large-scale daily or 

n = 1 n = 2 n = 3

n = 4Woodside

Kanmantoo

Mt Barker

Over-predictionUnde
r-pred

iction

Mt
Bold

Class
difference

Neighbourhood
class:

n = 5 n = 6

n = 7 n = 8 n = 9

–4 –3 –2 –1 0 1 2 3 4 1 2 3 4 5

Wind
direction

Fig. 9. Left: quintile class difference between 
simulated burn probability and weather-specific neigh-
bourhood index (NI-ROSw=AH1) under AH1 weather 
conditions (chosen nominally). Notable areas of dis-
agreement are highlighted using callouts. The histogram 
shows the relative frequency of cells within each cate-
gory of quintile class difference. Right: individual neigh-
bourhood indices (NI-ROSn,w=AH1) for each set of 
parameters in  Table 2 under AH1 weather conditions.   
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sub-daily fire risk indices that do not currently incorporate 
measures of wildfire likelihood (i.e. the Australian Fire 
Danger Rating System), or improvements within global 
fire models that do not capture the influence of fuel conti-
nuity on wildfire likelihood (Jones et al. 2022). 

Based on the results obtained, it appears the neighbour-
hood index offers the ability to efficiently disentangle the 
complex interactions between the multiple scales of conta-
gious fire spread processes that govern wildfire likelihood 
(e.g. through visualising individual neighbourhood indices;  
Fig. 9). By being able to identify the most relevant neigh-
bourhood scales for each asset or location, use of the pro-
posed neighbourhood index could enable landscape 
managers to directly select asset-specific risk-reduction 
strategies that match relevant scales. For example, in the 
aforementioned Mt Bold example, treatments to reduce wild-
fire likelihood might be focused on the small-to-medium scales 
that have high index values (NI-ROSn,w=AH1, 1 ≤ n ≤ 6), 
whereas in the Kanmantoo example, treatments might be 
better focused on the larger scales (7 ≤n ≤ 9). Furthermore, 
given the low computational cost of the index, these treatment 
strategies and their effect on reducing contagious wildfire 
likelihood can be easily compared by recalculating the neigh-
bourhood index with inputs that reflect each alternative treat-
ment strategy. 

The neighbourhood index has performed well for the case 
study, but it should be noted that only spatially homogenous 
ignition probabilities and static weather conditions were 
considered (i.e. a fixed wind direction). These factors are 
simple to incorporate into landscape fire simulation models 
that explicitly consider individual wildfire events but have 
not been previously incorporated into heuristic asset-centric 
models. Although the current formulation of the neighbour-
hood index does not handle these considerations, we suggest 
that future work may make this possible. For example, 
spatially heterogeneous controls on ignition likelihood 
may be considered alongside the proposed neighbourhood 
index, as suggested conceptually in fig. 6b of Beverly et al. 
(2021), or incorporated directly into the formulation of the 
neighbourhood index by considering ignition probabilities 
within the neighbourhoods from which fires may spread. 
Additionally, temporally dynamic weather conditions, 
including dangerous conditions associated with a change 
in wind direction, might be incorporated more explicitly 
by jointly considering weather-specific neighbourhood indi-
ces calculated under two or more sets of weather conditions. 

Conclusion 

We introduce the conceptual basis for, and mathematical 
formulation of, a computationally efficient asset-centric 
neighbourhood index that considers contagious and direc-
tionally specific fire behaviour properties across multiple 
spatial ‘neighbourhood’ scales. This enables the proposed 

neighbourhood index to mimic contagious and directionally 
specific wildfire spread patterns, including ‘fire shadows’ 
and the ability of a wildfire to spread around landscape 
barriers across different spatial scales. Representation of 
these patterns has not been achieved by other models of 
wildfire likelihood without the computationally expensive 
simulation of many thousands of individual fire events. 

This paper demonstrates the application of the proposed 
neighbourhood index to a case study in the Adelaide Hills, 
Australia. The proposed neighbourhood index demonstrates 
an excellent ability to (i) discriminate the historical areas 
that have been burnt most frequently and (ii) capture phys-
ical processes represented by fire growth models. This rep-
resents the first example of a heuristic asset-centric model 
providing results comparable to those of landscape fire 
simulation models. However, these estimates are provided 
at a very small fraction of the computational time required 
by landscape fire simulation models to calculate burn prob-
ability. This makes it possible to carry out studies that 
require many evaluations of wildfire likelihood, such as 
sensitivity or scenario analysis and the optimisation of fuel 
treatment placements, without sacrificing detail in the rep-
resentation of wildfire likelihood. Such studies have previ-
ously not been possible for problems with realistic levels of 
scale and complexity, given the computational expense of 
generating burn probability outputs and lack of alternative 
models that represent the contagious and directionally spe-
cific processes of wildfire likelihood. 

Despite its excellent performance, the proposed neigh-
bourhood index also has several limitations. As discussed, 
it does not currently incorporate spatially heterogenous 
ignition probability or temporally dynamic weather condi-
tions. Ongoing development in these directions, alongside 
others, will improve its utility. One option for addressing 
these limitations is to incorporate the index into statistical 
models, such as artificial neural networks (Maier 
et al. 2023). 

In developing this index, the authors wish to support 
statements of other researchers suggesting that models 
should be chosen based on the problems they answer and 
used in combination to support decisions (Parisien et al. 
2020; Price and Bedward 2020). By more closely integrating 
the neighbourhood index with both landscape fire simula-
tion and statistical asset-centric models, there exists oppor-
tunity to create a suite of highly complementary tools for 
modelling wildfire likelihood and exploring problems that, 
to date, have been computationally infeasible to explore 
while also considering contagious and directionally specific 
fire behaviour properties across multiple spatial scales. 

Although there exist several avenues for further improve-
ment, the results of this study clearly demonstrate the poten-
tial for an asset-centric model to provide computationally 
efficient estimates of wildfire likelihood that also consider a 
more detailed representation of underlying physical pro-
cesses affecting fire spread. As mentioned above, this 
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opens the door to exploring problems that require many 
evaluations of wildfire likelihood, including sensitivity anal-
ysis, optimisation of treatment planning and exploration of 
future uncertainties associated with land use and climate 
change scenarios. This is significant, given previous chal-
lenges in addressing these types of problems and the increas-
ing need to proactively intervene to reduce future 
wildfire risk. 
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Appendix 1. Preliminary analysis of neighbourhood index sensitivity to resolution factor  
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Fig. A1. Comparison of neighbourhood index (NI-ROS) calculated with fixed resolution factor and variable resolution factor. The Pearson 
correlation coefficient between the two indices is 0.9997. The computation time of the variable resolution factor index is 473 s. The 
computation time of the fixed resolution factor index is significantly higher (209,725 s).  
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Appendix 2. Extended results for all computational experiments     

Table A1. Receiver-Operator Characteristic Area Under Curve results for the different neighbourhood indices when testing against areas burnt 
at least once, at least twice or three times in the historical record.       

Index and 
version 

AUC-ROC metric 

Minimum number of times areas compared against have burnt Average 

1 2 3   

NI-ROS 0.456 0.370 0.434 0.420 

NI-HFI 0.641 0.771 0.819 0.744 

The average AUC-ROC score is used to select the best-performing index for comparison within the Results & discussion section.  

Table A2. Pearson and Spearman rank correlations between the different neighbourhood indices and simulated burn probability.      

Index and version Correlation metric Average correlation 

Pearson Spearman   

NI-ROS 0.83 0.85 0.84 

NI-HFI −0.24 −0.28 −0.26 

Average correlation is used to select the best-performing index for comparison within the Results & discussion section.  
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