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ABSTRACT 

Background. Ecological departure is a metric applied to mapped ecological systems measuring 
dissimilarity between the distributions of observed and expected proportions of non-stochastic 
reference vegetation classes within an area. Aims. We created spatially explicit measures of ecological 
departure incorporating stochasticity for each ecological system and all ecological systems from a 
central Nevada, USA, landscape. Methods. Spatially explicit ecological departures were estimated from 
a radius from each pixel governed by a distance-decay function within a moving window. Variability 
was introduced by simulating replicate climate time series for each spatial reference condition and 
calculating departure per replicate. Key results. Single-system spatial ecological departure was high and 
extensive, except for one area of low-elevation groundwater-dependent systems. Variance of spatial 
ecological departure was extensively low, except in areas of lower ecological departure, despite 
vegetation differences among replicates. The multiple-system ecological departure exhibited lower 
values. Conclusions. Spatial ecological departure is warranted for efficient land management as results 
were concordant between non-spatial and spatial metrics; however, rapid coding languages will be 
required. Implications. Spatially explicit ecological departure of both single and multiple systems 
facilitate localised vegetation and wildlife habitat management and land protection decisions.  

Keywords: central Nevada, USA, fire regime condition, historic range of variation, LANDFIRE, 
spatial ecological departure, state-and-transition simulation modelling, stochastic reference 
condition, ST-Sim, Syncrosim. 

Introduction 

The concept of Fire Regime Condition (FRC), and its categorical version called Fire 
Regime Condition Class (FRCC), were developed by the US National LANDFIRE project 
at the request of the US Wildland Fire Leadership Council in 2004 (https://landfire.gov/ 
about.php, accessed 25 June 2022) to prioritise regional and massive funding for decades 
of fuels management (Rollins 2009; Blankenship et al. 2021). FRC measured the depar-
ture between the non-spatial distribution of observed (O) vegetation class proportions of 
each ecological system on a landscape and the distribution of expected (E) reference 
vegetation class proportions (Hann and Strom 2003; Shlisky and Hann 2003; Rollins 
2009; Blankenship et al. 2021; Swaty et al. 2022). A vegetation class is a categorical 
representation of an ecological system’s species composition and structure representing 
pre-settlement succession classes or vegetation altered by European-caused processes 
(Provencher et al. 2016). For reporting at regional scale, multiple-system departure was 
summarised as a weighted average of single system values. Greater departure from single 
or multiple systems implied that more federal funding should be directed to US regions 
where fuels could be treated to reduce departure (Rollins 2009). The term Ecological 
Departure (ED; Provencher et al. 2013, 2021) was used here instead of FRC years 
before LANDFIRE replaced it with Vegetation Departure (Swaty et al. 2022). ED is a 
dissimilarity index where smaller values (proportions or percentages) indicated greater 
similarity to the reference condition: 

O EED = 1– min( , )i
N

i i=1 (1) 
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where i identifies classes (i = 1, …, N classes) (Provencher 
et al. 2008; for an example, see Low et al. 2010). We termed 
the expected distribution of proportions the ‘reference condi-
tion’ representing either pre-European settlement vegetation or 
contemporary vegetation experiencing natural disturbance 
regimes under current climate (Provencher et al. 2008;  
Blankenship et al. 2021; Swaty et al. 2022). Eqn 1 has been 
non-spatial and non-stochastic since first proposed (Hann and 
Strom 2003; Blankenship et al. 2015, 2021; Swaty et al. 2022). 

Departure between current and reference vegetation was 
described for the Australian Habitat Condition Assessment 
System (HCAS) where pairwise remote sensing and abiotic 
environmental dissimilarity was measured between single 
focal pixels and pixels sampled from special areas empirically 
assessed to be observed reference vegetation (Harwood et al. 
2016). HCAS, however, is not calculated from a distribution 
of vegetation class proportions per system and the expected 
proportions of reference classes were modelled for Eqn 1 but 
sampled from current reference vegetation in HCAS. Whereas 
in the United States LANDFIRE mapped ED to inform nation-
wide resource allocation decisions, The Nature Conservancy 
partitioned Eqn 1 into its min(Oi, Ei) components to help 
public land management agencies identify the locations, 
extent and cost of specific restoration actions in large land-
scapes (Low et al. 2010; Provencher et al. 2013, 2021). Given 
the massive government funding influenced by ED, we were 
puzzled that it has remained non-spatial and non-stochastic 
since 2003 (Hann and Strom 2003). We propose here to first 
innovatively develop the spatially explicit component, which 
is then applied to the stochastic component. 

Spatially explicit estimation 

The size of an ecological system within a landscape was 
completely ignored in the estimation of ED because it was 
based on proportions, not area (Provencher et al. 2008); 
therefore, distant areas (e.g. >30 km) of the same ecological 
system within a vast landscape are assumed to have the 
same ‘cause of departure’, expressed by the min(Oi, Ei) 
parts of Eqn 1, and a unique non-spatial ED value regardless 
of the distance among areas contained in a landscape whose 
boundaries were often administrative. We proposed to cen-
tre the estimation of ED on each map pixel (thus spatially 
explicit, and not only landscape wide) and defined a local 
radius of single- and multiple-system ED estimation that 
better matched land management goals or a more species- 
based perception (i.e. radius of ED estimation) of the local 
vegetation in which at-risk and hunted species forage. 

Stochasticity 

The percentages of vegetation classes in Eqn 1 observed from 
remote sensing have no variability. The real source of stochas-
ticity in Eqn 1 can be assigned to the reference condition (i.e. 
E proportions), but users only employed temporal average 

proportions (as in Low et al. 2010). Using standard LANDFIRE 
methodology, the reference condition was obtained by running 
to equilibrium pre-Euro settlement state-and-transition simula-
tion models of each ecological system in a landscape (i.e. 
500–1000 years; Provencher et al. 2008; Blankenship et al. 
2015). Temporal variance within replicates might be biased 
because observations from different years could be auto- 
correlated, thus not achieving true replication of the reference 
condition (Steele et al. 2006), and simulations might not have 
reached equilibrium in years prior to when a simulation was 
stopped by the user (also pointed out by Steele et al. 2006). 
Equilibrium proportions of vegetation classes were only 
affected by disturbance regimes with minimal random number 
generator variability built within the simulation software; how-
ever, averages were always used, and variance, which was 
trivial and software-dependent, was often ignored (Shlisky 
and Hann 2003; Keane et al. 2009; Blankenship et al. 2015,  
2021). Ecological processes such as fire change over time and 
space; therefore, a reference condition dissociated from geol-
ogy, soils, climate, topography and large mammal herbivory 
appeared unrealistic (Keane et al. 2009). The single average 
value for each of the expected percentages of a reference 
vegetation classes implies more precision than is possible and 
often sets unreasonable management goals (e.g. using LANDF-
IRE terminology, ‘we should have 37% of vegetation class A’ 
instead of ‘we are aiming for 35–45% of vegetation class A’). 

Blankenship et al. (2015) used LANDFIRE reference models 
to introduce temporal variability in non-spatial replicated 
simulations of reference vegetation class proportions by 
annual sampling of mean fire return intervals from a Beta 
distribution. Although this approach allowed the estimation of 
among-replicate error by vegetation class proportions, ecolog-
ical disturbances other than fire will vary independently from 
that of fire in the same year, although disturbances are usually 
tightly correlated by climate effects in natural systems 
(Provencher et al. 2016). For example, a year with large 
area burned of forest caused by severe drought will likely 
also have enhanced tree mortality due to drought or insect 
or disease outbreaks. To avoid this problem, one can use 
external and forecast time series of climate variability 
obtained from a stochastic weather generator based on his-
toric climate time series and mathematically lock the variabil-
ity of all ecological disturbances to the same set of external 
time series (Provencher et al. 2016, 2021). 

Objectives 

Two objectives were proposed:  

1. Develop a spatially explicit and stochastic method to 
estimate ED for a real landscape where we expected 
areas of greater topographic heterogeneity to reduce 
spatially explicit ED compared with non-spatial ED:  
a. Incorporate maximum distance for the estimation of 

observed vegetation classes per system; 
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b. Create a stochastic and spatially explicit reference 
condition used to estimate ED; and  

2. Develop a spatially explicit and stochastic method to 
estimate multiple-system ED for the same landscape to 
demonstrate how single versus multiple systems can 
inform different land management goals. 

Methods 

Study area 

In 2014, The Nature Conservancy mapped ecological sys-
tems and their vegetation classes in a 76,828-ha basin and 
range valley in central Nevada called the Northern Newark 

Valley in the Basin and Range geologic province 
(39°53′04.38″N, 115°40′39.19″W; Grayson 1993; Fig. 1). 
The 2014 map layers were repurposed for the present 
study. The remote sensing’s vegetation classification can 
be found in Supplementary File S1, the area per ecological 
system and vegetation class is presented in Supplementary 
File S2, and the 2014 mapping methodology is reported in 
Supplementary File S3, and was generally explained in  
Provencher et al. (2021) for a different landscape. The 
original map resolution of 1.5 m (SPOT 6 satellite imagery) 
was resampled to 60-m resolution (i.e. 213,787 pixels) to 
keep software computation time reasonable for this study. 
Vegetation was zonally stratified by precipitation and soils 
as often observed in the Great Basin ecoregion (Grayson 
1993; Chambers et al. 2014). The dominant ecological 
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Fig. 1. North Newark Valley landscape of central Nevada. The area is 76,828 ha. Twenty-seven ecological systems 
are present.   
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systems are saline shrublands, sagebrush (Artemisia spp.) 
shrublands and sub-xeric woodlands. Wet meadows, moun-
tain shrubs, aspen (Populus tremuloides) woodlands and 
subalpine conifers are scattered across these systems at 
different elevations. 

Methodological overview 

The methodology involved four steps: (a) estimating the 
distance-adjusted proportions of observed vegetation classes 
per ecological system within a radius of each raster pixel, (b) 
simulating replicates of the vegetation reference condition 
for 700 years and estimating the distance-adjusted propor-
tion of expected vegetation classes per ecological system 
within the same radius of each raster pixel and per replicate 
at Year 700, (c) estimating the mean and variance of ED by 
applying Eqn 1 to each map pixel of the observed and 
expected rasters per replicate; and (d) recalculating the 
observed and expected distance-adjusted proportions 
among all ecological systems per map pixel and per replicate 
and application of Eqn 1. 

Estimating observed proportions 

To achieve spatially explicit estimation, ED was estimated 
for each pixel based on the composition of surrounding 
pixels by first conducting a moving-window search with a 
defined radius of surrounding pixels from each pixel of the 
raster. The moving-window search was applied to all pixels 
of the current remotely sensed system by vegetation class to 
obtain the observed proportions of all vegetation classes. 
The same operation was performed on each replicate of the 
reference condition simulations (see under section 
Stochastic reference conditions). We scripted in R (R Core 
Team 2013) the estimation of ecological departure; how-
ever, we highly recommend future scripting in the Python 
language because it handles spatial data more rapidly and 
with less memory requirements (https://blog.enterprisedna. 
co/r-vs-python-the-real-differences/; accessed 20 August 
2023). The search radius is defined by the user; we chose 
900 m or fifteen 60-m pixels for this study. All pixels of the 
same ecological system within the search radius were 
counted, and weighted to give less weight to more distant 
pixels in the following illustrative negative exponential 
equation from Morrison (2007): 

Pixel weight = 1.0171 × e 0.004×distance (2)  

where distance is the distance in metres between the focal 
pixel at the centre of the moving window and the pixel at 
≤1 radius. Users can use any distance weight equation to 
address their study objectives, including the special case of 
no distance decay with a weight of 1; we previously used 
this equation to model the contribution of human-caused 
fire ignitions from roads (Morrison 2007) to the non-random 
fire initiation probability raster of the landscape (Provencher 

et al. 2021). Therefore, Eqn 2 met our fire management goal 
where the spatial pattern of non-native annual fuels and ED 
coincided. 

For non-spatial ED, the proportion of each vegetation 
class is the number of pixels of the same class divided by 
the total number of pixels from all classes in the ecological 
system. For spatially explicit ED, the value of the same 
vegetation class pixel as the focal pixel was 1 multiplied 
by the pixel weight (Eqn 2) as the distance effect from the 
focal pixel; therefore, the proportion of each vegetation class 
i of the focal pixel at location [k, p], where k and p were 
column and row positions, was obtained by summing the 
weights per same class type and dividing the sum of weights 
among all classes per ecological system: 

i k p
i m n

j m n

Proportion of class ( , , )
= weight of pixel( , , )

÷ (weight of pixel( , , ))
n
R

m
C

n
R

m
C

j
N

=1 =1

=1 =1 =1

(3)  

where i and j code for the vegetation class i or j (i, j = 1, 2, 
…, N maximum number of classes); m and n code for column 
and row position; C and R, respectively, are the maximum 
number of columns and rows in the raster. For more efficient 
scripting, pixels at locations m and n stopped being consid-
ered if they were farther than the radius distance. 

Stochastic reference conditions 

The reference condition’s expected proportions were 
obtained by spatially simulating all ecological systems for 
700 years (Blankenship et al. 2015) using the ST-Sim soft-
ware supported by the Syncrosim platform (version 2.3.12; 
www.apexrms.com; Daniel et al. 2016). The description of 
the general modelling methodology is found in Provencher 
et al. (2021); however, here we removed all post-European 
settlement vegetation classes (e.g. classes with non-native 
plant species), disturbances (e.g. cattle grazing) and the 
effect of fire exclusion on the mean fire return intervals. 
The default fire return interval in each of the models’ class 
assumed pre-European settlement rates. 

The model also required initial conditions of vegetation 
rasters be set for the reference condition. The remotely 
sensed map of current vegetation classes (Supplementary 
File S2) was used but all uncharacteristic (non-reference) 
vegetation classes were reclassified as the closest succes-
sional reference class from the same ecological systems 
based on the vegetation classification in Supplementary 
File S1. In lower and middle elevation upland systems, at 
least 70% of pixels were uncharacteristic owing to non- 
native annual grass species invasion of shrublands, conifer 
encroachment in shrublands caused by fire exclusion and 
lack of herbaceous understorey from historic livestock graz-
ing. These classes were straightforward to reclassify to the 

L. Provencher et al.                                                                                International Journal of Wildland Fire 33 (2024) WF23038 

4 

https://blog.enterprisedna.co/r-vs-python-the-real-differences/
https://blog.enterprisedna.co/r-vs-python-the-real-differences/
http://www.apexrms.com


closest reference vegetation class of the same successional 
phase. Any initial conditions were inconsequential because 
vegetation classes completely changed over 700 years of 
succession and disturbances. Roads were converted to No 
Data (i.e. empty space in the reference map) because it was 
often not easy to assign ecological systems and vegetation 
classes to vegetation long ago obliterated. Although roads 
converted to No Data can act as fuel breaks, wildfires can 
spread around them and be initiated on either side. For 
future projects, we recommend reclassifying roads and 
developed areas to the most likely ecological systems and 
to the vegetation class predicted to dominate the landscape. 

Only disturbances found during pre-settlement were sim-
ulated. Fire has been a dominant process in western USA 
landscapes. Fire spread around natural fuel breaks pushed 
by prevailing winds greatly determined the spatial variation 
in the reference condition, which resulted in either early- 
successional vegetation classes if fire found a path around 
fuel breaks or late-successional vegetation classes if fire was 
stopped by fuel breaks. We captured this spatial variation 
using the moving window estimation previously discussed. 
Fire directionally spreads following prevailing winds (south-
west to northeast is the most frequent direction; Provencher 
et al. 2021) and the speed of spread among pixels was 
influenced by slopes facing or opposing prevailing winds 
(fire spread more rapidly on steeper slopes facing the pre-
vailing winds; Provencher et al. 2021). 

The reference condition scenario simulated for 700 years 
was replicated 20 times (ST-Sim/Syncrosim is a Monte Carlo 
simulator). Replicates were obtained from different time 
series of minimum and maximum temperatures and precipi-
tation that were estimated with a stochastic weather gener-
ator (Verdin et al. 2015) applied to PRISM climate data 
(Daly et al. 2008) from 1950 to 2018 (see Provencher 
et al. 2021). The time series were used to estimate the 
Standard Precipitation and Evapotranspiration Index 
(SPEI; Hayes et al. 1999) specified for different months 
and lags that are relevant to different ecological processes. 
The SPEI values were used to introduce real variability 
around the fixed parameter value of each disturbance in 
the ST-Sim model pathways as explained in Provencher 
et al. (2016, 2021). 

The proportion of each reference vegetation class per 
ecological system (i.e. the expected proportion) was esti-
mated for each replicate. A replicate was defined by a 
distinct climate time series (i.e. distinct SPEI time series) 
from which we only retained the vegetation classes at Year 
700 (we verified that values were at equilibrium). The pixel- 
by-pixel moving window was applied to each reference 
replicate raster on Year 700 using the same search radius 
and distance-decay weight function that was used to esti-
mate observed pixels (Eqns 2 and 3). The last step of ED 
estimation was to apply Eqn 1 to each pixel location using 
the observed and reference condition proportions in the 
moving window. A raster map of variance was also 

estimated by pixel, although any statistical measure of vari-
ability would work. 

Multiple system ecological departure 

The concept of multiple-system ED is a more intuitive assess-
ment of a landscape’s condition because humans and ani-
mals look for resources in all possible systems surrounding 
them. Eqns 1, 2 and 3 were used as before and the simula-
tion of reference conditions was unchanged. What was dif-
ferent in multiple-system ED was how the proportions were 
organised to sum to 1. 

Eqn 3 produced for each ecological system a proportion 
or percentage per class per ecological system, whereas in 
multiple-system estimation, we pro-rated that proportion 
from Eqn 3 by the proportion of the ecological system 
relative to others in the moving window: 

M i r k p i k p
r k p

( , , , ) = Proportion of class( , , )
× proportion of system( , , ) (4)  

where M is the multiple system proportion for the system by 
class combination, i, j and p have the same meaning as in  
Eqn 3, whereas r is the ecological system (r = 1 to Q, where 
Q is the maximum number of ecological systems in the 
landscape), which was 27 in Northern Newark Valley. The 
proportion of each ecological system among all was esti-
mated in the moving window; therefore, small systems at 
the landscape level will always have more equal representa-
tion than large systems within a moving window. Eqn 4 was 
applied to observed and reference condition vegetation clas-
ses, and Eqn 1 was used to estimate ED. 

Ethics 

The authors declare that no human subject and no animal 
experimentation was conducted in this study. 

Results 

The non-spatial and non-stochastic ED were highly departed 
from reference condition for most systems, except wet 
meadow (low departure), greasewood (low departure; 
Sarcobatus vermiculatus), black sagebrush (intermediate 
departure; A. nova) and mixed salt desert (intermediate 
departure) (Fig. 2). No spatially explicit calculations were 
involved in Fig. 2 as ED values were entirely estimated from 
tabular data using Eqn 1. 

The spatially explicit and stochastic single-system ED was 
highly departed (closer to 1) over most of the landscape 
(Fig. 3). Overall, the non-spatial and spatially explicit EDs 
were similar in areas with less topographic variation (Figs 2 
and 3); however, the spatially explicit ED showed several 
small zones of lower and higher ED, respectively, in systems 
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with high and low departure, thus flipping ED. Only one 
large area in the south that was primarily dominated by 
wetland, wet meadow, saline meadow and greasewood 
shrubland communities was close to reference conditions 
(blue colour) as also observed for the non-spatial ED 
(Fig. 2). We observed few if any non-native plant species 
in those groundwater-dependent plant communities (see 
Supplementary File S2). Other areas with intermediate spa-
tially explicit ED were generally small and at higher eleva-
tions. At lower and middle elevations, ED was higher than at 
higher elevations because the non-native annual grass 
Bromus tectorum was ubiquitous in upland communities or 
sagebrush communities often lacked a native herbaceous 
understorey (depleted sagebrush) or were encroached by 
conifers owing to fire exclusion. 

The spatially explicit variance of ED was low (close to 0) 
over most of the landscape (Fig. 4), which was surprising 
because we observed large vegetation classes differences 
among replicates (four shown for illustrative purposes in  
Fig. 5). Only a few small areas whose pixels’ variance 
reached up to 0.27 were observed. Several of the higher- 
variance areas overlapped with low ED values, especially on 
the western boundary, which suggested an edge effect as 

prevailing winds were from southwest to northeast (as in  
Provencher et al. 2021). However, the larger area of ED in 
the southern part of the landscape showed low variance. 
This area was one with longer or no natural fire return 
intervals in wet plant communities. 

The lowest values of the multiple-system ED (i.e. closer to 
the reference condition; Fig. 6) at least matched the lower 
values of the single-system spatially explicit ED (Fig. 3). The 
multiple-system ED, however, exhibited lower values 
throughout the landscape (Fig. 3) than the single-system 
ED (Fig. 6). The highest values of the multiple-system ED, 
albeit at intermediate ED, were in the valley floors. The 
pixels with the highest variance in the multiple-system ED 
also matched the highest values of the single-system spatial 
ED in the lower elevations; however, variances were slightly 
lower for multiple-system ED (Figs 4 and 7). 

Discussion 

The ED metric (Eqn 1) has not changed since it was origi-
nally proposed (Hann and Strom 2003) in part because it 
easily lends itself to the partitioning of vegetation class 

High (0.661–1.00)

Medium (0.331–0.66)

Low (0.001–0.33)

No data

Non-spatial
ecological
departure metric

Fig. 2. Non-spatial non-stochastic traditional ED for ecological sys-
tems of Northern Newark Valley. Lower values indicate that ED of 
each ecological system in the entire landscape was closer to the 
reference condition.  

1

0

No data

Spatial
ecological
departure
metric

Fig. 3. Average spatially explicit and stochastic ED for ecological 
systems of Northern Newark Valley. Lower values indicate that ED of 
each pixel per ecological system in the moving window was closer to 
the reference condition. Pixel resolution is 60 m.  
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contributions to ED. ED’s simplicity, however, created 
impractical management decisions in large landscapes 
with expansive ecological systems because it operationally 
assumed a single reference condition per system to aim for 
and that the full extent of the system was relevant for 
management actions. The modifications to ED developed 
here mitigate these limitations by primarily defining a 
local radius of assessment applied to each pixel governed 
by a distance-decay function perhaps more akin to animal 
and human perception of vegetation. Although search algo-
rithms and pixel-based analyses are not novel in ecology and 
mapping, they have not been applied to Eqn 1 to our 
knowledge. 

An important aspect of spatially explicit and stochastic 
modelling was that the reference condition changed at each 
pixel and among replicate simulations depending on random 
disturbance events shaped by raster-defined prevailing wind 
directions, topography, fire initiation probabilities, natural 
fuel beaks, and spread of native insect and disease outbreaks 
and conifers. Forest scientists working on the spatial 
LANDSUM model (Steele et al. 2006; Keane et al. 2009) 
were the first to discuss the spatial variability of reference 
conditions, but they primarily examined temporal variabil-
ity within simulations, not alternative future spatial 

independent replicates of whole landscapes. Moreover, 
LANDSUM did not generate pixel-based reference conditions 
because even as a spatial simulation platform, it was not 
producing pixel-based results. Blankenship et al. (2015) 
created alternative non-spatial future reference conditions 
for uncorrelated disturbances, thus achieving true among- 
simulation replication, but could not extend analysis to 
pixels and did not estimate ecological departure. The cre-
ation of among-simulation replicates of the spatial reference 
condition appears to not have been done before for large 
landscapes, perhaps because computational power was not 
available and pixel-based user-friendly downloadable free-
ware with documentation, such as the ST-Sim package in the 
Syncrosim platform we used, did not exist until 2013 
(Daniel et al. 2016). 

Non-spatial ED was comparable with the single-system 
spatially explicit and stochastic ED in areas of lower topo-
graphic variation but differed with elevation. Localised dif-
ferences in ED primarily reflected variation in cover of 
uncharacteristic vegetation classes. At lower elevations, 
these uncharacteristic classes were widespread in extensive 
ecological systems; therefore, ED was generally higher and 
more homogeneous. The uncharacteristic classes were in 
minority compared with current vegetation dominated by 
reference vegetation classes at higher elevations in the same 
systems. This greater heterogeneity at higher elevations 
meant that ED was lower for the same systems, a feature 
that would have been impossible to capture with non-spatial 
ED. The differences in ED with elevation allowed different 
choices of restoration actions more precisely tailored to 
areas based on their local departure situated in proximity 
of ecological values, such as mule deer (Odocoileus hemi-
onus) mountainous migration routes in Newark Valley. The 
more surprising result was that multiple-system ED gener-
ally departed less from the reference condition than single- 
system ED, although spatial distribution of ED values was 
similar and spatial variance equally low. We think this 
reflects the contributions from other systems with less 
observed uncharacteristic classes that resulted in a 
lower ED. 

Using a moving window weighted by a distance-decay 
function to evaluate both observed and reference vegetation 
class proportions has implications for land management. On 
public lands in the United States, the regulatory justification 
for proposed actions can be specifically tailored to an 
agency’s management objective, such as habitat restoration 
for a wildlife species (NEPA 1970; Provencher et al. 2013,  
2021). Moreover, different moving windows can each be 
easily deployed for different objectives. On private lands, a 
moving window approach can be used by conservation 
organisations to evaluate the ecological value of an entire 
property at different locations based on all ecological sys-
tems (i.e. multiple-system ED) within its boundary as pro-
tection of land would not be limited to just one ecological 
system while ignoring others. Moreover, knowing from 

0.27

0

No data

Variance in
spatial
ecological
departure

Fig. 4. Spatially explicit variance of ED for ecological systems of 
Northern Newark Valley. Pixel resolution is 60 m.  
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moving-window analysis that some parts of the property are 
in worse condition that others could prevent land acquisi-
tion because different sources of degradation might forecast 
the need for very expensive management. Multiple-system 
ED can be also used to evaluate the vegetation for a species 
with a broad diet and diverse habitat use, such as mule deer. 
Mule deer are well known to require a large variety of 
browse and thermal cover from different systems within 
the same day. Multiple-system ED might be used to imitate 
the mule deer’s or other species’ daily perception of 
resources. A challenge for users will be to determine the 
moving window’s radius in an extensive landscape with 
many objectives of widely different radii when the desired 
approach is to have one or few. Although that question was 
not addressed in this study, suggestions to investigate might 
be to: (i) choose the largest home range or propagule dis-
persal distance among all at-risk species, and (ii) use the 
classic species-area-curve (Preston 1962) to determine the 
area needed to include a certain number of species for which 
data regionally exist. 

The moving-window algorithm weighted by a distance- 
decay function might have minimised the long-known theo-
retical problem of assessing a landscape of a sufficient area 
to allow enough disturbances that shape the expression of 

most successional classes (Hann and Strom 2003; Steele 
et al. 2006). The reference condition and the observed 
vegetation were always defined within a moving window 
in the present study; therefore, the area of the landscape was 
largely immaterial because the pixels outside the window 
centred on the focal pixel were not included, whereas the 
non-spatial ED would be biased in too small a landscape 
because non-spatially explicit reference conditions always 
assume the inclusion of all the system’s vegetation classes 
shaped by dominant disturbances. The size of the landscape, 
however, still matters but more so in landscapes where the 
spread of fire is random (e.g. non-spatial simulation), 
whereas we hypothesised that simulated prevailing winds, 
topography, natural fuel breaks and non-random fire initia-
tions rendered the role of distant disturbances shaping the 
reference condition elsewhere in the landscape less 
important. 

Broader applications 

The original impetus for the development of a spatially 
explicit ED was the application to larger geographies (e.g. 
>809,370 ha) for the management of wide-ranging species 
at risk, such as greater sage-grouse (Chambers et al. 2014). 

(a) (b)

(c) (d)

Vegetation class

A: All (10)

B: Open (22)

C: Closed (30)

D: Open (42)

E: Closed (50)

Fig. 5. Four replicates (a–d) of zoomed‐in spatial‐explicit 
reference condition vegetation classes for big sagebrush‐upland 
with trees of Northern Newark Valley. Different colors repre-
sent different vegetation classes. Pixel resolution is 60 m.   
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The assessment of large geographies for the purpose of 
planning proposed actions creates difficulties because the 
variation of reference conditions with soil productivity 
(Keane et al. 2009), the number of different ecological 
systems to model and the cost of remote sensing mapping 
ecological systems and their vegetation classes will increase 
with extent. Successful natural resource management will 
require a counter effort to lower model complexity and cost 
of remote sensing. 

Model complexity can be lowered by grouping function-
ally similar ecological systems into one ecologically consist-
ent cluster represented by one state-and-transition 
simulation model. For example, black and low sagebrush 
communities might be grouped into ‘Dwarf sagebrush’. 
Clustering traditional ecological systems makes remote sens-
ing easier because systems only distinguished by different 
dominant species of the same type (e.g. sagebrush) that look 
similar from satellite imagery or a helicopter do not need to 
be separated; only the current vegetation classes need to be 
interpreted. Additionally, a smaller number of clustered 
systems might increase stakeholder understanding and 
acceptance of models. We estimated that clustering systems 
could reduce the cost of high-resolution remote sensing 
analysis by 20–30% in Intermountain West vegetation. The 

consideration of cost of remote sensing to obtain an accurate 
and high-resolution map was critical because it can easily 
represent 50% of the total mapping and simulation cost for 
studies, as described in Provencher et al. (2013, 2021). In 
the present study, we repurposed existing map layers whose 
cost was incurred on another project; however, this will 
generally not be a luxury afforded to other practitioners. 

A key challenge with clustered systems is that the refer-
ence condition can substantially change along abiotic gradi-
ents among systems within a cluster. For example, the fire 
return interval can vary from 50 years at 2500 m of eleva-
tion to 120 years at 1675 m of elevation in a big sagebrush 
(Artemisia tridentata) cluster in central Nevada because fire- 
free intervals change with soil productivity (Keane et al. 
2009). When the mean fire return interval varies, the pro-
portions of early to late-successional classes will vary too. If 
the reference condition changes within a cluster, then a non- 
spatial Eqn 1 for ED is not applicable because Eqn 1 expli-
citly assumes a single expected value per vegetation class. 
To eliminate this problem while retaining Eqn 1, the refer-
ence condition should be spatially created by multiplying 
the rate of each disturbance in vegetation models with a 
multiplier assigned to each pixel of a raster representing an 
abiotic gradient uploaded into the simulation software (e.g. 

1

0

No data

Multi-system
spatial
ecological
departure
metric

Fig. 6. Spatially explicit and stochastic multiple-system (‘real estate’) 
ED for Northern Newark Valley. Pixel resolution is 60 m.  

0.27

0

No data

Variance in
multi-system
spatial
ecological
departure

Fig. 7. Spatially explicit variance of multiple-system (‘real estate’) ED 
for Northern Newark Valley. Pixel resolution is 60 m.  
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fire rate controlled by a soil productivity gradient), which is 
straightforward to achieve in the ST-Sim software (e.g.  
Provencher et al. 2021). With underlying spatial rasters, 
the spatially explicit reference condition can be simulated 
with replication and reference proportions calculated within 
the same radius as the observed proportions (see Eqns 2 and 3); 
therefore, a spatially explicit ED will be applicable. Another 
necessary innovation applied to Eqn 1 for clusters would 
be to multiply the radius-defined pixel weight of Eqn 2 by 
an ecological similarity between the focal pixel and the 
distant pixel to discount ones in dissimilar abiotic environ-
ments (e.g. higher elevation) that should not contribute 
measurable weight to the tally of observed vegetation 
class proportions. Harwood et al. (2016) also acknowledged 
this necessary adjustment for the Australian HCAS by multi-
plying a pixel’s spectral similarity to each reference vegeta-
tion pixel with the abiotic factor similarity between the 
same two pixels. Ecological similarity between pixels rang-
ing from zero to one, perhaps obtained from statistical 
multivariate ordination (as in Harwood et al. 2016), can 
be computed from the gradient rasters. Ecological similarity 
was not part of this study because this similarity only 
applies to clustered systems. 

Supplementary material 

Supplementary material is available online. 
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