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Incorporating burn heterogeneity with fuel load estimates may 
improve fire behaviour predictions in south-east Australian eucalypt 
forest 
Rachael H. NolanA,B,* , Rebecca K. GibsonC, Brett CirulisD, Brendan HolylandD, Stephanie A. SamsonB,E,F,  
Meaghan JenkinsG, Trent PenmanD and Matthias M. BoerA,B  

ABSTRACT 

Background. Simulations of fire spread are vital for operational fire management and strategic 
risk planning. Aims. To quantify burn heterogeneity effects on post-fire fuel loads, and test 
whether modifying fuel load estimates based on the fire severity and patchiness of the last fire 
improves the accuracy of simulations of subsequent fires. Methods. We (1) measured fine fuels in 
eucalypt forests in south-eastern Australia following fires of differing severity; (2) modified post- 
fire fuel accumulation estimates based on our results; and (3) ran different fire simulations for a 
case-study area which was subject to a planned hazard reduction burn followed by a wildfire 
shortly thereafter. Key results. Increasing fire severity resulted in increased reduction in bark 
fuels. In contrast, surface and elevated fuels were reduced by similar amounts following both 
low-moderate and high-extreme fire severity. Accounting for burn heterogeneity, and fire 
severity effects on bark, improved the accuracy of fire spread for a case study fire. 
Conclusions. Integration of burn heterogeneity into post-burn fuel load estimates may subs
tantially improve fire behaviour predictions. Implications. Without accounting for burn hetero
geneity, patchy burns of low severity may mean that risk estimations are incorrect. This has 
implications for evaluating the cost-effectiveness of planned burn programmes.  

Keywords: burn severity, Eucalyptus, fire behaviour, fire history, fire management, modelling, 
prescribed burn, trees. 

Introduction 

Climate modified changes to fire regimes globally (Duane et al. 2021) are increasing the 
need for accurate predictions of wildfire behaviour. Fire behaviour models that predict 
fire intensity and rate of spread are vital tools for assessing the threat posed by wildfires 
and developing management responses (e.g. McArthur 1967; Van Wagner 1987). 
Simulations of fire sprefig.ad are used for operational purposes; e.g. allocating resources 
during wildfires, planning suppression tactics and evacuating communities (Calkin et al. 
2011; Plucinski et al. 2017). These fire simulations are also used for strategic risk 
modelling, which can inform long-term management strategies such as fuel management 
(Florec et al. 2020; Penman and Cirulis 2020). Fire behaviour simulations require inputs 
of weather, topography and fuel load, with fuel load estimates having the largest 
uncertainty (Penman et al. 2022). 

Fuel is aboveground biomass and varies spatially and temporally. In Australia, fuel is 
typically delineated into dead and live and coarse and fine fuel (Gould et al. 2011). Both 
the amount of fuel (fuel load, t ha−1), and the structure and arrangement of fuel are 
important drivers of fire behaviour (Stephens and Moghaddas 2005;  McCaw et al. 2012). 
We note that the importance of fuel properties on fire behaviour, in particular fire spread, 
is a contentious issue within the Australian fire behaviour modelling community (Cruz 
et al. 2022b). Early research indicated that surface fine fuel load has a directly 
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proportional effect on fire spread (McArthur 1967; Noble 
et al. 1980). More recent research has expanded to examine 
other fuel strata (such as elevated fuels), and has found that 
fuel properties (such as load and structure) have a diminish
ing effect on rate of spread under extreme fire weather 
conditions, particularly for wind-driven fires (Burrows 
1999; Cruz et al. 2022b). Further, fuel structure may be 
more important than fuel load in driving fire spread under 
some circumstances (Zylstra et al. 2016; Cruz et al. 2022b). 
However, as noted by Storey et al. (2021) and Duff et al. 
(2017), the effect of fuel load on fire rate of spread may be 
difficult to assess due to limitations in fuel load data. 
Additionally, as argued by Cruz et al. (2022a), rate of spread 
is one component of fire behaviour. Fireline intensity and 
flame length (which are related) are directly proportional to 
fuel consumption, and are thus dependent on fuel quantity; 
i.e. fuel load (Alexander 1982; Cruz et al. 2022a). 

Spatial variation in fuel loads is driven by biophysical 
factors that control the rate of fuel production, primarily 
biomass growth, and the rate of decomposition (Thomas 
et al. 2014; McColl-Gausden and Penman 2019). Temporal 
variation in fuels is driven by a range of factors such as 
rainfall (Pook et al. 1997; Archibald et al. 2010) and herbiv
ory, particularly in rangelands (Starns et al. 2019). In for
ests, a large driver of temporal variation of fuel loads is time 
since fire. Following fire, fuel loads are heavily reduced, and 
then accumulate through time at a rate determined by site 
productivity and other environmental conditions (Fox et al. 
1979; Raison et al. 1986; Penman and York 2010). 

In Australia, fine fuels are defined as dead plant material 
<6 mm diameter, and live plant material <3 mm diameter, 
and are those fuels that burn in the continuous flaming zone 
(Hines et al. 2010), and thus contribute most to fire rate of 
spread (McCaw et al. 2012). Fine fuels are delineated into 
different strata. These strata are defined as litter, near sur
face (<0.5 m height, not including litter, e.g. herbaceous 
fuel), elevated (>0.5 m, primarily shrubs and tree saplings, 
but not overstorey trees), canopy (overstorey trees) and bark 
fuels (Hines et al. 2010; Price et al. 2022). In Australia, fuel 
loads, particularly for dead fuels, are commonly modelled as 
a function of time since fire using a negative exponential 
model adapted from Olson (1963). The Olson (1963) model 
assumes fuels reduce to zero after fire, and then slowly 
recover until a steady-state is achieved. In reality, fuels 
often are not completely consumed by fire (Price et al. 
2022), and thus the Olson (1963) model has been adapted 
to reflect this, through the addition of an initial post-fire fuel 
load term (‘c’ in Eqn 1) (Fensham 1992; Morrison et al. 
1996). The modified Olson (1963) fuel accumulation curve 
takes the form: 

W r c= × (1 e ) +t kt (1)  

where Wt is fuel load (in t ha−1), c is the post-fire fuel load, 
r + c is the fuel load under steady-state (i.e. long unburnt) 

conditions, k is a constant related to decomposition, and t is 
years since fire. 

Fuel accumulation curves are typically derived for differ
ent vegetation types for operational fire models in Australia 
and elsewhere (Watson 2012; Zazali et al. 2021). These 
curves are largely developed from observations of fuel 
loads over time since fire (Watson 2012; Penman et al. 
2022). For litter these curves can also be derived from 
observations of litterfall and litter decomposition rates 
(Watson 2012). However, there is little empirical data on 
initial post-fire fuel loads, and they are often assumed to be 
zero, or close to it, for many vegetation types (Watson 2012;  
Zazali et al. 2021). Quantifying initial fuel loads is impor
tant since this will impact the rate of fuel accumulation and 
subsequent fuel loads, particularly in the early post-fire 
years. Quantifying fuel dynamics in these early post-fire 
years is important since planned burns are often conducted 
to reduce the risk posed by wildfire (Duff et al. 2019), and 
these burns are thought to be most effective in the immedi
ate post-fire years. For example, the probability of high 
severity wildfire is often reduced within the first 5 years 
following fire, depending on fire weather (Hislop et al. 
2020; Nolan et al. 2021). Further, rates of house loss during 
wildfires are often lower when the surrounding landscape 
was burnt in the previous 5 years (Gibbons et al. 2012;  
Nolan et al. 2021). 

Fuel loads immediately post-fire will depend on fuel 
consumption. Fuel consumption, in turn, is dependent on 
many factors including pre-fire fuel load, fuel chemistry, 
fuel geometry, fuel moisture content, fuel density and fire 
weather and terrain (Ottmar 2014). Fire severity, by defini
tion, describes the biotic impact of fire (Keeley 2009), and in 
Australia is typically measured as the relative fraction of 
foliage scorched or consumed by fire. In the weeks to 
months immediately following fire, fire severity can also 
affect the rate of post-fire fuel accumulation through effects 
on fuel inputs. For example, a fire that completely scorches 
the canopy will result in a large influx of dead fine fuels to 
the forest floor, which would not occur following a low 
severity fire that does not affect the canopy (Price et al. 
2022). Thus, in the years following fire, fuel loads may vary 
as a function of fire severity. However, to date, fuel accu
mulation curves used operationally in Australia do not 
account for fire severity. 

Most fires do not burn homogenously, and contain 
unburnt patches within the fire extent (Duff et al. 2019). 
For example, in smaller burns in dry sclerophyll forest in 
south-eastern Australia, burn coverage ranged from 6 to 
90% (Penman et al. 2007), while burn coverage in larger 
burns ranged from 5 to 68% (McCarthy et al. 2017). For 
wildfires, a study on the 2019/20 Australian Black Summer 
fires found that 9% of the mapped burned area was unburnt 
(Collins et al. 2021). The extent of burn heterogeneity is 
driven in part by fuel properties, as well as fire weather 
conditions (Duff et al. 2019). Unburnt patches within a fire 
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extent do not reduce fuel loads of the area within the fire 
perimeter. Therefore, improved burned area maps have the 
potential to improve fuel load estimates, and thus models of 
fire behaviour. 

In this study, we (1) quantified changes in fuel loads with 
fire severity in temperate eucalypt forests; (2), adjusted fuel 
accumulation curves to account for fire severity where 
appropriate, as informed by (1); and (3) tested whether 
accounting for burn heterogeneity effects on fuel loads 
improved predictions of rates of spread. We did this by 
first measuring fine fuels in eucalypt forests in south- 
eastern Australia following fires of differing severity, includ
ing unburnt patches. We then adjusted existing fuel accu
mulation curves based on our observations of initial fuel 
loads. Finally, we examined effects of our adjusted fuel 
accumulation curves on predicted rates of fire spread for a 
case-study area which was subject to a planned hazard 
reduction burn followed by a wildfire less than 2 years 
later. We hypothesised that accounting for burn heterogene
ity would improve predictions of rates of fire spread in 
future fire events. 

Materials and methods 

Study area 

The study was undertaken in eucalypt forests within the state 
of New South Wales (NSW), in south-eastern Australia (Fig. 1). 
The climate is temperate, with warm summers and cold 
winters, with no dry season (Bureau of Meteorology 2022b). 

Mean annual rainfall ranges from 600 to 1500 mm, increasing 
towards the coast, and declining inland of the Great Dividing 
Range (a series of mountain ranges running approximately 
parallel with the coast; Bureau of Meteorology 2022b). 
Average minimum winter temperatures range from 0 to 9°C 
and average maximum summer temperatures range from 21 to 
30°C (Bureau of Meteorology 2022b). Temperatures are cool
est in the high elevation areas along the Great Dividing Range, 
and inland of the Range. Eucalypt forests dominate the native 
vegetation of the study area, and range from wet to dry 
sclerophyll forest types (Keith 2004). Ecologically sustainable 
fire intervals for these forests are estimated at 5–50 years for 
the dry sclerophyll forests and 25–60 years for the wet scler
ophyll forests, with crown fires to be avoided at the lower 
range of the interval (Kenny et al. 2004). 

Changes in fuel loads with increasing fire severity 

Post-fire fuel loads (t ha−1) were measured approximately 
1 year following the 2019–20 Black Summer wildfires. 
Sampling at 1 year post-fire allowed for the influx of 
scorched foliage and branches from the canopy to the sur
face fuel layer, which can occur over the weeks and months 
following fire (Price et al. 2022). We measured loadings 
within four forest types: (1) western slopes dry sclerophyll; 
(2) Sydney hinterland dry sclerophyll; (3) south-east dry 
sclerophyll; and (4) Southern Tableland wet sclerophyll 
forests. Forest type classifications were based on vegetation 
classes described in Keith (2004). These forest types 
were selected because they span a relatively broad 
climatic gradient (670–1088 mm mean annual rainfall;  

Study plots

695 wildfire

Eucalypt forests 
and woodlands

Sydney

(a) (b)

(c)
Hazard reduction 
burn perimeter

Unburnt

Low
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High

Extreme

Fire severity

0             5 km0
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150 300 km

Fig. 1. (a) Location of study plots for 
fuel load observations and the case 
study 695 wildfire. (b) Fire severity of 
the 695 wildfire and mapped perimeter 
of the preceding hazard reduction burn. 
(c) Fire severity of the hazard reduction 
burn. Fire severity mapped following   
Gibson et al. (2020). Refer  Fig. 2 to clearly 
see the intersection of the 695 wildfire 
and prior hazard reduction burn.   
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Bureau of Meteorology 2022a), exhibit varying surface fine 
fuel loads (Watson 2012), and they were subject to a range 
of fire severities during the 2019–20 fires, but some unburnt 
forest remained in close proximity to burnt forest. The study 
design is described in greater detail in Nolan et al. (2022), 
which presents observations of post-fire tree mortality and 
above-ground carbon stocks 

We measured 15 plots in each forest type spanning the 
range of fire severity classes. Fire severity was classified in 
the field into one of five categories following the severity 
class definitions of Gibson et al. (2020), and based on the 
proportion of leaf scorch and consumption in understorey 
and overstorey strata. Fire severity was assessed from satel
lite images, and confirmed in the field. Severity classes 
were: unburnt, low (<10% canopy scorch), moderate 
(20–90% canopy scorch), high (>90% canopy scorch but 
<50% canopy consumption) and extreme (>50% canopy 
consumption). We measured three unburnt plots for each 
forest type. We similarly aimed to measure three plots in 
each of the other fire severity classes, but this was not 
possible due to the nature of the wildfires where few loca
tions burnt at both low and extreme severity. Due to the low 
replication in each fire severity category for some forest 
types (n = 2), we aggregated our plots into the following 
two fire severity categories: (1) ‘low-moderate’ fire severity, 
which represents predominantly understorey fire; (2) and 
‘high-extreme’ fire severity, which represents homogenous 
canopy fire, n = 4–8 for these aggregated categories within 
each forest type. 

Fuel load observations 
We estimated fuel loads and assessed fuel hazard scores 

following the standard fuel classification used in eastern 
Australian forests (Hines et al. 2010). Fuel hazard scores 
are visual assessments of fuel that characterise the amount 
and connectivity of fine fuels (Hines et al. 2010). Fine fuels 
are defined as dead plant material <6 mm diameter, and 
live plant material <3 mm diameter Fine fuels are deli
neated into litter, near surface (<0.5 m height, not includ
ing litter, e.g. herbaceous fuel), elevated (>0.5 m, primarily 
shrubs and tree saplings, but not overstorey trees), canopy 
(overstorey trees) and bark fuels (Hines et al. 2010; Price 
et al. 2022). Canopy fuels are not included in most fire 
behaviour models in Australian forests, and so are not 
included in this study. 

Fine fuels were assessed in circular plots of 45 m diame
ter, following Price et al. (2022). Within each plot, two 45-m 
transects were established, one along a north-south axis and 
one along an east-west axis. Litter and near-surface fuel 
loads were measured in three 1-m2 quadrats located approx
imately 12.5 and 32.5 m along the north and south transects 
and 7.5 m along the E transect. These fuels were destruc
tively collected. For litter fuels, we weighed fresh biomass in 
the field and sub-sampled the fuel to estimate moisture 
content in the laboratory. The sub-sampled fuel was 

representative of the fuel across the fuel profile. For near- 
surface fuels, all fine fuel biomass was collected and trans
ported to the laboratory. Fuel samples were stored in sealed 
plastic bags in a cooler for transport to the laboratory. Fuel 
samples were dried for 48 h at 105°C and dry mass mea
sured. The moisture content of the litter fuels was then used 
to convert the fresh field-weights to dry weights. 

Elevated fine fuels were measured in three circular sub- 
plots of 5 m diameter, unless sites exhibited very high stem 
density, then plots of 3 m diameter were used. These sub- 
plots were located at the same position as the quadrats. 
Within each sub-plot we measured the diameter at 10 cm 
height of all shrubs and recorded whether the plant was 
dead (i.e. lacking foliage) or alive. In burnt plots, we addi
tionally assessed the fire impact on fine fuel biomass for 
each shrub by assessing the amount of foliage retained on 
the plant (live and dead) and the diameter of the shrub tips 
if all foliage had been consumed by fire. These stem diame
ters and shrub impact assessments were then used to esti
mate the total mass of fine fuels on the plant using 
allometric equations derived by Nolan et al. (2022) in the 
same study area. These equations were developed with five 
shrub and two tree seedling species, and performed similarly 
well to species-specific models Nolan et al. (2022). 

For plants with live foliage, we estimated fine fuels as all 
biomass <3 mm diameter, but for plants with no live foli
age, we assumed the biomass was dead and estimated fine 
fuels as all biomass <6 mm diameter. For non-woody ele
vated fuels, e.g. sedges and bracken fern (Pteridium esculen
tum), we counted the leaves on each plant and sub-sampled 
a section of leaves to measure oven-dry biomass in the 
laboratory. We then estimated plant-level biomass by multi
plying the number of leaves by the average dry biomass per 
leaf. For burnt plots, we additionally identified whether 
elevated fine fuels were post-fire regrowth or retained 
from prior to the fire. Post-fire regrowth was easily identifi
able as new seedlings and/or resprouting foliage from burnt 
plants. 

We assessed bark fuels using visual fuel hazard assess
ments (Hines et al. 2010). Fuel hazard assessments were also 
undertaken for litter, near-surface and elevated fuels. Bark 
fuel assessments were based on bark type and the extent of 
charring on the trees, which provides an indicator of how 
tightly held the bark is and thus, its propensity for spotting 
and transport of fire to the crown. Litter fuel hazard assess
ments are based on the depth and coverage of the litter bed. 
Near-surface fuel hazard assessments are based on the per
centage of plant cover and the percentage of dead fuels. 
Elevated fuels are assessed on the percentage plant cover 
and the percentage of dead fuels, and an additional assess
ment of fuel continuity. All visual hazard assessments clas
sified fuels into five hazard scores ranging from ‘low’ to 
‘extreme’ fuel hazard. We converted bark hazard scores 
into fine fuel loads using a look-up table in Hines et al. 
(2010). We note that these conversion tables often provide 
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low accuracy (Watson et al. 2012; Volkova et al. 2016). 
However these conversions are routinely used by fire agen
cies in Australia to estimate fuel loads for predicting fire 
behaviour. 

Analyses of fuel load observations 
For each forest type, we assessed whether fine fuel loads 

and fuel hazard scores varied with fire severity, with a one- 
way ANOVA, and where this was significant, we undertook 
Tukey adjusted multiple comparisons. We confirmed that the 
data met ANOVA assumptions of homogeneity of variance 
and normality, assessed through visual inspection of diag
nostic plots and Levene’s test. Many fuel strata data violated 
these assumptions, and so we used a Kruskal–Wallis test 
followed by a Dunn post hoc test. We undertook analyses 
on litter, near surface, elevated and bark fuel strata. For 
elevated fuels, we assessed all fine fuels present at the time 
of the study (1 year post-fire), in addition to fine fuels 
excluding post-fire regrowth. We additionally examined lit
ter and near surface fuels combined (hereafter referred to as 
‘surface’ fuels, since this is an input into the fire behaviour 
model used in this study. For the fuel hazard score data, we 
converted the hazard score categories into numerical values 
on an ordinal scale from 1 to 5. 

Modified fuel accumulation curves 
We modified existing fuel accumulation coefficients (Eqn 1) 

for each vegetation type based on our observations of fine fuel 
loads following fire and in long unburnt forest. That is, we 
modified the parameters r (steady-state fuel load) and c (initial 
post-fire fuel load) in Eqn 1, based on our observations. Fuel 
accumulation curves were modified for surface (i.e. litter and 
near surface combined), elevated, and bark fuels. We tested to 
see whether c varied with fire severity, and if so, developed 
modified curves for both low and high severity fire. 

Burn heterogeneity effects on subsequent fire 
spread 

Case study fire 
Our case-study wildfire was the ‘695’ fire, which burnt 

19,090 ha in February 2018 (Fig. 1b). The 695 fire pro
gressed over multiple days. We selected this fire as our 
case-study because a prior hazard reduction burn (con
ducted in June 2016; Figs 1c, 2), was expected to slow or 
limit the spread of the 695 wildfire, but this did not occur. 
While the area of the mapped hazard reduction burn was 
10,172 ha, our analysis of fire severity found over 80% of 
the mapped burn area remained unburnt (see below for 
details on fire severity mapping). Where it did burn, the 
hazard reduction burn was primarily an understorey fire of 
low to moderate severity (Fig. 1c). 

The 695 fire burnt predominately within Wollemi 
National Park, which is a 501,000 ha park located 130 km 
north-west of Sydney. Mean annual rainfall is estimated at 

812 mm, and mean monthly minimum temperatures range 
from 3 to 14°C and mean monthly maximum temperatures 
range from 13 to 28°C. Climate data extracted from the SILO 
Australian Climate Dataset (http://www.longpaddock.qld. 
gov.au/silo; Jeffrey et al. 2001). Vegetation reflects that 
found in the wider study area, i.e. includes wet and dry 
sclerophyll forest types. 

Fire history mapping was obtained from the New South 
Wales Rural Fire Service. Fire severity of the wildfire and 
hazard reduction fire, as well as all observed fire dating to 
the 1989–1990 fire year, was mapped with satellite imagery 
following Gibson et al. (2020), which uses an extensively 
trained and tested Random Forest supervised classification 
algorithm applied to satellite imagery from before and after 
the fire (Gibson et al. 2020; Department of Planning 
Industry and Environment 2021). The fire severity mapping 

695 wildfire perimeter

(b)

(a)

0         5         10 km

Fire season(s)

2017/18 

2016/17

2015/16

2014/15

2013/14

2008/09–
2013/14

Prior to 2008/09

No recorded fire
history

Fig. 2. Fire history within the study area. (a) Fire history using 
current burned area mapping, and (b) fire history modified by fire 
severity mapping to account for unburnt patches within fire 
perimeters.  
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approach in Gibson et al. (2020) classifies unburnt and 
extreme fire severity with very high accuracy (mean bal
anced accuracy statistic >0.95), low and high fire severity 
with high accuracy (mean >0.80) and moderate fire sever
ity with relatively lower accuracy (mean >0.70). 

The hazard reduction fire was mapped using Landsat 
satellite imagery (30 m resolution), whereas the wildfire 
was mapped using the higher resolution sensor Sentinel 2 
(10 m) which was launched between the two fire events. The 
combined use of Landsat and Sentinel 2 sensors in remote 
sensing applications for fire extent and severity mapping has 
demonstrated substantial agreement between the outputs 
from the different sensors (White and Gibson 2022). 

Fire behaviour modelling 
We used PHOENIX Rapidfire ver. 4.0.0.721 (PHOENIX) 

to model rates of fire spread for the case-study wildfire. For 
forests, the fire behaviour model underpinning PHOENIX is 
the McArthur Mk5 forest fire behaviour model (McArthur 
1967; Noble et al. 1980). In the McArthur fire behaviour 
model fuel load has a directly proportional effect of fire rate 
of spread. PHOENIX dynamically simulates two-dimensional 
fire growth using Huygen’s algorithm (Knight and Coleman 
1993). PHOENIX utilises 30-m gridded datasets of topogra
phy, fuel type and disruptions to fuel such as roads and 
waterbodies. Surface, elevated and bark fuel loads are esti
mated from fuel accumulation curves based on time-since- 
fire and fuel type. We used fuel accumulation coefficients 
specific to the vegetation types in the study area. For further 
details see Tolhurst et al. (2008), Saeedian et al. (2010) and  
Penman et al. (2014). 

We ran PHOENIX simulations for the date of 14 February, 
from 11:00 hours to 23:00 hours, which represented the day 
with the greatest fire spread. This was also the day that the 
fire intersected the perimeter of the 2016 hazard reduction 
burn. We ran our simulations using the fire perimeter from 
the previous day. Fire progression in the preceding days to 
the 14th was minimal, so we do not present simulations for 
these dates. Weather data used for the PHOENIX simulations 
was sourced from the Australian Digital Forecast Database 
(The Bureau of Meteorology 2023). 

We ran three PHOENIX simulations:  

(1) A simulation based on current operational models and 
fire history (‘current operational model’).  

(2) A simulation where fire history was modified by fire 
severity mapping to account for unburnt patches within 
historical fire perimeters (Fig. 2, ‘burn heterogeneity 
model’). This simulation addresses whether fire patchi
ness is important.  

(3) This simulation is the same as the previous simulation, 
with fuel accumulation curves modified based on our 
analyses of changes in fuel loads with fire severity. As 
detailed in the results, we found that only bark fuels 
differed significantly in response to fire severity. Hence, 

this simulation is termed ‘burn heterogeneity and bark 
model’. 

For simulations (2) and (3), fire history was modified by 
severity mapping for all fires that occurred within the study 
area, dating to the 1989–1990 fire year (Fig. 2). This modified 
fire history incorporates all mapped historical fires which 
may affect modelled fuel accumulation, with fuel accumula
tion curves generally obtaining steady-state fuel loads 
within 25–30 years. For further details, see Supplementary 
Tables S3 and S4. 

PHOENIX outputs a number of fire behaviour metrics, 
these include area burnt (ha), flame height (m), fireline 
intensity (kW m−1), rate of spread (m h−1), and spotting 
distance (m). We present violin plots of these metrics for 
each of the simulations. Note that it is not appropriate 
to conduct statistical tests of differences in these metrics, 
since each simulation represents one fire event (i.e. n = 1). 
Thus, the grid cells are not independent data points. To 
assess how each of the three PHOENIX simulations com
pared to the observed extent of the wildfire, we calculated 
the Jaccard similarity index. The Jaccard index is defined 
by the intersection of two binary maps, divided by their 
union. 

Results 

Changes in fuel loads with fire severity 

Fire reduced fuel loads across all strata examined (Fig. 3); 
however, there was generally no change in fuel loads with 
increasing fire severity, with the exception of bark fuel loads 
(Fig. 3, Table S1). At 1 year post-fire, surface fuel loads 
ranged from 12.6 to 25.2 t ha−1 in unburnt forest, with 
fire reducing these fuel loads to 2.6–5.6 t ha−1. The surface 
fuels were primarily comprised of litter fuels, which ranged 
from 10.5 to 25.1 t ha−1 in unburnt forest, with near surface 
fuels only ranging from 0.1 to 2.4 t ha−1 (Fig. S1). The wet 
sclerophyll forest was the only forest type where higher fire 
severity was associated with significantly lower fuel loads at 
1 year post-fire. For this forest type surface fuel loads fol
lowing low-moderate severity fire were 5.3 t ha−1 and fol
lowing high-extreme severity fire was 2.6 t ha−1. 

Elevated fine fuel loads ranged from 0.1 to 1.5 t ha−1 in 
unburnt forest (Fig. 3). Notably, there was large variation in 
elevated fuel loads within unburnt forest, as evidenced by 
high standard errors, which ranged from 0.1 to 1.1 t ha−1. 
At 1 year post-fire elevated fuels did not differ significantly 
between burnt and unburnt forest for any of the forest types. 
However, when the post-fire re-growth was excluded, which 
provides an approximation of immediate post-fire fuel loads, 
we did observe significantly lower fuel loads in burnt forest 
for two of the four forest types. Again, there was no change 
with fire severity. 
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Bark fine fuels were estimated to range widely 
(2–4 t ha−1) in unburnt forest (Fig. 3). Forest burnt at 
high-extreme fire severity had significantly lower bark fuel 
loads compared to unburnt forest, estimated at 1 t ha−1 for 
all four forest types. Forest burnt at low-moderate fire sever
ity had intermediate fuel loads (1.8–3 t ha−1), which did not 
differ significantly from unburnt forest. 

Fuel hazard scores showed similar trends to the fuel load 
data (Fig. S2, Table S2). That is, litter hazard scores were 
significantly lower in burnt compared to unburnt forest, but 
there was no effect of the severity of the fire. There was no 
significant effect of fire for near surface hazard scores for 
any of the forest types, with the exception of the Southern 
tableland wet sclerophyll forest, where the near surface 
hazard scores were significantly lower in forest burnt at 
high-extreme fire severity compared to unburnt forest. For 

elevated hazard scores, despite a trend of lower scores for 
burnt compared to unburnt forest, there was no significant 
differences observed, except for the Western slopes dry 
sclerophyll forest. For this forest type, forest burnt at low- 
moderate fire severity had significantly lower hazard scores 
compared to unburnt forest. Finally, for bark hazard scores, 
there were significantly lower values for forest burnt at 
high-extreme fire severity, but no difference between 
unburnt forest, and forest burnt at low-moderate severity. 

Adjusted fuel accumulation curves 

Modified fuel accumulation curves for surface fuels mostly 
aligned with existing curves (Fig. 4a–d), indicating that the 
steady-state and initial fuel load parameters in the current 
curves were similar to our field-based observations. The 
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exception was the South-east dry sclerophyll forest type, 
where there were large differences between the current 
and modified curves, due to differences in the estimates of 
steady-state fuels. The current curves assume steady-state 
surface fuels are 12.0 t ha−1, while we observed fuel loads of 
25.2 t ha−1 (Table S3). 

In contrast to surface fuels, there were considerable vari
ations between current and modified curves for elevated 
fuels (Fig. 4e–h). This was primarily due to our estimates 
of steady-state fuels (0.1–1.5 t ha−1) being much lower than 
those in current curves (2.0–5.0 t ha−1). Our estimates of 
elevated fuel loads over time-since-fire also differed for two 
of the four forest types, where we did not observe significant 

differences in initial post-fire fuel loads in elevated fuels, 
and thus did not model fuel accumulation over time 
since fire. 

For bark fuels, our modified fuel accumulation curves for 
high-extreme fire severity were either lower or higher than 
current operational curves (Fig. 4e–f). The differences 
between our curves and the operational curves reflect our 
differing observations of steady-state fuel loads. For exam
ple, steady-state bark fuel load estimates were considerably 
higher for the Western slopes dry sclerophyll forest in our 
modified curves (3.3 t ha−1), compared to current curves 
(2 t ha−1), resulting in much higher estimated fuel loads 
over time since fire. For forests burnt at low-moderate fire 
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severity, where we did not observe a significant difference 
between burnt and unburnt forest, we found no change in 
fuel loads over time since fire, and thus our estimates of bark 
fuel loads were much higher in the early post-fire years 
compared with the current curves. 

Burn heterogeneity effects on subsequent fire 
spread 

The first PHOENIX simulation (‘current operational’ simula
tion), predicted that the spread of the case study 695 wild
fire would be limited by the hazard reduction burn 
conducted in the preceding 2 years (Fig. 5a). In contrast, 
the PHOENIX simulation that accounted for the unburnt 
patches within historical fire perimeters (the ‘burn hetero
geneity’ simulation, Fig. 5b) resulted in a much larger pre
dicted burned area. For this simulation, the prior hazard 
reduction burn was predicted to have no effect on the spread 
of the wildfire (Fig. 5b). For the third simulation (‘Burn 
heterogeneity and bark’ simulation, Fig. 5c), we additionally 
modified bark fuel accumulation curves such that bark fine 
fuels were not modelled to decline following understorey 
fire, based on our results (Fig. 4). We additionally modified 
bark fuel accumulation curves based on our observations of 
steady state fuel loads. This third simulation predicted a 
burned area that was most similar to the observed burned 
area of the 695 wildfire (Fig. 5d). 

For all three PHOENIX simulations, predicted flame 
height, fireline intensity and rate of spread were all 

similar (Fig. 6). However, the predicted spotting distance 
for the third simulation (median value of 469 m) was lower 
compared to the second simulation (median value of 
674 m), reflecting the lower predicted bark fuel loads used 
as inputs in this simulation. This lower spotting distance 
resulted in a smaller burned area compared to the second 
simulation (15,348 ha compared to 32,441 ha). The simula
tion that was most similar to the actual burn area was the 
third simulation (Jaccard index of 0.51, compared to 
0.30–0.38; Table 1). 

Discussion 

Both wildfire and planned burns are known to be highly 
heterogeneous in burn area and fire severity (Penman et al. 
2007; McCarthy et al. 2017; Collins et al. 2021). Our results 
demonstrate that accounting for burn heterogeneity has the 
potential to improve predictions of fire spread (Fig. 5). Here, 
we discuss how fire severity mapping can potentially 
improve model predictions of fuel loads, and subsequently, 
fire behaviour predictions. 

Changes in fuel loads with fire severity 

Similar to this study, Price et al. (2022) found post-fire 
surface fuel loads did not differ due to fire severity. Price 
et al. (2022) attributed this to post-fire litter deposits 
increasing with fire severity, offsetting the increased 

(a) Current operational

(c) Burn heterogeneity and bark

695 wild!re – !nal perimeter

695 wild!re – burn area on day
before Phoenix simulation

Hazard reduction burn perimeter

N

0 5 10 km

(b) Burn heterogeneity

Fig. 5. PHOENIX simulations: (a) cur
rent operational; (b) ‘burn heterogene
ity’ – fire history modified by fire 
severity mapping to account for 
unburnt patches within fire perimeters; 
and (c) ‘Burn heterogeneity and bark’, 
same as (b), in addition to bark fuel 
accumulation curves being modified, 
based on field survey data.   
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consumption of surface fuels. Surprisingly, we also found no 
significant effect of differing fire severity on elevated fuels 
at 1 year post-fire, as both understorey and canopy fire 
similarly reduce elevated fuel loads. This similarity in ele
vated fuel loads may reflect the smaller impacts of fire on 
the understorey in forest burnt at low to moderate fire 
severity, and rapid recovery of understorey vegetation in 
forest burnt at high to extreme severity in the year after the 
fire. In forest burnt at high to extreme severity, the high- 
light environment facilitates prolific post-fire recruitment in 
eucalypt forests (Bennett et al. 2016). We also found no 
effect of fire severity on the shrub density (Table S5). 
Other studies found elevated fuel loads, or shrub density 
and cover, are affected by fire severity (e.g. Landesmann 
et al. 2021; Barker et al. 2022). These studies generally 
examine elevated fuel trajectories over time or at a later 
time period than our study. These studies argue that increas
ing fire severity creates an environment with high light and 
reduced competition in the understorey while the canopy 
recovers (Bennett et al. 2016; Gordon et al. 2017; Etchells 
et al. 2020) and in turn this promotes increased shrub 
growth, and hence increased elevated fuel loads. 

We observed spatial variation in fuel loads, particularly 
for elevated fuels. For example, in south-east dry sclerophyll 
forest, elevated fine fuel loads in unburnt forest ranged from 
0.1 to 3.8 t ha−1 (Fig. 3f). Large spatial variability in ele
vated fuels has similarly been observed in south-east 
Australian eucalypt forests (McColl-Gausden et al. 2020;  
Nolan et al. 2022). There was less spatial variation in surface 
fine fuel loads when compared to elevated fuels (Fig. 3). The 
exception was the south-east dry sclerophyll forest type 
where our surface fuel load observations in unburnt forest 
were much higher than those modelled in current opera
tional fuel curves (Fig. 4b). This may have been because the 
study plots were transitional between the dry sclerophyll 
forest and the nearby wet sclerophyll forest, which has 
much higher fuel loads. Spatial variation in fuels within 
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Fig. 6. Boxplot summaries of fire behaviour from PHOENIX simula
tions, including (a) area burnt, (b) flame height, (c) fireline intensity, 
(d) rate of spread, and (e) spotting distance. The simulations are: 
(1) current operational; (2) ‘burn heterogeneity’ – fire history modified 
by fire severity mapping to account for unburnt patches within fire 
perimeters; and (3) ‘Burn heterogeneity and bark’, same as (b), in 
addition to bark fuel accumulation curves being modified, based on 
field survey data.   

Table 1. Jaccard index, comparing burn area of each of the 
PHOENIX simulations with the actual burn area of the 695 wildfire.    

PHOENIX simulation Jaccard index   

(1) Current operational 0.38 

(2) Burn heterogeneity 0.30 

(3) Burn heterogeneity and bark modified 0.51   
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vegetation communities is partially due to historical varia
tion in fire frequency, severity and seasonality, which all 
affect plant recruitment (Enright et al. 2015; Miller et al. 
2019). Additionally, factors that affect species distributions, 
such as fine-scale variation in soil attributes and topogra
phy, likely affect fuel loads. Thus, fuel load models may be 
improved by modelling fuels as a function of biophysical 
parameters that vary at a finer spatial resolution than vege
tation communities. Indeed, recent biophysical models of 
fuel hazard scores have found that climatic and edaphic 
factors are good predictors of fuel hazard scores (Jenkins 
et al. 2020; McColl-Gausden et al. 2020). 

Adjusted fuel accumulation curves 

Our modified bark fuel accumulation curves following can
opy fire were either lower or higher than current opera
tional curves, reflecting differences in steady-state fuel 
loads. For the western slopes dry sclerophyll forest, we 
observed higher bark fine fuel loads in unburnt forest than 
predicted by current fuel curves. This variation from the fuel 
curve was due to the presence of species which produce 
higher bark fuels than the ironbark species which typically 
characterise this vegetation type (Hines et al. 2010; Horsey 
and Watson 2012). For the other three forest types, we 
observed lower bark fine fuel loads in both unburnt and 
burnt forest than predicted by current fuel curves. These 
results also reflect differences in the presence of species that 
produce high bark fuel loads, e.g. stringybark species, which 
produce the highest fine fuel loads (Hines et al. 2010). 

Burn heterogeneity effects on subsequent fire spread 

Accounting for burn heterogeneity in fuel load predictions 
was found to improve fire spread simulations from 
PHOENIX for our case study 695 wildfire (Fig. 5, Table 1). 
A previous hazard reduction burn had been predicted to 
limit the spread of the 695 wildfire. However, when the 
large area of unburnt patches within prior fire perimeters 
was incorporated into fire history mapping, the previous 
hazard reduction burn was no longer predicted to limit the 
spread of the wildfire. Thus, fine-scale resolution burned 
area mapping has the potential to improve fire behaviour 
simulations. As demonstrated here, utilising fire severity 
maps to improve fire history mapping substantially 
improves fuel load estimates, and thus predicted fire beha
viour. Further improvements in predicted fire spread were 
gained by modifying bark fuel accumulation curves based 
on field observations (Fig. 5c). Eucalypt bark produces fire
brands that can travel large distances, igniting new fires 
(McArthur 1967; Penman et al. 2017). Thus, improved mod
els of fine fuel loads, particularly bark fuels that affect 
spotting distance, can further improve predictions of fire 
spread. However, we note that improved fuel load mapping 
may not necessarily lead to improved fire behaviour simu
lations under all weather conditions, with fuel exerting less 

influence on fire behaviour under more extreme fire 
weather conditions (Clarke et al. 2022). 

While our results suggest that patchy hazard reduction 
burns may not be as effective as those with a homogenous 
burned area in reducing fire spread under wildfire condi
tions, it is important to note that fire refugia are important 
for supporting biodiversity and maintaining ecosystem pro
cesses (Cawson et al. 2013; Krawchuk et al. 2020). Indeed, 
many planned burns, including hazard reduction burns, 
have the aim of creating a mosaic of burnt and unburnt 
areas (Duncan et al. 2015). Our results also suggest that high 
severity fire is most effective at reducing bark fuel loads; 
however, it is important to note that our study does not 
consider longer-term vegetation dynamics that may affect 
fuel load and structure, and subsequent fire behaviour, that 
may operationally influence the ability to contain a fire or 
result in fires escaping. For example, a study by Barker et al. 
(2022) in the same region found that at 5 years post-fire, 
areas burnt at high severity had greater elevated fuel loads 
and fuel connectivity compared to areas burnt at low sever
ity. In a related study, Barker and Price (2018) found that 
crown fire was more than twice as likely following a previ
ous crown fire, compared to a previous understory fire. 
Similarly, in a study on mixed conifer forest in the USA,  
Coppoletta et al. (2016) found that the effects of high sever
ity fire on standing deadwood and shrubs promoted high 
severity fire in subsequent fires. We also note that Barker 
and Price (2018) found that the lowest likelihood of high 
severity fire occurred in the longest unburnt forest, which 
indicates that the shape of fuel accumulation curves may 
need to be modified, particularly for elevated fuels (Zazali 
et al. 2021). 

Conclusions 

Fuel attributes are key inputs into fire behaviour models. 
Spatial fuel load predictions are improved by incorporating 
fire severity mapping into fuel models. Thus, improving fuel 
load estimates has the potential to substantially improve the 
accuracy of fire behaviour predictions. However, further 
research is required to determine whether the results from 
our case study are more widely applicable. Such studies 
should include wildfires that burn at a range of times fol
lowing prior fire, and under a range of weather conditions. 
Any improvements to fire behaviour models are vitally impor
tant for informing operational decision making around sup
pression and providing early warning to the community 
during wildfire events. Further, improved fuel estimates will 
improve fire simulations for strategic risk modelling. Without 
accounting for burn heterogeneity, patchy burns may mean 
that risk estimations are low. This has implications for eval
uating the cost-effectiveness of planned burn programmes. 

We suggest that improved spatial resolution of burn area 
mapping (e.g. through fire severity mapping) is a relatively 
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simple step with the potential to substantially improve fire 
behaviour predictions. Currently in Australia, government 
fire management agencies in NSW and Victoria routinely 
map fire severity following compatible methodologies, 
while agencies in other states are in the process of develop
ing compatible severity mapping systems. Further improve
ments may also be gained from improved models of fuel 
dynamics, particularly bark fuel loads. 

Supplementary material 

Supplementary material is available online. 
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