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Fires and their key drivers in Mexico 
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ABSTRACT 

Background. Despite the regional and global effects of biomass burning at national and 
pantropical scales, little effort has focused on determining the influence of climate and socio-
economic conditions on fire regimes in tropical regions. Aims. We explored the climate 
and human factors that explain remotely sensed burnt area and fire abundance in Mexico. 
Methods. We used MCD64A1 data and climate and socioeconomic metrics to understand 
factors explaining the variation in number of fires and burned area. Key results. The largest 
burned area (41.9% of the total) occurred in temperate forests, grasslands and hydrophilic 
vegetation, with numerous fire events of medium relative size. The next most extensive burned 
area (38%) was observed in croplands, with numerous small-size fires. The third group (17.8%) 
occurred in tropical forests, which had the smallest and most frequent fires. Finally, a fourth 
group (11.9%) was composed of shrublands, which showed the largest fire sizes and lowest- 
frequency events. The variability of burned area was related to variations in temperature and 
precipitation, poverty index, altitude, and distance to water bodies. Conclusions and 
Implications. Our analysis suggests that an assessment integrating climate, human and topo-
graphic metrics predicts burned area and may improve fire forecasting in Mexico landscapes.  

Keywords: biomass burning, burned area, climate, fires, fire frequency, human influences, key 
drivers, seasonal, spatial. 

Introduction 

Earth Observation satellites estimate that ~4 million km2 are burned globally every year 
(Lizundia-Loiola et al. 2020), affecting mainly savannas and tropical dry forests (Yin et al. 
2020; Zheng et al. 2021; Corona‐Núñez and Campo 2023). Changes in the total burned 
area have recently been observed, raising serious concerns about how they will develop 
in response to projected future changes in climate and land uses (Bond et al. 2005; Pausas 
and Ribeiro 2017; Pausas and Keeley 2021; Haas et al. 2022). Despite the regional and 
global-scale effects of fires on the global carbon (C) cycle and biodiversity conservation, 
little effort has been dedicated to understanding the influence of climate and socio-
economic conditions on fire regimes (Archibald et al. 2018; Kelley et al. 2019). Moreover, 
with increasing pressure on natural ecosystems from humans, global-scale studies suggest 
that these human factors could be among the dominant controls on fire dynamics in 
many regions (Haas et al. 2022; Wu et al. 2022). 

Fire effects are very diverse, including on C emissions, vegetation dynamics and 
biodiversity and soil nutrients (Bruun et al. 2009; Lasslop et al. 2019; Pausas and 
Keeley 2019; McLauchlan et al. 2020; Agbeshie et al. 2022). For example, Akagi et al. 
(2011) estimated global emissions from biomass burning at 2.55 Pg C per year, with a 
tropical contribution of 1.27 Pg C (Randerson et al. 2012). Although fire is a natural 
factor in different ecosystems, helping to promote diversity and natural regeneration 
(Kelly and Brotons 2017; Archibald et al. 2018; Kelly et al. 2020), fire return intervals 
have been affected by human activities (Benali et al. 2017; Earl and Simmonds 2018). 
However, changes in the frequency and size of fires in recent decades have been also 
associated with exceptionally warm and dry conditions, and fire are then more probable 
as a result of climate change (Cochrane and Ryan 2009; Kirchmeier‐Young et al. 2019;  
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Bowman et al. 2020; Collins et al. 2022), but their interac-
tions with human activities are far from being comprehen-
sively understood (Harrison et al. 2021). Although the most 
common factors that drive fires are climate conditions (par-
ticularly those affecting vegetation abundance and extent 
and intensity of water deficit as drought), contributions from 
demographic and socioeconomic changes, such as popula-
tion growth, gross domestic product and cropland expansion 
play an important role in fire propagation (Archibald et al. 
2009; Andela et al. 2017; Forkel et al. 2019; Corona‐Núñez 
and Campo 2023). The combinations of all the previous 
factors drive a large variability in fire characteristics, 
which results in the creation of mosaics of different states 
of ecosystem regeneration and promote environmental het-
erogeneity (Turner 2005; McKenzie et al. 2011; Cardinale 
et al. 2012). Thus, knowledge of the environmental factors 
driving patterns of area burned is crucial for native eco-
system conservation where changing climate and fuel man-
agement practices are likely to drive shifts in fire regimes. 

It is recognised that the tropics are involved in a high 
proportion of the global fires, including high fire density 
(Chuvieco et al. 2008; Corona‐Núñez and Campo 2023). 
These fires are a serious ecological threat to tropical region 
biodiversity. For example, Mexico, with a total of 55 terres-
trial ecoregions (Fig. S1), has the largest diversity of terres-
trial ecoregions in the Americas and suffers a high density 
of fires (Corona‐Núñez et al. 2020). The long dry season 
from November to May in Mexican forests, grasslands and 
shrublands and the high rate of fuel load accumulation dur-
ing this rainless period favour extensive biomass burning 
(Myers and Rodríguez-Trejo 2009; CONAFOR 2020), C emis-
sions (Corona‐Núñez et al. 2020) and loss of biodiversity 
(Manson and Jardel Peláez 2009). Moreover, C emissions 
from fires in Mexico are responsible for 5% of the pantropical 
C emissions by fires with an significant increase in the last 
decade (Corona‐Núñez et al. 2020). Moreover, Mexican C 
emissions from fires are accelerating over the global stan-
dard, probably owing to climate change in drylands 
(Krawchuk et al. 2009; Pechony and Shindell 2010), as is 
the case of the country. For example, Corona‐Núñez et al. 
(2020) found that the national C fire emissions increased 
exceeded the global average increase in three times during. 
Consequently, understanding drivers of fires is a major key-
stone for fire-mitigation strategies, ecosystem services and 
biodiversity conservation in the country. 

Although past studies of climate drivers of Mexican fire 
have focused mainly on the El Niño–Southern Oscillation 
(ENSO), identifying spatiotemporal heterogeneous responses 
in precipitation and the resulting fire activity and C emissions 
(Corona‐Núñez et al. 2020), limited effort has been devoted to 
addressing the climate drivers and human influences on fire 
activity due to traditional uses of fire in slash-and-burn 
agriculture. Motivated by these gaps in our knowledge of 
climate and human influences on fires in Mexico, the aims of 
this study are to assess the spatiotemporal variability of fires 

in terms of number of fires and burned area in Mexico, and 
provide further insights into the state of knowledge of inter-
actions between climate and human factors on Mexican fires. 
For that purpose, we use gridded environmental and social 
data in Mexico to examine trends and environmental and 
social drivers of burned area and the proportion of the main 
ecosystems that were impacted by fires from 2001 to 2020. 
We focus on fires ≥0.25 km2 because they account for more 
than 95% of the area burnt across the country (CONAFOR 
2020) and can have the greatest impact on the environment 
and society. Finally, this study shows the variability in driv-
ers and severity of fires among different ecosystems, namely 
both tropical and temperate forests, grasslands, shrublands, 
croplands, and other vegetations (halophilic and hydrophilic 
vegetation, mangroves, riparian vegetation and coastal dune 
vegetation). 

Materials and methods 

Fire identification 

We used Google Earth Engine (GEE) for fire data acquisition 
(Gorelick et al. 2017). The fire dataset consisted of the 
MCD64A1 product from MODIS (Giglio et al. 2021) included 
in the Earth Engine Data Catalogue in GEE. MCD64A1 
returns fire boundaries with a spatial resolution of 500 m 
and employs MODIS surface reflectance imagery coupled 
with active fire observations. To address limitations of the 
MCD64A1 product, we tested the assumption that MCD64A1 
data were representative of other fire products and not 
biased owing to omission errors: the distribution of 
MCD64A1 fire data was compared with those recorded in 
the field by CONAFOR (2020), and the spatial distribution 
was similar (similarity above 78% was observed for each 
year). In addition, validation of the MODIS burned area 
product relies mainly on the use of high-resolution Landsat 
scenes (Boschetti et al. 2019), and quality assurance dataset 
indicators discard persistent hot spots, too few training 
observations, or insufficient spectral separability between 
burned and unburned classes (Artés et al. 2019). The fre-
quency of fire includes annual information in raster format 
considering 500-mburned pixels, for which the addition of 
raster layers was calculated by map algebra in a single layer 
with values from 0 (lack to fire) to 20 (at least one fire per 
year over the 20 years of the study period) and finally vec-
torised into polygons. 

Almost all the fires on cropland are intentional (fire 
management) and even those that occur in native ecosys-
tems are also usually attributable to humans; in >90% of 
cases, the fires result from human intervention (Balch et al. 
2017; Bowman et al. 2020). As with the methodology used it 
is not possible to infer fire origin, prescribed burns and 
wildfires were treated without distinction. Thus, the number 
of fires refers to the fire events recorded every Julian day 
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and grouped by month and year analysed. We performed a 
wall-to-wall monthly analysis of Mexico for the period 
2001–2020. The study considers the terrestrial part of 
Mexico (1 932 524 km2) at 500-m spatial resolution. 

We related all the fire data to Mexico’s most complete 
and detailed land-use/land-cover maps. These maps were 
developed by the National Institute of Statistics and 
Geography (INEGI) for the years 2002, 2005, 2009, 2015, 
and 2017 (INEGI 2003, 2005, 2009, 2013, 2017). All the 
maps were reclassified into seven land-use/cover types; 
these classes consisted of (i) temperate forests, (ii) tropical 
dry forests, (iii) tropical rainforests, (iv) shrublands, (v) grass-
lands, (vi) croplands, and (vii) other, which includes halophilic 
and hydrophilic vegetation, mangroves, riparian vegetation 
and coastal dune vegetation, similar classifications to others 
(Mendoza-Ponce et al. 2020). 

Explanatory variables 

To identify the main influences on fires, we related the site 
conditions of fires to local climate, topographic, and socio-
economic variables for each fire event (Table 1). We 
included a set of 32 explanatory variables (20 climatic, 
5 topographic, and 7 socioeconomic variables). 

Several studies have demonstrated the utility of large- 
scale climatic factors for regional fire prediction (Keeley 
2004; Brey et al. 2021; Wang et al. 2021), while weather 
conditions are usually analysed as drivers that modulate 
variations in ignition efficiency (Andela et al. 2017; van 
der Werf et al. 2017). Climatic variables such as temperature 
and precipitation have been recognised as key drivers of 
moisture availability and fire propagation (Archibald et al. 
2009), and fuel moisture has long been recognised as a major 
component of fire danger (Dupuy et al. 2020), because 
components of fire activity such as number of fires or burned 
area are known to respond positively to increasing fuel 
dryness (Flannigan et al. 2009; Turco et al. 2017). To eval-
uate the climatic influencers, we included the 19 bioclimatic 
variables (Bio 1–Bio 19) taken from WorldClim (Fick and 
Hijmans 2017); these variables consist of 11 variables related 
to temperature and 8 related to precipitation, and their 
seasonal changes. Additionally, we evaluated water defi-
ciency based on the Lang aridity index (Trabucco and 
Zomer 2019) as the ratio of mean annual precipitation and 
mean annual temperature (mm per °C) as precipitation and 
temperature alone have been shown to be inadequate to 
measure hydrological conditions (Quan et al. 2013). This 
index suggests that the rise in temperature increases water 
deficiency and makes the air drier. 

The topographic features include altitude, slope and the 
Euclidian distance to water bodies and rivers. The topographic 
data were derived from a digital terrain model with a spatial 
resolution of 90 m from the Shuttle Radar Topography Mission 
V.2.1 (Farr et al. 2007). From it, we derived the altitude 
and the slope at 500-m resolution. Finally, to evaluate the 

influence of human activities on fires, we evaluated different 
socioeconomic conditions such as the Euclidian distance to 
protected areas (CONANP 2014), roads (Meijer et al. 2018), 
and human settlements. Complementarily, we used the gross 
domestic product, population size and social marginalisation 
index at the municipality level (CONAPO 2011). All the spatial 
information was rescaled to a common grid cell of 1 km 
for further analysis. Table 1 provides a summary of all the 
variables used in this study, as well as their sources. 

Statistical analysis 

We used the Wilcoxon rank‐sum test (W test) with continuity 
correction to test the statistical similarity between observa-
tions if the observations came from independent samples 
with different variances. Comparison of fire number and 
size and burned area across ecosystems (covers) involved 
one-way analysis of variance (ANOVA). We used Principal 
Component Analysis (PCA) to associate climatic and socio-
economic influences on the number of fires and burned area. 
The PCA analysis allows the dimensionality of interrelated 
variables to be reduced, providing insights about their inter-
relations, and suggesting simpler interpretations of the origi-
nal data while retaining most of the variance of the original 
dataset (Afifi et al. 2019). However, PCA solves the multi-
collinearity problem by creation of the components among 
the original explanatory variables. PCA tests were performed 
with a 95% confidence level by means of the libraries raster 
(Hijmans et al. 2020), pcaMethods (Stacklies et al. 2007), 
and factoextra (Kassambara and Mundt 2020). All statistical 
tests were performed in R software version 3.5.2 (R Core 
Team 2018). 

Results 

Variability of fire number and burned area 

The number of fires and burned area showed large variability 
across years (by a factor of three in the case of number of fires, 
and by a factor of six in the case of burned area) (Fig. 1; 
Tables S1, S2). The mean number of annual fire events was 
12 424 ± 799 (mean ± 1 s.e.), with the lowest number 
registered in 2014 (5563) and the maximum in 2003 
(18 617) (Fig. 1, Table S1). Fires affected a mean annual 
extent of 28 955 ± 2697 km2. Overall, a strong positive 
relationship was observed between the annual number of 
fires and the annual burned area (R2 = 0.71, P < 0.001) 
(Fig. S2). During the year 2011, after the strongest La 
Niña event during the study period, the largest total burned 
area was recorded; meanwhile, in 2015, after a weak 
El Niño year (2014–2015), the lowest burned area was 
observed. 

The intra-annual variability of both the number of fires 
(Fig. 2a) and burned area (Fig. 2b) shows that the highest 
number of fires and burned areas were recorded in May 
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(40.0 ± 2.02 and 36.0 ± 1.58% of the total annual events 
and annual burned area, respectively). In contrast, the low-
est were recorded from August to November (accounting for 
3.2 ± 0.57% of the total annual number of events, and 
3.2 ± 0.64% of the annual burned area). 

On an annual basis, there is a large variability in the 
number of fires and burned area among ecosystems 
(Fig. 3, Tables S1, S2). The largest number of fires was 
observed in croplands (with an annual mean of 
46.8 ± 1.53% of the total number of events), followed by 

Table 1. Climatic, topographic and socioeconomic metrics selected.      

Metric Units Abbreviation Source   

Climatic  

Annual mean temperature °C bio1 WorldClim  

Annual precipitation mm bio12 WorldClim  

Isothermality [(bio2/bio7) (×100)] °C bio3 WorldClim  

Lang aridity index (bio12/bio1) mm/°C Lang WorldClim  

Maximum temperature of warmest month °C bio5 WorldClim  

Mean diurnal range [mean monthly (max temp–min temp)] °C bio2 WorldClim  

Mean temperature of coldest quarter °C bio11 WorldClim  

Mean temperature of driest quarter °C bio9 WorldClim  

Mean temperature of warmest quarter °C bio10 WorldClim  

Mean temperature of wettest quarter °C bio8 WorldClim  

Minimum temperature of coldest month °C bio6 WorldClim  

Precipitation of coldest quarter mm bio19 WorldClim  

Precipitation of driest month mm bio14 WorldClim  

Precipitation of driest quarter mm bio17 WorldClim  

Precipitation of warmest quarter mm bio18 WorldClim  

Precipitation of wettest month mm bio13 WorldClim  

Precipitation of wettest quarter mm bio16 WorldClim  

Precipitation seasonality (coefficient of variation) mm bio15 WorldClim 

Temperature annual range (bio5–bio6) °C bio7 WorldClim  

Temperature seasonality (standard deviation × 100) °C bio4 WorldClim 

Topographic and others  

Altitude m alt NASA  

Distance to rivers m riv INEGI  

Distance to protected natural areas m pna CONANP  

Distance to water bodies m bw NASA  

Slope ° slp NASA 

Socioeconomic  

Distance to urban settlements m urb INEGI  

Distance to mud roads m trk INEGI  

Distance to paved roads m rd INEGI  

Distance to rural localities m rur INEGI  

Gross domestic product Million Mexican pesos gdp INEGI  

Population Number of people pop INEGI  

Poverty index Ranked pi CONAPO   
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the forest ecosystems (i.e. tropical and temperate forests) 
that comprised ~44% of the total number of fire events 
(22.9 ± 1.08 in tropical forests and 20.6 ± 1.33% in tem-
perate forests, respectively). Across tropical forests, tropical 
dry forests were more affected (59.0 ± 2.52% of the total fires 
in the tropical forest biome) than their humid counterpart 
(41.0 ± 2.47%) (P < 0.05). The remaining fire events 
occurred in other vegetations (i.e. halophilic and hydrophilic 
vegetation, mangroves, riparian vegetation and coastal 
dune vegetation), grasslands and shrublands (5.1 ± 0.10, 
3.7 ± 0.14 and 0.8 ± 0.09%, respectively). Across native cov-
ers, the contribution of each ecosystem type to the total 
burned area decreased following the order temperate for-
ests > tropical forests (tropical dry forest plus tropical rain-
forest) > other vegetation ≈ grassland (Fig. 3, Table S2). 

Fire sizes also show large variability among covers (Fig. 4). 
Small-sized fires (<1.0 km2) were the most common, and their 

contribution to the total burned area in each cover decreased 
following the order: tropical rainforests (71.6%) > tropical dry 
forests (68.9%) > croplands (68.8%) > temperate forests 
(60.3%) > grasslands (56.3%) > shrublands (50.0%) 
(P < 0.05). We found a decreasing gradient in the mean 
fire size in the direction shrublands > grasslands > tem-
perate forests > other vegetation > tropical dry forests ≈  
tropical rainforests ≈ croplands (Fig. S3, Table S3). On 
average, 2.7 ± 0.36% of the total temperate forest surface 
in the country was burned annually, 1.3 ± 0.20% of tropi-
cal dry forest, 2.2 ± 0.44% of the tropical rainforest, 
0.1 ± 0.03% of shrubland, 1.0 ± 0.14% of grassland, 
2.4 ± 0.20% of croplands, and 1.5 ± 0.19% of other vegeta-
tion (Fig. S4). 

The fire return interval differed considerably across Mexico 
(Fig. 5). The corresponding ANOVA indicated that difference 
is highly significant across ecosystems (P < 0.01) and 
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Fig. 2. Boxplot of monthly (a) number of fires, and (b) burned area from 2001 to 2020. Red dots represent 
monthly observations for each evaluated year. Outliers are represented with grey dots. Different letters represent 
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paired comparisons using the Tukey–Kramer HSD (honestly 
significant difference) test show that plants in shrublands 
consistently suffered fewer fire events (fire return interval of 
8.9 ± 0.44 year), while grasslands were the most frequently 
perturbed by fires (return interval of 6.5 ± 0.71 year). 
The remaining covers (tropical rainforests, 7.9 ± 0.55 year; 
tropical dry forests, 7.8 ± 0.60 year; temperate forests 7.6 ±  
0.61 year; and croplands, 7.2 ± 0.65 year) constituted an 
intermediate, statistically homogeneous group (P > 0.05). 
Recurrent fires dominated the Pacific Coast and the 
Peninsula of Yucatan (Fig. 5), where tropical dry forest is 
the most abundant native vegetation. In contrast, less frequent 
fires were recorded in the north, where shrublands are the 
most representative ecosystem. 

Factors of fire variability 

The first three principal components (PCs) account for 
58.0% of the total variability of the fire dataset (Fig. 6, 
Table S4). The PCA showed that burned area variability 
was related to climate variations in temperature (annual 
mean in the driest and in the coldest quarters, minimum 
in the coldest month and maximum in the warmest month) 
and precipitation amount (in the wettest month and the 
wettest quarter, i.e. in the three consecutive months that 
are wetter than any other set of three consecutive months). 
The PCA also indicated links of burned area with human 
factors (e.g. poverty index), altitude and distance to water 
bodies. 
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Climatic and human drivers influence fire frequency and 
the size of the burned area (Fig. 6a, b, Table S4). The 
frequency of fire includes annual information in raster for-
mat considering 500 m burned pixels, for which the addition 
of raster l ayers was calculated by map algebra in a single 
layer with values from 0 (lack to fire) to 20 (at least one fire 
per year over the 20 years of the study period) and finally 
vectorised into polygons. Polygons of burned area with low 
fire frequencies (less than 5 years with fire events recorded in 
the study period) were affected by all analysed climate, topo-
graphic and socioeconomic factors. More frequent fires across 
years (that occurred 5–15 years in the study period) showed 
influence of both precipitation amount and distribution. 
Finally, recurrent fires (more than 15 years with record of 

fire events) were influenced by slope, distance to water bodies 
and distance to urban and rural localities. Regarding fire size, 
small to medium-sized fires (less than 50 km2) were influenced 
by many climate and socioeconomic factors. Larger fires 
(50–200 km2) were influenced by seasonality in precipita-
tion, topographic characteristics (altitude and slope) and 
humans. The largest fires (≥200 km2; megafires, as in Linley 
et al. 2022) were influenced by ranges in annual temperature, 
seasonality in precipitation and topographic factors (altitude 
and slope). 

Drivers of fires differed considerably among ecosystems 
(Fig. 6c, Table S4). Fires in the temperate forest were driven 
by temperature (isothermality), topographic (slope) and 
human (all analysed metrics) factors. Fire drivers differed 

0

0

0

500

1000

1500

2000

2000

6000

10 000

Burned area of
4085.78 km2

Burned area of
1663.23 km2

Burned area of
2241.27 km2 Burned area of

1394.65 km2

Burned area of
1068.66 km2

Burned area of
530.25 km2

–2 0 2 4 6

–2 0 2 4 6

0

0

0

10 000

Ln burned area (km2)

20 000

30 000

100

200

300

400

500

2000

6000

10 000

–2 0 2 4 6

–2 0 2 4 6

–2 0 2 4 6

8

–2 0 2 4 6 8

5000

10 000

Fr
eq

ue
nc

y
(a)

(c)

(e)
(f )

(d)

(b)

Fig. 4. Frequency of fire sizes by cover: (a) temperate forest, (b) tropical dry forest, (c) tropical rainforest, (d) shrubland, 
(e) grassland, and (f) cropland during the period from 2001 to 2020.    

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

657 

https://www.publish.csiro.au/wf


between tropical forest ecosystems. Fires in tropical dry 
forests were mainly influenced by human factors (distance 
to urban and rural localities and to roads), whereas in 
tropical rainforests, they were driven by temperature (iso-
thermality) and extreme or limiting precipitation factors 
(precipitation in the driest month, in the driest quarter, in 
the warmest quarter and in the coldest quarter). Fires in 
shrublands were more influenced by the amplitude of tem-
perature (mean diurnal range, temperature seasonality), the 
seasonality in precipitation and population density. Fires in 
croplands were influenced by temperature (isothermality 
and seasonality), extreme precipitation factors (precipita-
tion of driest month, precipitation seasonality, precipitation 
of driest quarter, precipitation of coldest quarter) and 
human factors, while fires in grasslands were related to 
human factors and climate (mean diurnal range tempera-
ture, isothermality and seasonality in precipitation). 

Discussion 

Variability of fires in Mexico 

Most of the Mexican ecosystems experience significant 
water limitation, with approximately 90% of the country’s 
surface area experiencing an annual deficit of rainfall 
relative to evaporation demand (Díaz-Padilla et al. 2011), 
with 7 months of recurrent droughts (November to May). 

Correspondingly, plants experience a large period without 
water availability, except in the moist tropical rainforests 
and some areas with mountain temperate forests. Thus, 
the rainless period modulates both ecosystem function 
(Campo 2016) and C emissions by fires (Cruz-López and 
López-Saldaña 2011) that peak at the end of the dry season 
when the largest and driest wildland fuel accumulation 
occurs. 

We show that small fires account for the largest propor-
tion of burned area in the country. Furthermore, our data set 
of fire number and size (Tables S1–S3) allow us to identify 
four groups of burned area across ecosystems. The first, with 
the largest burned area (41.9% of the total burned area in 
the country) includes temperate forests, grasslands and 
hydrophilic vegetation, which show numerous fire events of 
relatively moderate size. The next most extensive burned area 
(38%) is observed in croplands, with abundant small-sized 
fires. A third group (17.8%) includes tropical forests (both dry 
forests and rainforests), with the smallest and most frequent 
fire events. Finally, the fourth group (11.9%) identified 
includes shrublands, which show the largest fire sizes and 
the least-frequent events. A remarkable observation from 
our results is the significant positive relationship of total 
burned area with fire frequency (Fig. S2), although a strong 
influence of climate was observed associated with the stron-
gest La Niña event in 2011 when the largest burned area was 
recorded, suggesting a delayed positive effect of La Niña on 
fires probably owing to an increase in litter production. In 

Fire frequency
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Fig. 5. Spatial distribution of fire frequencies (fire occurrence in each pixel) during the period 
2001–2020. The fire frequencies varied from 0 (white, i.e. lack of fires) to 20 (at least one fire per 
year over the 20 years of the study period).    
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contrast, after a weak El Niño year (2014– 
2015), the lowest burned area observed (year 2015 in 
Fig. S2) could be reflecting reduced litter accumulation. Our 
observations support those reported by others (Chen et al. 
2017; Corona‐Núñez et al. 2020). 

We found that fire return interval (i.e. the prevailing 
period available for vegetation regeneration between fires) 
was highest in water-limited shrublands and lowest in grass 
fuel ecosystems with fast-growing plants (grasslands). The large 
and persistent C density in tropical forest ecosystems (Pan et al. 
2011; Campo and Merino 2016) was burned every ~8 years 
irrespective of precipitation regime, a fire return interval simi-
lar to those observed in temperate forests. Although fast- 
growing trees suggest a rapid recovery of vegetation in tropical 
forests after burning, fires represent a threat to biological 

conservation in these remarkable endemic biodiverse ecosys-
tems (Challenger and Soberón 2008), mainly in tropical rain-
forests where trees lack morphological and physiological 
adaptations to burning (Miller and Kauffman 1998; Rosell 
2016). However, despite coniferous vegetation having devel-
oped strategies to cope with fire, C losses are expected from 
recently burned temperate forests owing to soil erosion (Saynes 
et al. 2012; Santín and Doerr 2019). Because of the long period 
required for plant regrowth in temperate forests and more 
frequent fires (Corona‐Núñez et al. 2020), this ecosystem 
could experience a reduction of its C storage in biomass and 
soils. Aside from these short- and long-term scenarios, our study 
allows us to conclude that more forest fires without rapid 
recovery from natural regeneration or active restoration prac-
tices weaken the land C sink capacity in the following years. 
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Fig. 6. Principal components analysis of (a) number of fires per year, (b) burned area (km2 per year), and (c) land cover data. 
Details for variables codes are in  Table 1.    
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To characterise the impact of fires across ecosystems, we 
estimated the fraction of vegetation cover that was burned 
each year. Our data indicate that the average burned surface 
is higher in temperate and tropical rainforests than in tropi-
cal dry forests. These results may contradict the hypothesis 
that the tropical dry forest biome is a fire-prone system 
(Corona‐Núñez and Campo 2023) and demonstrate that 
fire disturbance in this forest ecosystem reflects direct 
(Fig. 6c) and indirect human influences owing to fire man-
agement in savannas located in tropical dry landscapes with 
forest savanna fringes (Galvin and Reid 2010; Zheng et al. 
2021; de la Peña‐Domene et al. 2022). 

Drivers of fires in Mexico 

Our analyses provide evidence of a climatically driven 
annual burned area and the proportion of native ecosystems 
that burnt in Mexico. Observed patterns in both fire number 
and burned area over the past two decades were driven 
primarily by extreme or limiting precipitation factors 
and temperature, mainly in temperate forests, tropical rain-
forests and grasslands. The currently identified ENSO influ-
ence, related to sea surface temperature anomalies, on the 
Mexican fires and burned area fraction in our study is largely 
consistent with previous conclusions that large fires are asso-
ciated with anomalous drought (Canadell et al. 2021; Duane 
et al. 2021; Pausas and Keeley 2021). Drought affects the 
spatial connectivity of dry fine fuels and the frequency of 
surface weather conditions that promote rapid wildfire 
growth. The combination of dry fine fuels and fire weather 
conditions breaks down or reduces the influence of barriers to 
fire spread and facilitates the development of large wildfires 
(Nolan et al. 2016). However, prolonged and severe drought 
stress on plants reduces foliar moisture and increases forest 
canopy dieback and standing dead fuel biomass (Nolan et al. 
2020; Hartmann et al. 2022). As the moisture content of 
canopy fuel decreases, the flammability of plant crowns 
increases, leading to greater flame height, and likelihood of 
canopy fire initiation (Molina et al. 2022). Thus, our findings 
indicate that if the climate becomes warmer and drier across 
Mexico over the coming decades (Conde et al. 2011), the 
exposure of native ecosystems to fires could exceed the fire 
resistance of vegetation (Parks and Abatzoglou 2020; Jiao 
et al. 2021; Collins et al. 2022). Targeted management of 
ecosystems aimed at increasing resistance and resilience will 
be required to mitigate the elevated risk of fires, as well as for 
the restoration of affected regions. 

Our analysis suggests that human factors also drove the 
fires, consistent with official reports (CONAFOR 2020). 
Most of the land-use/land-cover changes that Mexico has 
experienced in the last decades involved fire as a useful tool 
for the elimination of vegetation (Dunbar-Irwin and Safford 
2016; Rivera-Huerta et al. 2016), and socioeconomic 
factors such as gross domestic product and distance to 
rural localities were important key drivers of deforestation 

(Mendoza-Ponce et al. 2018). Interestingly, we estimated 
similar fire return intervals for temperate and tropical forest 
ecosystems as well as croplands. The similar return interval 
of fires in native vegetation and cropland probably reflect 
direct and indirect effects of traditional management of fires 
in slash-and-burn agriculture in tropical regions (Corona- 
Núñez et al. 2018; Mendoza-Ponce et al. 2018). 

Deforestation and fires have been recognised as key factor 
that influences the C cycle (Houghton and Nassikas 2017;  
van der Werf et al. 2017). Mendoza-Ponce et al. (2018) have 
suggested that deforestation rates in Mexico have decreased 
in the last three decades, to a mean annual deforestation rate 
of 5027 km2. In contrast, our results indicate that burned 
area has not decreased between 2001 and 2020. Thus, our 
study suggest that fires could be affecting native ecosystems 
more strongly than deforestation. For example, we found 
that annually ~2.0% of the temperate forest and tropical 
rainforests areas in the country were affected by fires; these 
estimates are considerably greater than the forest areas 
affected by deforestation reported by Mendoza-Ponce et al. 
(2018) (by a factor of 10 in the case of temperate forests, and 
by a factor of 5 in the case of tropical rainforests). Despite 
fires affecting a smaller proportion of tropical dry forest 
surface, the size is the double that of those affected by 
deforestation (Mendoza-Ponce et al. 2018). Overall, the 
impacts of fires on forest ecosystems have exceeded those 
from deforestation, suggesting that they not only influence 
the C stocks and emissions but could be a key factor in 
biodiversity loss, particularly of endemic species. 

Conclusion 

In conclusion, we explored the climate and human influences 
on fire dynamics, an understanding that is of interest for 
conserving natural capital in megadiverse countries where 
some types of vegetation, especially tropical rainforests, are 
very sensitive to fires. Our study allows an understanding 
of fire drivers either at countrywide or biome scales. 
Particularly, we illustrate that climate is the most influential 
factor on fire occurrence in Mexico, considering both aver-
age conditions and exceptional ones. Climate affects rainfall 
distribution within a year, and seasonal droughts impact fuel 
abundance through vegetation productivity and fuel water 
content. However, extreme fire seasons are related to excep-
tional climate conditions, such as those linked to La Niña 
events, or a combination of heatwaves and long droughts. In 
the face of climate change and the expected increase in 
drought risk, fire impacts on terrestrial ecosystems are 
expected to increase in the future (IPCC 2021). Our results 
also show that fire characteristics such as size and frequency 
proved to be influenced in different ways by climate 
and socioeconomic conditions that drive land-use and land- 
cover change. Understanding fire influences may enhance 
land-management practices and mitigate fire environmental 
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impacts, including C emission and species loss in rich bio-
diversity hotspots (Myers et al. 2000). 

Supplementary material 

Supplementary material is available online. 
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