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Assessing the role played by meteorological conditions on the 
interannual variability of fire activity in four subregions of 
Iberia 
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ABSTRACT 

Background. The Iberian Peninsula is recurrently affected by severe wildfires resulting from an 
interplay of human activities, landscape features and atmospheric conditions. Aims. The role 
played by atmospheric conditions on wildfire activity in 2001–2020 is assessed in four pyror-
egions of the Iberian Peninsula. Methods. Wildfire activity is characterised by Fire Radiative 
Power (FRP) and meteorological danger is rated by the Fire Weather Index (FWI). The 
distribution of log10FRP in each pyroregion consists of a truncated lognormal central body 
with Generalised Pareto distributions as tails, and the model is improved using FWI as covariate. 
Synthetic time series of total annual FRP are generated using the models with and without FWI as 
covariate, and compared against observed FRP. Key results. Pyroregions NW, N, SW and E 
present increases of 1, 5, 6 and 7% in interannual explained variance of FRP when progressing 
from the model without to that with FWI as covariate. Conclusions. The models developed 
characterise the role of meteorological conditions on fire activity in the Iberian Peninsula, and are 
especially valuable when comparing expected impacts for different scenarios of climate change. 
Implications. The largest effects of atmospheric conditions on fire activity are in regions of the 
IP where the strongest impact of climate change is expected.  

Keywords: fire activity, Fire Radiative Power (FRP), Fire Weather Index (FWI), Iberian Peninsula, 
meteorological conditions, Moderate Resolution Imaging Spectroradiometer (MODIS), two 
generalised Pareto tail lognormal body distribution, wildfires. 

Introduction 

The Iberian Peninsula is recurrently affected by severe wildfires that relate to an increase 
in fuel availability due to land abandonment and the expansion of forest and shrubland 
areas (Pausas and Vallejo 1999; Lloret et al. 2002), as well as to an increase in the 
occurrence of prolonged droughts and in the number of days with extreme fire weather 
associated with climate change (Pereira et al. 2005, 2013; Trigo et al. 2006; Carvalho 
et al. 2011; Sousa et al. 2015; Pérez-Sánchez et al. 2019; Turco et al. 2019). 

The tragic years 2003, 2005 and 2017 in Portugal are worth pointing out. The 
Iberian Peninsula was struck by a severe heat wave in August 2003 and by two severe 
heatwaves in 2017 (the first in mid-June and the second in the second week of July), 
and 2005 and 2017 were affected by two severe droughts, that of 2005 being the most 
severe in recent times (García-Herrera et al. 2007). Several studies have underlined 
the critical role played by different meteorological variables, including temperature, 
humidity and wind on the occurrence of extreme years of fire activity both at shorter 
(e.g. summer heat waves) and longer (e.g. prolonged droughts) time scales (Ruffault 
et al. 2020). 

The fact that the entire Mediterranean basin, and the Iberian Peninsula in particular, is 
considered a hotspot of climate change (Cramer et al. 2018) calls for the need to pay 
particular attention to the role played by fire weather on wildfire activity. Accordingly, 
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the aim of the present work is to assess the impact of 
meteorological conditions on the interannual variability of 
fire activity in four pyroregions of the Iberian Peninsula 
(Trigo et al. 2016). 

Wildfire activity is quantified here by released Fire 
Radiative Power (FRP), as measured by the Moderate 
Resolution Imaging Spectroradiometer (MODIS) on board 
Terra and Aqua satellites (Giglio et al. 2020). Meteorological 
conditions are characterised by means of the Fire Weather 
Index (FWI), an indicator of meteorological fire danger that 
is part of the Canadian Forest Fire Weather Index System 
(Stocks et al. 1989). FWI combines in a single number the 
effects of air temperature, air humidity, surface wind and lack 
of rainfall on fire potential spread rate and fuel consumption 
(van Wagner 1987), making it appropriate to be related to 
FRP. However, because fire activity results from a complex 
interplay of climate, vegetation cover, topography and human 
activity (Bowman et al. 2020; Pereira et al. 2022), relation-
ships between FRP and FWI have a regional character. As such 
relationships are not deterministic, their nature has to be 
uncovered using a probabilistic approach. Following a meth-
odology previously set up to develop operational models to 
forecast meteorological fire danger (DaCamara et al. 2014a;  
Pinto et al. 2018, 2020), for each pyroregion, a statistical 
model is adjusted to the distribution of the logarithm of 
FRP, and the model is then improved by incorporating FWI 
as a covariate of the model. 

For each pyroregion, the statistical distribution of the 
logarithm of FRP as obtained from the first model reflects 
the influence of static factors (during the study period), such 
as regional climate, vegetation cover and topography; in 
turn, the statistical distribution that incorporates FWI as a 
covariate reflects both the influences of static factors and 

meteorological conditions prevailing in each FRP observa-
tion. The role played by meteorological conditions may 
therefore be assessed by comparing the statistical beha-
viour of time series randomly generated by the two 
adjusted models (i.e. with and without FWI as covariate). 
Accordingly, the models are used to synthetically generate 
two sets of 100 time series of total annual FRP, and the role 
played by prevailing fire weather is assessed by comparing 
the two sets against each other and against the time series of 
annual FRP derived from observations of the MODIS 
instrument. 

Data and methods 

Study area 

The study area comprises four pyroregions in the Iberia 
Peninsula as identified by Trigo et al. (2016) based on a 
cluster analysis of monthly burned area (Fig. 1); the 
Northwestern (NW) region, with an area of 46 563 km2, 
encompasses the relatively low lands of the north-western 
half of Portugal and the northwestmost provinces of Spain, 
the Northern (N) region, with an area of 86 619 km2 covers 
the Cantabrian mountainous areas of northern Spain, the 
Southwestern (SW) region, with an area of 267 474 km2, 
spans the southern lowlands and inland Portugal and 
expands into central and southwest Spain over Meseta 
Central, and the Eastern (E) region, with an area of 
189 429 km2, includes the Ibérico and Penibético mountain 
ranges, and forms a band along the Mediterranean eastern 
and southern coasts of Spain. As shown by Trigo et al. 
(2016), each pyroregion presents a distinctive interannual 
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Fig. 1. The four pyroregions of the 
Iberian Peninsula: Northwestern (NW), 
Northern (N), Southwestern (SW) and 
Eastern (E). The border between Portugal 
and Spain is represented by the thick solid 
line and fine grey lines delimit the 
Administrative Regions of the two countr-
ies. Adapted from  Trigo et al. (2016).   
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variability and an annual cycle of burned area that is con-
sistent with its topography, climate conditions and vegeta-
tion dynamics. The spatial distributions of the pyroregions 
are also in close agreement with the regionalisation pro-
posed by Rasilla et al. (2010) to study wildfire risk and 
wildfire occurrence in continental Spain. The four pyrore-
gions are therefore appropriate to develop regional models 
relating FRP and FWI. 

Datasets 

Information about climate types (Fig. 2, left panel) was 
extracted from the updated classification by Köppen–Geiger 
(Kottek et al. 2006). Information about land cover was 
obtained from the Copernicus Global Land Service (Version 
3), and relates to the period 2015–2019 (Buchhorn et al. 
2020). Data are provided at 100-m resolution and consist of 
23 discrete classes of vegetation cover that were regrouped 
into five main types, namely shrubland, cultivated land, 
closed forest, open forest and urban (Fig. 2, right panel). 

Information about radiative power released by wildfires 
was obtained from the MODIS Collection 6 Active Fire 
Product (Giglio et al. 2020). Data are provided at 
0.25° × 0.25° resolution and consist of location, date and 
time, and FRP estimates and respective confidence for hot-
spots, identified as active vegetation fires, as detected by the 
MODIS instrument over the Iberian Peninsula for the period 
2001–2020. As FRP is a physical quantity that measures 
combustion rate, it is also a good proxy of fire intensity 
(Wooster et al. 2005). FRP estimates by the MODIS instru-
ment are known to depend on viewing geometry because the 
sensitivity of the radiometer decreases with increasing view-
ing zenith angle; however, when applied to large regions, 
results from MODIS are strongly correlated with those 
obtained with more recent instruments that do not have 
that limitation, such as the Visible Infrared Imaging 
Radiometer Suite (VIIRS) currently flying on the Suomi 
NPP and NOAA-20 satellite missions (Li et al. 2018). 

Vegetation fire hotspots, here referred to as hotspot events, 
were distributed among the four pyroregions according to 
the location of the hotspots, and percentiles 10, 25, 50, 75 
and 90 of associated FRP were computed for each subset. 
Hotspot events of each pyroregion were stratified into 
the following six classes of fire intensity according to the 
values of FRP: below percentile 10, between percentiles 
10 and 25, between percentiles 25 and 50, between percent-
iles 50 and 75, between percentiles 75 and 90, and above 
percentile 90. 

Information about meteorological fire danger for the 
same period consists of daily values at a nominal 12:00 
hours local time (noon) of FWI, an index that solely depends 
on weather information, namely temperature, relative humid-
ity, wind speed and cumulative precipitation. FWI was ini-
tially developed to represent frontal fire intensity in the 
Canadian forest landscape (Van Wagner 1987), a feature 
that makes it appropriate to relate FRP with fire weather 
conditions. When calibrated, FWI is known to be a suitable 
measure of meteorological fire danger for a variety of ecosys-
tems, namely those of Mediterranean Europe (DaCamara et al. 
2014a; Pinto et al. 2018). Data are supplied at 0.25° × 0.25° 
resolution by the Copernicus Emergency Management Service 
for the European Forest Fire Information System (EFFIS) as 
obtained using weather forecast from historical simulations 
provided by European Centre for Medium‐Range Weather 
Forecasts (ECMWF) ERA5 reanalysis (Vitolo et al. 2020). 
A value of FWI was attributed to each hotspot event according 
to the location and day of the hotspot. 

Base model 

Using the ‘peaks over-threshold’ (POT) approach (Pickands 
1975), Pinto et al. (2018) showed that exceedances (i.e. 
values above a sufficiently high threshold) of the logarithm 
of daily radiative energy released by wildfires over 
Mediterranean Europe follow a Generalised Pareto (GP) dis-
tribution. They further showed that the model is significantly 
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Fig. 2. Distribution of Köppen–Geiger climate types as described by  Kottek et al. (2006) (left panel) and land cover (right 
panel) on the Iberian Peninsula. The four pyroregions are delimited by thick black lines.    
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improved when FWI is integrated as a covariate of scale 
parameters of GP distributions. However, the approach in 
the present study requires having a distribution that deals 
with the whole range of values of FRP at a time. Following  
DaCamara et al. (2022), we consider a model, hereafter 
referred to as the base model, that consists of a doubly 
truncated lognormal central body with a reversed GP lower 
tail and a GP upper tail. 

For a generic random variable X, the cumulative density 
function (cdf), F, of the two generalised Pareto tail lognor-
mal body distribution is: 
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(1)  

where a, b, and c are normalising constants, x1 and xu are 
positive transition points, κl and σl are the shape and the 
scale parameters of the reversed GP lower tail, λb and σb are 
the location and scale parameters of the doubly truncated 
lognormal central body, and κu and σu are the shape and the 
scale parameters of the GP upper tail. When κl < 0, the 
distribution has a finite left point xLF = xl + σl/κl, and a 
finite right point xUF = xu − σu/κu when κu < 0. 

Given an independent and identically distributed (i.i.d.) 
sample of observed data, x = (x1, x2, …, xn), the eight 
parameters (κl, σl, xl, λb, σb, κu, σu, xu) of F in Eqn 1 are 
obtained by maximising the log-likelihood function, log L(κl, 
σl, xl, λb, σb, κu, σu, xu|x). More details about the distribution 
and the fitting procedure are provided in DaCamara 
et al. (2022). 

The A2 test (Anderson and Darling 1952) is then used to 
evaluate the goodness of fit. The probability pA2 of exceedance 
of the value of A2 obtained for the sample is estimated by 
computing A2 for 1000 data samples randomly generated 
from the fitted distribution, and in the case p < 0.05A2 , the 
null hypothesis that the sample follows the distribution is 
rejected at the 5% significance level. Model validation is 
finally performed by analysing a Q–Q plot of empirical quan-
tiles of the sample versus corresponding estimates using F−1. 

Model with covariate 

The base model is then improved by introducing a new 
variable y as a covariate in each one of the eight parameters 
of F using the following relations: 
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iv where pairs (m, b) for each parameter are again estimated 
by maximum likelihood from the original i.i.d. sample x and 
associated values of covariate y, using as first guesses for 
each parameter m = 0 and b equal to the estimate obtained 
for the base model. It may be noted that the exponential 
dependence of all parameters but λb preserves the negative 
sign of shape parameters κl and κu and the positive sign of 
the remaining ones. In the case of the location parameter λb, 
a linear relationship is used posing no restrictions in the 
domain. 

Performances of the base model and the model with 
covariate are compared by computing the Bayes Factor 
(Nagin 2005) as well as by applying Vuong’s closeness test 
(Vuong 1989). Given two models, say Model 0 and Model 1, 
the Bayes Factor, B01, that measures the posterior odds that 
model 0 is the correct model given the data is approximated 
as B = exp (BIC BIC )01

1
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Bayesian Information Criterion scores (Amaral Turkman 
et al. 2019) for Model 0 and Model 1, respectively. It may 
be noted that BIC is defined as −2log(L) + klog(n), i.e. the 
lower the BIC score, the better the model, the negative 
contribution of the goodness of fit (rated by the likelihood 
logL) being penalised by the size n of the sample together 
with the number k of parameters of the model (k0 = 8 and 
k1 = 16 for the base model and the model with covariate, 
respectively). According to Jeffreys’ scale of evidence for 
Bayes Factors, there is strong evidence for Model 1 when 
B <01

1
10 (and strong evidence for Model 0 when B01 > 10). 

Details may be found in Nagin (2005). 
Vuong’s test is based on the statistic V =

C n(SLR )/ VLR10 10 , where SLR10 and VLR10 are respec-
tively the sum and the variance of the individual log- 
likelihood ratio between Models 1 and 0, and C =

k k n( )ln( )1
2 1 0 is a correction term (which takes into 
account the number of parameters of the models and the 
size of the sample). V is N(0,1) distributed and e.g. at the 5% 
significance level, Model 1 is better when V > 1.96 and 
Model 0 is better when V < −1.96. 

Synthetic time series 

For each pyroregion, we fitted the base model given by Eqn 
1 to the sample of the logarithm of FRP (i.e. x = log10FRP) 
of all hotspot events recorded during the period 2001–2020. 
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Then, we fitted the model with covariate given by Eqns 1 
and 2 to the sample of the logarithm of FRP using FWI as 
covariate (i.e. x = log10FRP and y = FWI), as obtained by 
associating with each hotspot event of the sample the 
respective daily value of FWI at the respective time and 
location. 

Distribution F given by Eqn 1 can be inverted, i.e. values 
x of random variable X may be obtained associated with 
values of probability P according to: 

x F P x x= ( ; , , , , , , , )1
l l l b b u u u (3)  

where F−1 is the inverse of F. Samples of values of X with 
size n may therefore be generated from distribution F by 
inversion, i.e. by applying Eqn 3 to a set of n randomly 
generated values of P as obtained from a uniform distribu-
tion between 0 and 1 (Wilks 2020). 

Accordingly, for each pyroregion, a set of ny synthetic 
values of log10FRP was generated for each year of the study 
period (where ny is the number of hotspot events recorded in 
year y) from distribution F with parameters previously 
obtained from the base model fit. An annual value of FRP 
was then computed by adding the ny synthetic values of 
FRP. This procedure allows generation of a synthetic time 
series of annual values of FRP covering the study period, 
which reflects the role played by static factors that are 
captured by the base model, namely regional climate, vege-
tation and topography. A time series of synthetic annual 
values of FRP reflecting both the roles played by static 
factors and by meteorological conditions prevailing in hot-
spot events may be obtained in a similar way from the 
model with FWI, i.e. by using the set of values of 
FWI associated with the hotspot events and relationships 
(Eqn 2) to prescribe the parameters of distribution for each 
hotspot event. By repeating the described series of steps for 

each pyroregion, a set of 100 synthetic time series of annual 
values of FRP was generated using the base model, and a 
second set of 100 synthetic time series of annual values of 
FRP was also generated, this time using the model with FWI 
as covariate. 

Results 

Characterisation of pyroregions 

The four pyroregions of the Iberian Peninsula are char-
acterised by different distributions of land cover (Figs 2, 
right panel, and 3) that reflect to a large extent the domi-
nant Köppen–Geiger climate types (Fig. 2, left panel). 
Forests cover more than half the surface of the wetter 
regions NW and N, whereas shrubland and cultivated land 
dominate the drier regions SW and E. Representing 62% of 
the land cover, closed and open forests are almost evenly 
distributed in region NW, characterised for its most part by a 
Csb Mediterranean type of climate, with mild winters and 
dry and hot summers. Open forest and cultivated land rep-
resent 63% of land cover in region SW, mostly characterised 
by a Csa Mediterranean type of climate, with dry and very 
hot summers. Closed forest and cultivated land cover 59% of 
region N, which is characterised by a Csb Mediterranean 
climate in its southern part and, forming a strip along the 
northern coast, by oceanic climate, with wet and cold win-
ters followed by humid summers, mostly of Cfb climate type 
with warm summers and a small patch of Cfc type with 
colder summers over the more mountainous areas. Finally, 
shrubland and cultivated land represent 66% of land cover 
of region E, which is a strip of Csa type with patches of 
Atlantic Cfb and Cfc climate and of cold semiarid climate 
(Bsk) covering the mountainous areas of the north and 
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Fig. 3. Distribution of land cover in the four pyr-
oregions of the Iberian Peninsula.   
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becoming cold continental (Dfc) at the highest points; large 
patches of semiarid Bsk type (and some small areas of hot 
semiarid Bsh type near the coast) are found in southeastern 
Spain, with very sparse vegetation and bare soils. The pro-
portion of shrubland is approximately the same in regions 
SW and E and is lowest in region N. Cultivated land domi-
nates over shrubland in all regions but NW, where it only 
represents 7% of the land cover. Large areas of region SW 
are covered by sparse vegetation with a peak of activity in 
spring and by rainfed crops that mature in late spring and 
early summer (Trigo et al. 2016). 

During the study period 2001–2020, a total of 141 652 
hotspots were recorded by the MODIS instrument over the 
Iberian Peninsula, the two pyroregions with Mediterranean- 
type climate contributing to three quarters of the total, 
almost evenly distributed between region NW with 53 591 
hotspots (38% of the total) and 52 896 hotspots (37%) in 
region SW. Region N accounts for 19 437 hotspots (14%), 
and region E for the remaining 15 728 hotspots (11%). 

The median annual cycle of hotspot density of region NW 
shows a pronounced maximum in August (reaching 78 hot-
spots/10 000 km2) and a secondary maximum in March 
(Fig. 4, first row); hotspot density is very small from 
November to January and the month of August has outstand-
ingly large interannual variability. Region SW shows an abso-
lute maximum hotspot density in August (16 hotspots/ 
10 000 km2) and two secondary maxima, one in October 
with a magnitude close to that of August and another, 
much smaller, in March; there is a contrast in variability 
along the year, the months of June to November showing 
much larger interannual variability than the remaining 

6 months. Region N shows two well-defined periods of fire 
activity, both in the median and the interannual variability of 
hotspot density, the first extending from February to April 
and the second from August to October (with a peak in 
September). Region E has a less pronounced median annual 
cycle of hotspot density than the other regions and, as in 
region SW, there are three peaks, in March, July and October. 

The annual cycles of monthly mean FRP per hotspot 
(Fig. 4, second row) display a well-defined maximum in 
August for all pyroregions and it is worth noting that the 
values reached in July and August in region SW are subs-
tantially larger than in the other regions. The annual cycle 
of FWI (Fig. 4, third row) has the highest values in July and 
August in all pyroregions, but there is a sharp contrast 
between regions SW and E versus regions NW and N, the 
magnitude of the peaks in the former two regions being 
approximately twice those in the latter two. 

For all pyroregions, there is a systematic displacement of 
the distributions of FWI associated with each class of fire 
intensity when going from classes of low to high fire inten-
sity towards higher values of FWI (Fig. 5). In each pyror-
egion, fires of higher FRP tend, therefore, to be associated 
with higher values of FWI, i.e. with higher meteorological 
fire danger. 

Statistical models 

Maximum likelihood estimates obtained for the parameters 
of the base models of log10FRP for the four pyroregions are 
presented in Table 1. Shape parameters κl and κu of the tails 
of all base models have values of approximately −0.2, and 
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because they are negative, all distributions have bounded 
support. The scale parameters σu are 4–6 times larger than 
the corresponding scale parameters σl, meaning that, for all 
base models, the upper tails of the distributions are heavier 
than the lower tails. Unlike the scale parameters of the 
lower tail of the distributions, σl that have close values 
(~0.1) in all pyroregions, there are differences among the 
scale parameters σu of the upper tails, with region E having 
the highest value and region N the lowest. Table 1 also 
presents the results of the A2 tests for all regions, with 
p > 0.05A2 for all samples indicating that the null hypoth-
esis that the sample follows the distributions fitted cannot 
be rejected at the 5% level. 

Each pyroregion has a characteristic cdf curve of 
log10FRP (Fig. 6). Regions NW and SW have the highest 
values of probability of exceedance of log10FRP, the former 
region for values below ~2.1 and the latter for values above 
this threshold. A similar behaviour is displayed by regions 
E and N regarding lowest values of probability of excee-
dance, the former region for values of log10FRP below ~1.6 
and the latter for values above this threshold. 

For all pyroregions, goodness of fit of the distributions to 
the respective samples is confirmed when examining the 
Q–Q plot of the empirical quantiles for the datasets versus 
the estimated quantiles of the base models, with almost all 
points lying along the 1:1 lines (Fig. 6). Regarding the 
characteristics of the support of the distribution, there are 
similarities between regions NW and SW, with the central 
body containing the large majority of events of the sample 
(67% for NW and 69% for SW), followed by the upper tail 
(28% for NW and 24% for SW) and by a lower tail with a 
small fraction of events (5% for NW and 7% for SW). For 
region N, the vast majority of events (95%) concentrates in 
the central body and the remaining ones are distributed 
almost evenly in the tails (3% in the upper tail and 2% in 
the lower). Region E has very distinct characteristics, with 
almost half of the sample (49%) belonging to the upper tail, 
the central body containing most of the remaining events 
(40%) and the other small portion (11%) belonging to the 
lower tail. 

Maximum likelihood estimates obtained for the parame-
ters of the models of log10FRP with FWI as covariate are 
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Fig. 5. Box plots of FWI associated with hotspots belonging to six classes of released FRP for regions NW (upper left panel), 
N (upper right panel), SW (lower left panel), and E (lower right panel). Circles with dots indicate the median of the FWI, thick 
whiskers extend down to percentile 25 and up to percentile 75, and thin whiskers down to percentile 10 and up to percentile 90. 
The six classes of FRP are below percentile 10 of FRP of the considered region, between percentiles 10 and 25, between 
percentiles 25 and 50, between percentiles 50 and 75, between percentiles 75 and 90, and above percentile 90.   

Table 1. Maximum likelihood estimates of support, lower body parameters, central body parameters, and upper body of the distributions for 
regions NW, N, SW and E and respective sample size and P value of the A2 test.               

Region Support Lower tail Central body Upper tail Sample size A2 test 

xLF xl xu xUF κl σl λb σb κu σu n pA2

NW 0.24 0.84 1.74 3.88 −0.19 0.11 0.50 0.43 −0.20 0.43 53 591 0.23 

N 0.25 0.65 2.35 3.83 −0.19 0.08 0.22 0.34 −0.20 0.29 19 437 0.47 

SW 0.20 0.74 1.75 4.21 −0.19 0.10 0.34 0.55 −0.20 0.50 52 896 0.48 

E 0.22 0.74 1.12 4.09 −0.23 0.12 −0.08 0.25 −0.23 0.68 15 728 0.21   
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presented in Table 2 for the four pyroregions. Transition 
point xl increases with FWI in all regions but E whereas 
transition point xu decreases with FWI in all regions but NW. 
All parameters of the central body and upper tail increase 
with FWI in regions N and SW, whereas all parameters but 
λb decrease with FWI in region NW. In region E, λb and σu 
increase with FWI, whereas σb and κu decrease. Regarding 
the lower tail, σl decreases with FWI in all regions, whereas 
κl increases with FWI in all regions but NW. 

As also shown in Table 2, for all pyroregions, values of 
the Bayes Factors B01 are lower than 1

10 , meaning that, 

according to Jeffreys’ scale of evidence, when the model 
with covariate FWI is compared with the base model, there 
is strong evidence in favour of the model with covariate. 
This perception is further confirmed through the values of 
Vuong’s statistic, V, that are all larger than 1.96, meaning 
that, at the 5% significance level, the model with covariate 
FWI is better than the base model. 

The overall effect of FWI on the distributions of log10FRP 
is illustrated in Fig. 7, which shows, for each pyroregion, the 
cdf curves for chosen values of FWI, namely percentiles 10, 
20, 50, 75 of the set of values associated with the hotspots of 
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Table 2. Maximum likelihood estimates of slope (m) and intercept (b) for relations of dependence on FWI of transition points, lower body 
parameters, central body parameters, and upper body of the distributions for regions NW, N, SW and E and respective Bayes Factor and 
Vuong’s statistic.              

Region  Support Lower body Central body Upper body Bayes 
factor 

Vuong’s 
statistic 

xl xu κl σl λb σb κu σu B01 V   

NW m  0.00090  0.011  0.0067  −0.010  0.0013  −0.0070  0.0090  −0.00030  0  35  

b  −0.30  0.22  −2.21  −2.33  0.49  −0.69  −1.96  −0.94   

N  m  0.0055  −0.00050  −0.012  −0.0078  0.011  0.0085  −0.0074  0.00030  0  20  

b  −0.63  0.85  −1.85  −2.91  0.11  −1.21  −2.26  −1.33   

SW  m  0.0034  −0.0039  −0.0088  −0.0022  0.012  0.0016  −0.019  0.0063  0  63  

b  −0.50  1.02  −1.94  −2.72  −0.10  −1.05  −0.74  −1.30   

E  m  −0.0093  −0.0076  −0.021  −0.026  0.0027  −0.010  0.018  0.021  0  31  

b  −0.47  0.38  −5.97  −2.70  −0.11  −1.11  −1.97  −1.10   

Values of m and b in bold indicate that the parameter increases with increasing FWI.  
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the sample. For all pyroregions, there is a clear right dis-
placement of the cdf curves with increasing FWI, which 
reflects substantial increases in probability of exceedance 
of a given threshold of log10FRP. 

Synthetic time series 

Fig. 8 presents, for each pyroregion, the time series of 
annual FRP as derived from observations from the MODIS 
instrument (black curves) and the two time series obtained by 
averaging the two sets of 100 annual values of FRP as derived 
from the base model (green curve) and the model with FWI as 
covariate (red curve). The interannual variability of the time 
series generated by the base model is just due to the inter-
annual variability of hotspots observed by the MODIS instru-
ment, and it is worth noting that some years with large 
(small) values of total FRP tend to be underestimated (over-
estimated). The underestimation is conspicuous in 2017 for 
pyroregions NW and N, in 2003 for pyroregion SW, and in 
2012 for pyroregion E, whereas overestimation is clear in 
2007 and 2008 for pyroregion SW. In the case of the time 
series generated by the model with FWI, improved behaviour 
is observed that is particularly noticeable for years with large 
values of total FRP. Overall, synthetic values obtained from 
the model with FWI are much closer to observed values than 
synthetic values generated by the base model, where mete-
orological conditions are not taken into account. 

A quantitative assessment is provided in Table 3, which 
presents the mean and standard deviation of the time series 
of annual FRP derived from MODIS observations and of the 
annual FRP synthetically generated by the base models and 
the models with FWI. Results indicate that the synthetic 
time series generated by both models are unbiased, the 

only exception being pyroregion E, where the time series 
generated by the model with FWI displays a mean value 
12% larger than the mean of the time series of observed 
FRP. Considerable differences do, however, occur with the 
values of standard deviation, for which time series of syn-
thetically generated FRP present considerably lower values 
than the corresponding time series of observed FRP. 
However, time series generated using the model with FWI 
systematically display larger variability than the corre-
sponding ones obtained with the base model. For instance, 
there is an 11% increase (from 21 to 24 GW) for pyroregion 
N, a 17% increase (from 143 to 167 GW) for pyroregion NW, 
a 48% increase (from 121 to 179 GW) for pyroregion SW 
and a 230% increase (from 20 to 46 GW) for pyroregion E. 

Table 3 also presents, for each pyroregion, the explained 
variance accounted for by the synthetic series when they are 
used to simulate interannual variability. Explained variance 
was estimated by squaring the linear correlation of the time 
series of annual observed FRP with the corresponding syn-
thetic time series generated by the base model and the model 
with FWI. For all pyroregions, there is an increase in 
explained variance when shifting from synthetic values of 
annual FRP generated by the base models to those by the 
models with FWI. Region NW shows a modest increase of 1% 
in explained variance (95–96%), but the other three regions 
show larger increases, respectively of 5% (84–89%) in region 
N, 6% (90–96%) in region SW and 7% (79–86%) in region E. 

Discussion 

Fire activity in the four pyroregions of the Iberian Peninsula 
results from the interplay of climate types, lansdscape 
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features and human activities (Costa et al. 2011). Regions 
NW and SW, with Mediterranean climate and with 55 and 
59% of the area covered by open forest and shrubland, 
respectively, rank first and second in the median value of 
hotspot density in August, when FWI is maximum; however, 
in the case of region NW, which has a very small fraction of 
cultivated land (7%), the maximum reached in August 
(78 hotspots/10 000 km2) is almost five times larger than 
that in region SW (16 hotspots/10 000 km2). In turn, region 
SW, with hotter summers, presents much larger median 

values of mean FRP per hotspot and FWI (93 MW/hotspot 
and 41) than region NW (70 MW/hotspot and 19). Because 
fuel availability is limited by the aridity of the environment 
(Pausas and Fernández-Muñoz 2012), region E, although 
with very hot and dry summers and a median value of 
FWI of 32 in August, presents the smallest median value of 
hotspot density in August (9 hotspots/10 000 km2), and is 
also the region with the smallest median value of mean FRP 
per hotspot (55 MW/hotspot) in August. Finally, region N, 
with a wetter oceanic climate and the smallest proportion of 
open forest and shrubland (39%), presents median values of 
FWI for July, August and September (respectively 13, 15 
and 12) that are the lowest among the regions for the 
respective months. July presents the lowest median values 
of hotspot density and median FRP per hotspot among the 
four regions whereas August and September rank third for 
both parameters. The annual cycles of number of hotspots 
also show secondary peaks in March for all regions, that of 
region E being quite prominent and, in the case of region N, 
the peak extends to the contiguous months of February and 
April and is similar in amplitude to the summer one. 
Secondary peaks in number of hotspots are also identifiable 
in October in regions SW and E, and in September in region 
N. However, the peaks in March and October are associated 
with rather low average values of FRP. A large fraction of 
such hotspots corresponds to vegetation fires related to 
agricultural and pastoral practices, including forest opera-
tions to remove crop residues, rejuvenate pastures and burn 
residues (Casau et al. 2022). When associated with fire 
weather, these practices are a major cause of large rural 
fires (DaCamara et al. 2014b). 
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Table 3. Values (in GW) for regions NW, N, SW and E of mean 
and standard deviation for the period 2001–2020 of time series of 
annual FRP derived from observations of the MODIS instrument and 
from the mean of the 100 synthetically generated annual FRPs using 
the base models and the models with FWI, and variance explained (%) 
by the two models.         

NW N SW E   

Mean (GW) Observed 179 40 185 43 

Base model 180 40 184 42 

Model 
with FWI 

179 40 186 47 

Standard 
deviation (GW) 

Observed 181 29 211 68 

Base model 143 21 121 20 

Model 
with FWI 

167 24 179 46 

Variance 
explained (%) 

Base model 95 84 90 79 

Model 
with FWI 

96 89 96 86   
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The distributions of log10FRP of the base models for the 
four pyroregions reflect the characteristics of respective fire 
activity. Region SW has the widest support (from 0.20 to 
4.21), whereas region N has the narrowest (0.25–3.83). The 
shape parameters of the lower and upper tails have similar 
values (with κl ⋍ −0.2) for all pyroregions, and the same 
happens with the scale parameter of the lower tails 
(σl ⋍ 0.1). This is to be expected because fires with low 
FRP have a weak dependence on static factors (regional 
climate, vegetation cover and topography). However, the 
same does not happen with the scale parameters of the 
upper tails, region E, with the highest proportion (27%) of 
shrubland, presenting the highest value (σu = 0.68) and 
therefore the heaviest tail, and region N, with the lowest 
proportion (18%) and the highest of closed forest (31%) 
presenting the smallest value (σu = 0.29) and therefore the 
lightest tail. 

When vegetation fires of each pyroregion are stratified 
into classes of FRP, the distribution of FWI associated with 
the classes indicates that fires with higher release of FRP 
tend to be associated with higher values of FWI. This sug-
gests improvement of the base model of each pyroregion by 
incorporating FWI as a covariate of all parameters of the 
respective distribution. For all pyroregions, the cdf curves of 
the models with FWI show a systematic displacement 
towards larger values of log10FRP with increasing FWI that 
indicates an increase in probability of exceedance of fire 
intensity with increasing meteorological fire danger. 

The strong dependence of the distributions of log10FRP 
on FWI makes of the models with FWI an appropriate tool to 
assess the impact of meteorological conditions on the inter-
annual variability of fire activity. Results obtained by gener-
ating synthetic series of annual totals of FRP for each 
pyroregion using the base model and the model with FWI, 
and then comparing their temporal variability with that of 
corresponding time series obtained from observed FRP point 
out the crucial role of meteorological fire danger in years of 
very high and very low fire activity. This translates into 
values of standard deviation of the time series generated 
with the model with FWI that are larger than those of the 
synthetic time series produced by the base model and closer 
to those of time series from observations. When compared 
against the latter, synthetic time series generated with the 
models with FWI also present larger values of explained 
variance than those generated with the base models, where 
meteorological conditions are not taken into consideration. 

Conclusions 

The results obtained clearly indicate the importance of 
atmospheric conditions as drivers of interannual variability 
in fire activity, measured by annual FRP values. This is 
especially true in pyroregions SW and E, where climate 
change is expected to have a pronounced impact in terms 

of the main climatic drivers of fires in these regions, namely 
an increase in frequency both of drought events and of days 
with extreme fire weather (Sousa et al. 2015). 

It is worth pointing out that the assessment performed in 
this work is likely to be conservative, given that time series 
of annual FRP were estimated by randomly generating val-
ues for all hotspots identified by the MODIS instrument for 
each year of the study period. The interannual variability of 
total number of hotspots was therefore the same for both 
statistical models (with and without FWI as covariate); as 
the number of hotspots strongly depends on the number of 
large vegetation fire events, which in turn depends on fire 
weather conditions, the interannual variability of syntheti-
cally generated time series of FRP was very likely over-
estimated when using the base model (without FWI as 
covariate), leading to an inflated interannual variability of 
FRP. Circumventing this problem would imply modelling 
the interannual variability of hotspots (with and without 
FWI as covariate), a task that is beyond the purpose of the 
present work. 

The approach proposed in this study can provide valuable 
information about fire activity in the Iberian Peninsula both 
for present and future climate conditions. An example of 
application for present climate is currently being proposed 
by some of us in a project funded by the Portuguese 
Environment Agency through Pre-defined Project-2 National 
Roadmap for Adaptation XXI (PDP-2); in this context, we are 
evaluating the effect of different policies of ignition limitation 
by generating and comparing two sets of synthetic samples of 
FRP as obtained from the statistical model, first by using 
observed values of FWI associated with ignitions from histori-
cal records and then using the same observed values of FWI 
but deprived of a fraction of large values of FWI according to a 
given policy of ignition limitation. The rationale stems from 
the fact that most fires are human-made, and authorities may 
be able to enforce policies during extreme fire risk days, thus 
decreasing the number of ignitions on those occasions. In a 
similar fashion, the approach developed can be used to assess 
the effect of changes in fire weather by generating and com-
paring two synthetic samples of FRP as obtained using simu-
lated values of FWI by climate models, first with historic 
radiative forcing and then with forcing according to a given 
future climate scenario. 
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Data availability. Köppen-Geiger climate classification data are available at: http://koeppen-geiger.vu-wien.ac.at/present.htm; land cover data are available 
at: https://lcviewer.vito.be/download; MODIS fire/hotspot information was downloaded from: https://firms.modaps.eosdis.nasa.gov/download/; and FWI 
historical data were downloaded from: https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical?tab=form. 
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