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Wildfire aerial thermal image segmentation using 
unsupervised methods: a multilayer level set approach 
Tiago GarciaA,* , Ricardo RibeiroA and Alexandre BernardinoA  

ABSTRACT 

Background and aims. Infrared thermal images of a propagating wildfire taken by manned or 
unmanned aerial vehicles can help firefighting authorities with combat planning. Segmenting these 
images into regions of different fire temperatures is a necessary step to measure the fire perimeter 
and determine the location of the fire front. Methods. This work proposes a multilayer segmenta
tion method based on level sets, which have the property of handling topology, making them suitable 
to segment images that contain scattered fire areas. The experimental results were compared using 
hand-drawn labels over a set of images provided by the Portuguese Air Force as ground truth. These 
labels were carefully drawn by the authors to ensure that they complied with the requirements 
indicated by the Portuguese National Authority for Emergency and Civil Protection. The proposed 
method was optimised to ensure contour smoothness and reliability, as well as reduce computation 
time. Key results. The proposed method can surpass other common unsupervised methods in 
terms of intersection over union, although it has not yet been able to perform real-time segmenta
tion. Conclusions. Although falling out of use in relation to supervised and deep learning methods, 
unsupervised segmentation can still be very useful when annotated datasets are unavailable.  

Keywords: airborne sensors, firefront tracking, image segmentation, level set segmentation, 
thermal images, thermal mapping, unsupervised segmentation, wildfire monitoring. 

Introduction 

Motivation and objectives 

Forest fires are an important ecological process and are responsible for the shaping of 
ecosystems (Bowman et al. 2020; Tymstra et al. 2020). They are responsible for clearing 
forest soil of debris and foliage and for enriching the soil with nutrients, allowing new 
plants to grow and receive sunlight (Zavala et al. 2014). Additionally, the frequent 
occurrence of controlled fires renovates forest flora by consuming vegetation that other
wise can overgrow and result in a potential catastrophic fire (Butz 2009). 

However, wildfires that burn in an uncontrolled way become devastating events, 
destroying infrastructure, damaging the economy and endangering human lives. Heavy 
rains that follow an intensive fire result in flooding and landslides (Lourenço et al. 2012). 
Furthermore, wildfires release greenhouse gases into the atmosphere that promote the 
effects of climate change. In turn, climate change creates longer and more extreme fire 
weather seasons that along with human activity may result in an increase in the risk of 
fire occurrence (Dupuy et al. 2020; Jones et al. 2022). 

The Portuguese hot and dry summers make the landscape very prone to fire (Verde 
and Zêzere 2010; Turco et al. 2019), which along with arson and negligence cases 
(Parente et al. 2018) may explain the increase in the number and intensity of wildfires 
in Portugal. In the last 10 years, there were an average of 15 553 wildfires that consumed 
an average area of 125 831 ha, which is ~1.4% of the Portuguese continental territory. 

After the catastrophic summer of 2017, in which there were multiple human 
casualties in the fires of Pedrógão Grande and the infamous day of 15 October 2017, 
when there were almost 500 occurrences of wildfires in Portugal on the same day, the 
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FIREFRONT (www.firefront.pt) and VOAMAIS (www. 
voamais.pt) projects were born. These projects aim at devel
oping solutions to support firefighting action in forest fires, 
using data obtained from manned and unmanned aerial 
vehicles (UAVs) equipped with a combination of different 
visible colour (red, green, blue (RGB)) and infrared thermal 
(IR) cameras and using reliable communication and naviga
tion systems. This constitutes a powerful tool in the observa
tion of forest areas and can be relevant in every stage of 
emergency management (Bailon-Ruiz and Lacroix 2020). For 
early detection, it is important to accurately identify images 
containing wildfires while avoiding false positives, for exam
ple, with similar colour patterns such as sunsets or dry 
foliage as they have the same shades of yellow and red 
(Perrolas et al. 2022; Harkat et al. 2023). During the 
response stage, UAVs can help geolocalise the fire front 
(Santana et al. 2022; Sargento et al. 2022), measure the 
fire extent, and discern any sudden changes in the smoke 
plume indicating variations in the speed and direction of the 
wind that may induce a change in the wildfire rate of spread 
(Cruz et al. 2012; Pinto et al. 2022). When a wildfire is 
eventually declared controlled, it is still worth detecting if 
and where reburns occur to quickly extinguish them, pre
venting a new critical situation. 

Thermal cameras can prove extremely useful when 
smoke and vegetation obscure the field of vision of aircraft, 
allowing better characterisation of the fire and identification 
of active fire pockets. This work aims at developing methods 
for segmentation of aerial wildfire thermal images into 
different regions of similar characteristics. This goal, how
ever, poses some challenges. Firstly, there is a lack of data
bases with annotated thermal images of wildfires, which 
restricts our approach to unsupervised methods that only 
use information contained in the images themselves, such as 
pixel intensity. Secondly, we need to account for image 
noise and the fact that the images may contain multiple 
fire patches spread across the image. Finally, it is not clear 
at the data collection stage which regions are the most 
relevant for decision making by fire management agencies. 

The implemented fire detection algorithms should be able 
to systematically receive thermal images and output contours 
that sort the image into relevant regions with similar intensi
ties. The contour lines will resemble level curves, allowing 
users to eventually construct a thermal map of the image and 
obtain the perimeter of the wildfire and the extent of the fire 
front, which are two key parameters of interest to the ANEPC 
(Portuguese National Authority for Emergency and Civil 
Protection). As the ANEPC requires one set of contours to 
encircle the entire fire area and another set to identify just the 
active pockets, we address this problem as a division of the 
images in three classes:  

• Class 1 (outer): outside the fire  
• Class 2 (middle): region inside the fire that does not 

belong to the propagating front 

• Class 3 (inner): the hottest (brightest) regions, which rep
resent the propagating front. 

The contours should be smooth for later calculation of the 
perimeter of the burning areas. Additionally, small high- 
intensity dots within the fire should be classified as Class 2, 
given that they most likely correspond to trees or other objects 
that are still burning actively but do not represent the fire 
front that it is desired to track. 

Related work 

Segmentation of IR images has been done mainly in the field 
of medical imaging, using watershed (Grau et al. 2004), 
K-means (Ng et al. 2006) and level set methods (Banerjee 
and Bhattacharya 2010). The segmentation of aerial IR wildfire 
images for tracking of the active front was attempted using, for 
example, a combination of Otsu and optical flow (Yuan et al. 
2017) and Canny edge detectors (Valero et al. 2018). However, 
these methods only present a division of the image into two 
classes. Extensive research on automated wildfire monitoring 
techniques was compiled by Yuan et al. (2015). 

Multilayer level set methods allow detection of multiple 
classes. Examples of past applications of these methods 
include temperature analyses in concrete structures 
(Huang and Wu 2010; Huang et al. 2013), in medical imag
ing (Moreno et al. 2014) and in plant leaves (Wen et al. 
2020), all of which make use of two level set functions. The 
present work is the first to apply the multilayer level set 
technique to the segmentation of thermal images of wild
fires. It differs from the methods previously referred to by 
using only one level set function, which makes the algorithm 
faster, by adding an edge stopping local term and by using 
multi-class segmentation with further selection of the rele
vant contours. 

Theoretical background on level set 
segmentation, active contours and the 
Chan–Vese model 

The concept of active contour models is to derive a contour, 
depending on the gradient of an image, such that it is 
attracted towards the boundary of the object to detect 
while minimising its internal energy, therefore maximising 
the smoothness of the curve. In our approach, this minimi
sation is obtained by taking the contour of the zero-level set 
of a level set function Φ. 

Oscher and Sethian (1988) introduced the concept of 
implicitly representing a contour C (or propagating front) 
using the evolution of an implicit higher-dimensional 
Lipschitz function Φ. Let us define a two-dimensional 
image I R: where Ω is a given image domain, consti
tuting a bounded open subset of the real number set R. Let ω 
be a subset of Ω, consisting of an open region with smooth 
boundary that corresponds to the object that is to be 
detected. The implicit function Φ(x, y, t) is time-dependent 
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(the time corresponding to the iterative process of finding 
the contours in a single image), but for simplicity of notation, 
let us ignore for now the time dependency, that is, consider
ing the function Φ(x, y) as defined by R: . This func
tion satisfies 

l
m
ooooo
n
ooooo

x y x y
x y x y
x y x y

( , ) > 0, ( , )
( , ) = 0, ( , )
( , ) < 0, ( , )

(1)  

where x and y represent the two dimensions of an image, ∂ω 
is the boundary of ω and ¯ represents the complement of ω. 
As such, the implicit function Φ is positive inside the region 
ω, negative outside it and the contour C that corresponds to 
the boundary ∂ω is obtained by taking the zero level set of Φ. 

To ensure a smooth evolution of the contour C, it is made 
to depend on the contour curvature k along its normal 
direction N, as shown in Fig. 1. Remember that the curvature 
is given by the inverse of the respective circle radius, k = 1 . 

The normal unit vector N and the curvature k of the 
contour C are given as a function of Φ, respectively, by 

N= (2) 

i
k
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zzzzzk = div (3)  

where ∇Φ = [Φx; Φy] is the space gradient of Φ and |∇Φ| is 
its absolute value. The evolution of the level set function is 
given by 

i
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jjjjj
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{
zzzzzt

= div (4)  

as explained by Osher and Sethian (1988), Malladi and 
Sethian (1996) and Zhao et al. (1996). The divergence of 
the gradient of a function, also called the Laplacian opera
tor, is a smoothing term, therefore making Eqn 4 a regular
ising term that allows smooth contours to be obtained even 
on noisy images. 

The main advantage of level set methods for image 
segmentation is that all derivatives are taken on a fixed 

rectangular grid representing an image, instead of being 
taken on a curve. In the latter case, such derivatives would 
be very difficult to implement, especially when change of 
topology occurs, for example with merging (two contours 
that become one) and breaking (one contour becomes two). 
Note that this effect happens during the iterative process of 
contour evolution in the same image and is not to be con
fused with the temporal evolution of the wildfire, when fire 
fronts coalescence and spotting occurs. 

Edge-based active contour models use gradient informa
tion to stop the contour evolution near strong edges. This 
can be achieved through the use of an edge-stopping func
tion g that has the property of being positive and decreasing 
with gradient magnitude, so that g becomes near zero at the 
edges and near one when the gradient is null. An example 
chosen in Caselles et al. (1993) is 

g I
G x y I x y

( ) = 1
1+ [ ( , ) × ( , )] 2 (5)  

where the image I is convoluted with a two-dimensional 

Gaussian filter ( )G = exp x y1
2

+
22

2 2

2 with standard devi

ation σ. 
Edge-based methods, such as the Geodesic Active 

Contour (GAC) model (Caselles et al. 1997), are sensitive 
to the placement of the initial contour. If it is initialised 
away from the object, it may never reach it and 
instead detect another strong edge, because it has no infor
mation about the whole image. This is especially concerning 
if the image is very noisy, as then the smoothing Gaussian 
will have to be strong and will also smooth the edges. 

Area-based active contour models use global image infor
mation, attempting to divide an image into regions by asso
ciating the pixels that share common properties, such as 
similar intensities. One of the most famous examples is the 
method introduced in Chan and Vese (2001), which is 
based on the functional in Mumford and Shah (1989). 
The Mumford–Shah formulation for image segmentation 
comprises the decomposition of an image into n regions, 
such that the intensities vary slowly within each region and 
briskly across the borders between them. 

The original Chan–Vese model is a particular case of the 
Mumford–Shah minimal partition problem, in which an 
image is only divided into two regions. It aims at approxi
mating an image I by an image I0 that takes only two values, 
the average of I inside C denominated c1 and the average of I 
outside C denominated c2. 

The approximation I0 is then defined by 

I c H x y c H x y= ( ( , )) + ( 1 ( ( , )))0 1 2 (6)  

where H x y( ( , )) is the Heaviside function, 

l
moo
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H z z
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0, < 0 (7) 
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Fig. 1. Scheme of curve C propagating in the normal direction N 
and its relationship with Φ (figure adapted from  Chan and Vese 
2001). T is the unit vector normal to the curve.  
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while c1 and c2 are the averages of the intensities inside and 
outside the image, respectively. They can be calculated as a 
function of Φ with   

c
I x y H x y x y

H x y x y
( ) =

( , ) ( ( , )) d d
( ( , )) d d1 (8a) 

c
I x y H x y x y

x y x y
( ) =

( , )( 1 ( ( , ))) d d
( 1 H( ( , ))) d d2 (8b)  

Adding regularising terms like the length of the contour and the 
area of the detected region, and using the length and area 
measures from Chan and Vese (2001) and Zhao et al. (1996) 
and finally replacing the Heaviside and Dirac functions for their 
regularised versions (which are defined later in the Methods 
section), the Chan–Vese energy functional Ecv to be minimised is   

µE x y x y x y

H x y x y

I x y c H x y x y

I x y c H x y x y

= ( ( , )) ( , ) d d

+ ( ( , )) d d

+ ( , ) ( ( , )) d d

+ ( , ) ( 1 ( ( , ))) d d

CV

1 1 2

2 2
2

(9)  

where I is the image in the domain Ω, Hε is the regularised 
Heaviside function, δε is the regularised Dirac function and µ, v, 
λ1 and λ2 are weight parameters. The minimisation of Ecv results 
in the original Chan–Vese model   
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where v is typically set to zero. The model implies that differ
ences of the intensities within each area are as low as possible 
while the contour stays smooth. This will effectively result in 
correct signalling of the burning areas if they have clearly 
distinct intensities from the rest of the image. 

The Chan–Vese method, initially developed for a two-class 
segmentation that was achieved by cutting the level set func
tion at level set zero, was generalised to multiclass segmenta
tion (Vese and Chan 2002; Chung and Vese 2005, 2009; He 
and Osher 2007). For m contours and n = m + 1 regions, the 
multi-layer Chan–Vese model determines the evolution of Φ as   
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which is given by the sum of an area term and a length term. 
The Dirac and Heaviside functions are used for the length and 
area terms, respectively. Multiplying a term by the Dirac 
function evaluates the term at the respective level set (border). 
Multiplying a term by a Heaviside function (or by a product of 
Heaviside functions) evaluates that term at one of the regions. 
The area term evaluates the influence, on each level curve, of 
the sum of differences between the mean intensities of each 
region and each pixel within the region. If the difference is 
high, that difference will be evaluated by the Dirac function at 
the respective level set and thus it will have a high weight at 
that level. The contour will then shrink or expand to minimise 
this weight. This effect is referred to as ‘balloon force’. The 
length regularisation term guarantees that the curve follows a 
smooth evolution according to its curvature. Smoother con
tours are shorter, and so they will be favoured by having a 
lower weight in the overall term. The balance between the two 
terms is controlled by the parameter µ. 

The mean intensities c1, …ci, …cm+1 (i = {2, …, m}) of 
each region are given by 

c x y t
IH l x y
H l x y

( ( , , )) =
( ) d d
( ) d d1

1

1
(12a) 

c x y t
IH l H l x y
H l H l x y

( ( , , )) =
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( ) ( ) d di

i i

i i

1

1

(12b) 

c x y t
IH l x y
H l x y

( ( , , )) =
( ) d d
( ) d dm

m

m
+1 (12c)  

Methods 

Datasets 

The datasets used for segmentation were provided by the 
Portuguese Air Force and consisted of images and videos 
taken during real wildfire occurrences. The data were col
lected using drones manufactured by UAVISION, model 
Ogassa OGS42 VN. The drones were equipped with a USG 
400 UAVISION gyro-stabilised gimbal that included a full 
High-Definition (HD) long-range visible camera (RGB) and a 
640 pixel × 480 pixel LWIR (long-wave infrared) infrared 
camera. The infrared camera has a 25 mm lens with an 
HFOV (horizontal field of view) of 24.6° capturing IR 
bands from 8 to 14 µm at a frame rate of 30 Hz. The power 
and voltage specifications are 50 W and 24 V, respectively. 

The videos used for this work were exclusively obtained 
with the LWIR camera and the information used to perform 
segmentation consists only of the resulting pixel intensities, 
represented as an 8-bit unsigned integer value ranging 
between 0 and 255. In these cameras, the pixel intensities 
are associated with higher temperatures but owing to the 
presence of auto-gain that is influenced by lighting and 
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atmospheric conditions, the same pixel intensity may corre
spond to different temperatures in separate frames. 

The main video is dubbed FOGO_1. It consists of different 
points of view of a wildfire with nearly 1 min of IR footage 
in total between RGB segments. The fire occurred on 16 
August 2019 near Vilã Chã, Pombal, Portugal, and the footage 
was taken ~5:30 pm. To quantitatively evaluate the segmen
tation, 55 images were selected, 1 s apart from each other, 
from the total 1342 frames. The frames of FOGO_1 were 
supplied with a resolution of 768 × 576 as they were resized 
after acquisition. The ground-truth masks were created by 
hand using the MATLAB® R2020a Image Labeler app, follow
ing the indications given by the ANEPC, described in the 
Introduction Motivation and Objectives section. 

The remaining images that were provided had erratic 
calibration of the cameras and the image resolution was 
sometimes very low, which resulted in images with low 
contrasts, overall more challenging to process. Despite 
their provenance from different locations, namely Lousã, 
Mirandela and Monchique, these images were catalogued 
in dataset FOGO_2. They were taken in September 2020 and 
have the original 640 × 480 resolution of the IR sensor. 

Proposed model 

Our approach addresses the problem of fire perimeter and fire 
front delimitation using a multi-class segmentation formula
tion. Considering the challenges described in the Introduction 
section, we decided to use level sets; they are able to obtain 
smooth contours and are insensitive to initialisation. The 
proposed method is based on the multilayer active contour 
model that originated in the Chan–Vese method, although 
with some modifications. These are presented in this section 
along with the general proposed solution. 

For practical purposes, the Heaviside and Dirac functions 
need to be approximated by a continuous smooth function. 
The regularised version of the Heaviside and Dirac functions 
are given respectively, by 

i
k
jjjj

i
k
jjj y

{
zzz

y
{
zzzzH z z( ) = 1

2
1+ 2 arctan (13) 

z H
z z

( ) = d
d

= 1
+2 2 (14)  

where ε is a regulating term that controls the level of 
regularisation; ε = 0 corresponds to no regularisation and 
typical values range from 1 to 1.5 (Chan and Vese 2001;  
Huang and Wu 2010). A higher value of ε corresponds to a 
softer function. 

Because the Chan–Vese energy is not convex (Chan and 
Vese 2001), it allows the existence of many local minima. 
As the regularisation functions presented in Eqns 13, 14 
never truly reach zero, they allow for the search of a global 
energy minimiser, therefore making the model non-sensitive 
to the initialisation of the level set function. 

The numerical computation of the equation that trans
lates the level set function evolution is achieved by convert
ing the curvature term to the discrete form using the 
discretisation model in Chan and Vese (2001). The method 
used for solving the discrete partial differential equation 
starts by computing the values of gradient terms C1, C1, C3 
and C4, according to Chung and Vese (2009). 
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where h is a step constant typically set to 1. Next, compute 
the value of m1, given by 
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where lk is the kth level set, i j
t
, is the current level set 

function, Δt is the time step and μm = μ × 256 × 256 
(256 being the total number of grey level intensities). 
Then, compute the value of C, given by C = 1 +  
m(C1 + C2 + C3 + C4). 

The evolution of the discrete level set function (Chung 
and Vese 2005, 2009; Huang and Wu 2010) is given by 
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where EST (edge-stopping term) is the term that will be 
introduced in Eqn 18 and Φ is equal to i j

t
, (for simplicity 

of notation). 

Inclusion of edge stopping term 

As the segmentations were experimented with, it was veri
fied that with the inclusion of more contours, the outer 
contours were detecting non-relevant edges or no edges at 
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all, and inner contours were not sticking with the borders of 
the innermost areas. To correct this issue, it was decided to 
add an edge stopping term directly to the evolution rule, as 
was done by Li et al. (2010). This term is given by 

g I l lEST= ( )[ ( ) + ( )]m1 (18)  

where α is a weight term, g(∇I) is given by Eqn 5 and 
δε(Φ − li) allows for the selective application of this term 
to the ith level set, which is performed as the inclusion of 
this term has a destabilising effect on Φ. The term in Eqn 18 
approximates the inner contour, given by the level set lm to 
the boundary of the brightest areas and keeps the outermost 
contour (corresponding to l1) from propagating outside the 
wildfire area. Fig. 2 demonstrates this effect, where the 

colour map used for the contours (yellow to red) represents 
contours encircling progressively brighter (hotter) areas. 
The legend of Fig. 2 represents the mean intensities ci that 
the respective coloured contour encircles (so the outermost 
region is not shown). For simplicity reasons, we will no 
longer include this type of legend as it is no longer relevant 
for presenting our work and may overlap with important 
regions of the images. However, the colour map logic still 
holds. 

Multigrid implementation 

The calculations required to apply the law in Eqn 17 may have 
an extremely high computational cost if the input image has a 
high resolution. Even at a resolution of 768 × 576, which is 
the most common resolution of the IR images supplied by the 
Portuguese Air Force, the time needed to achieve convergence 
on the level set function can be over 1 min. To address this 
issue, we compute several K lower-resolution images from the 
input image I, as shown in Fig. 3, each one with half the pixels 
of the previous one in each direction. Let κ be the current 
resolution. The level set function is initialised on the coarser 
grid (κ = K), evolved until convergence, and extrapolated to 
the next-finer grid (κ = κ − 1). This process is repeated until 
convergence is reached on the grid with the original image 
resolution (κ = 0). 

Stabilisation of the level set function 

The evolution of the level set function relies on the compu
tation of discrete differences, along with other high volatil
ity calculations associated with solving a partial differential 
equation. This generates fluctuations in the resulting level 
set function in that iteration that if not stabilised will even
tually produce inaccurate results. 

This problem can be solved in one of two ways, either 
decrease the time step Δt, ensuring a smoother evolution of 
the level set function, but at a cost of more iterations, or 
keep the same inverse gradient terms C1, C2, C3 and C4 and 
re-calculate the other terms for a smaller number of relaxa
tion iterations. The latter solution was chosen, as it skipped 
the calculation of the inverse gradient terms. As these terms 
are extremely sensitive to small variations in the function, 
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Fig. 2. Influence of α in the proximity of the contours to the 
brightest areas. Parameters: four contours, µ = 0.008, ε = 1.5, σ = 1: 
(a) absence of EST (α = 0); (b) presence of EST (α = 100 × 103).  
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we evolve the level set function for a fixed number of 
iterations, so it can converge. This strategy for numerically 
solving partial differential equations is described in Briggs 
et al. (2000). 

Definition of initial level set function and level set 
positions 

The initialisation of Φ should be done in a way that allows 
its evolution to smoothly reach all of the level sets, which 
were empirically selected to be multiples of 10, L = {0, 
10, …, 10n}, n being the number of classes. Also, it needs 
to contain (or be near) at least one of the level sets, because 
it will otherwise evolve in the opposite direction and fall 
into a local minimum. 

The regularisation term μ plays a very important role in 
the evolution of Φ. If this parameter is too high, the function 
will never reach the more distant level sets. If this parameter 
is too low, then the method becomes a simple pixel cluster
ing algorithm based on intensities of the whole image, 
which will lead to over-segmentation. 

For the initial mask, it was decided to start with small 
circles scattered evenly across the entire image. This 
allowed not only a smoother evolution, as a circle has no 
sharp edges, but also a faster and more uniform convergence 
because the evolution starts at multiple points simulta
neously. The transformation from the initial mask to the 
initial level set function used the Euclidean distance to the 
centre of every circle. 

Truncation of the level set function 

The computation of the edge-stopping term disrupts the 
evolution of the overall level set function. Near the borders 
of the regions, the gradients are the highest, and thus the 
edge stopping function will have a value of approximately 1. 
As the EST is subtracted when evolving Φ, this causes it to 
reach very low instantaneous values near the contours. 
These low spikes have such high absolute values that the 
level set function cannot recover and stabilise again in the 
affected points. In the end, this effect causes the respective 
pixels to be incorrectly classified as belonging to the outer
most region because they are below zero (Fig. 4a). To avoid 
this, a simple truncation of the level set function is per
formed at each iteration. If the value of Φ reaches a value 
below vmax at a certain point, it gets the value of vmax =  
−10 (Fig. 4b). This effectively assures that the function can 
recover from this sudden drop in the next iterations. 

Results 

The frames of the FOGO_1 dataset were subjected to a 
segmentation ranging from two to seven classes using the 
level set method in Eqn 17. The purpose was to evaluate the 

ability of the algorithm to construct thermal maps of the 
wildfire. Fig 5, Table 1 show the influence of the number of 
contours on the segmentations obtained and the segmenta
tion time, respectively. 

Ordinarily, and as stated in the objectives, we would 
desire a three-class segmentation, but realising how some
times a two-contour segmentation would result in bad iden
tification of the fire front, we tested the possibility of 
performing a segmentation with more contours and then 
selecting the two relevant ones that corresponded to the 
fire perimeter and the fire front. For this purpose, we com
piled a series of images with three, four, five and six-class 
segmentations and different combinations of selected con
tours and presented them to the ANEPC staff. We reached 
the conclusion that for the images presented, the best over
all combination was an initial six-class segmentation from 

(a) Segmentation mask

(b) Segmentation mask

Fig. 4. Influence of the truncation of Φ in the segmentation masks. 
Parameters: five contours, µ = 0.005, α = 40 000, ε = 1, σ = 1. (a) No 
truncation; (b) with truncation.  
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which only contours 2 and 5 were retained and used to 
generate the three-class classification map. The numbering 
of contours is presented in Fig. 6. This technique resulted 
in an improvement of IoU (intersection over union) from 
0.653 (with direct three-class segmentation) to 0.775. Fig. 7 
presents the results of both approaches to an image. 

Fig. 8 shows some of the results obtained for the FOGO_1 
dataset with the optimal tuning parameters found through a 
grid search that are described in Table 2. 

To test the algorithm over the whole video sequence, all 
the frames in FOGO_1 were segmented and compiled in a 
video that is available in the following link: https://youtu. 
be/kD9TEFOaHxw. 

To further compare the performance of the proposed 
method against other common unsupervised methods, 
the 55 selected frames were also subjected to the applica
tion of the multi-layer Otsu (Otsu 1979; Liu and Yu 2009), 
K-means (Liu and Yu 2009; Sinaga and Yang 2020) and 
Mean Shift (Fukunaga and Hostetler 1975; Comaniciu and 
Meer 1999) algorithms. The class grouping technique 
described earlier, with six-class initial segmentation and 
same choice of relevant contours, was also tested when 
using these methods, resulting in an improvement in IoU 
in every case. 

The best experimental results for each method presented 
in Table 3 were obtained with MATLAB 2020a, using a 
computer running in Windows 10 64-bit with an Intel® 

Core™ i7-6700HQ microprocessor and 8 GB of RAM. All 
the metric values displayed correspond to the average of 
the values for the three classes referred to. For Mean Shift, 
the three-dimensional input contained the pixel intensity (i) 
and position (x, y), with respective weights 0.8 and 0.2, while 
the 1-D input contained only the pixel intensity. As Mean Shift 
calculates the number of classes automatically, we combine it 
with Otsu thresholding to aggregate classes. It is important to 

(a) (b) (c)

(d) (e) (f )

Fig. 5. Variation of the number of contours: (a) one contour; (b) two contours; (c) three contours; (d) four contours; (e) five 
contours.; (f) six contours.   

Table 1. Computational time as a function of the number of 
contours, for K = 4, 20 iterations for k = {2, 3, 4} and 2 iterations 
for k = {0, 1}.          

Number of contours 1 2 3 4 5 6 7 

Time (s) 1.1 1.5 1.7 2.1 2.5 2.8 3.2   

Contours

Fig. 6. Contour numbering for a six-class segmentation.  
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state that the ground truths have compromised reliability, 
because they were not determined by the authorities. 

In the process of exploring and tuning parameters for this 
approach, a MATLAB standalone application was developed, 
allowing for user-friendly tuning of parameters. We also 
developed a C++ implementation, which made our method 
ready to be implemented in a ground station that receives 
the images and allowed us to reduce the segmentation time 
to approximately 2.1 s (0.8 s improvement). 

Discussion 

In terms of computational time, Otsu vastly outperforms all 
the other methods, allowing real-time segmentation. However, 
to obtain curve regularisation, Otsu needs to increase the 
intensity of pre-process blurring, which leads to less reli
able contours. As the results obtained using Otsu and 
K-means are almost identical, confirming what was stated 
in Liu and Yu (2009), and Otsu has a greatly reduced 
computational time in relation to K-means, it is thus con
cluded that there is no advantage in using K-means. In 
general, the combination of the Mean Shift method with 
the Otsu method does not bring better results in 

comparison with simple Otsu, although it can more accu
rately detect the brightest regions. 

The method presented based on level sets allows for a 
highly customisable contour regularisation; therefore, it has 
the best segmentation results. Nevertheless, they tend to be 
less reliable on images where the burned area is small and 
where there is intensity inhomogeneity between regions, like 
the ones from dataset FOGO_2, as exemplified in Fig. 9. This is 
most likely because the piece-wise constant Mumford–Shah 
functional, which constitutes the basis for this model, assumes 
the input image can be approximated by regions with constant 
intensities. However, the inner contour correctly detects the 
burning region in all the examples. 

Directly comparing the performance of our approach with 
other approaches for mapping fire fronts and perimeters is 
not possible because for that, the algorithms would need to 
be applied to the same dataset. However, our method has 
some advantages because it is able to classify different kinds 
of fire areas, namely burnt, unburnt and active fire areas. 
Regarding optical flow approaches, we consider that these 
are very interesting ways to recognise burning active regions 
of a fire, but only when there is movement present (high 
flames for example). Our method can be a viable alternative 
because it does not require the presence of movement in the 
image as it only uses the pixel intensities in a thermal image. 

Conclusions and future work 

This work presented a study on the implementation of various 
unsupervised segmentation methods to the problem of seg
mentation of aerial thermal images of wildfires, which was 
outlined in the FIREFRONT project. To address the described 
problem, we proposed a method based on a multilayer level 
set formulation that uses both global and local information. 
Globally, it attempts to minimise an energy functional based 
on the Chan–Vese method. Locally, the method makes use of 
an edge stopping term that further guides the innermost and 
outermost contours to the desired frontier of the active fire 
front. The main reasons that motivated the choice of this 
method for the segmentation of these types of images are its 
ability to perform multiple detections of objects scattered 
around an image and its ability to handle topology, which is 
a characteristic of the level set methods. The method was 
compared against other common unsupervised segmentation 
methods, being deemed the most appropriate. 

The automation of the segmentation process of aerial 
thermal images of wildfires allows the acquisition of con
tours that can be used in future work to calculate the fire 
perimeter and extent of the fire front. This can be obtained 
by using a video similar to FOGO_1 and combining the 
segmentations performed over sequential images to obtain 
a general model of the whole wildfire. 

The lack of a labelled database dictated the non-use of 
supervised machine Learning. The hand labels created 

(a)

(b)

Fig. 7. Segmentation experiments: (a) three-class direct segmenta
tion; (b) six-class segmentation with only relevant contours.  
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throughout the development of this thesis can be used to 
start such a database. It would be interesting to apply state- 
of-the-art supervised and deep-learning models to these 
images and compare the results with the ones obtained in 
this research, in terms of the computational time and quality 
of the segmentations. 

In a future application, the information retrieved from IR 
imagery can be combined with other remote sensing data 
from other FIREFRONT research works, providing valuable 
details about geolocation (Santana et al. 2022; Sargento 
et al. 2022), weather and terrain to the ANEPC. Future 
applications will also allow users to select the number of 

Original image Six-class segmentation Three-class segmentation Ground truth mask

Fig. 8. Segmentation examples for FOGO_1 images using optimal parameters.   

Table 2. List of optimal parameters for the proposed level set 
method for a six-class segmentation with reduction to three classes.     

Parameter Description Optimal 
value   

µ Length regularisation term weight 0.008 

α Edge-stopping function weight 60 000 

ε Regularisation term for Dirac and 
Heaviside functions 

1.2 

σ Standard deviation of pre- 
processing Gaussian filter 

1 

K Number of coarser grids created 4   
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Original image Six-class segmentation Three-class segmentation

Fig. 9. Segmentation examples of images from FOGO_2 dataset. Parameters: µ = 0.003, α = 10 000, ε = 1.5, σ = 1.   

Table 3. Comparison of results using the 55 image labelled dataset.         

Method Precision Recall Accuracy IoUA WEoSB Time (s)   

Proposed 0.871 0.859 0.962 0.775 0.035 2.86 

Otsu 0.812 0.832 0.916 0.688 0.066 0.15 

K-means 0.803 0.838 0.909 0.682 0.069 1.24 

Mean Shift + Otsu (1D input) 0.862 0.741 0.926 0.646 0.056 1.65 

Mean Shift + Otsu (3D input) 0.852 0.675 0.902 0.571 0.071 17.3 

Bold represents best performance. 
AIntersection over Union. 
BWeighted Error of Segmentation (EoS) (same as EoS but a misclassification by just one class counts as a ‘half’ error).  
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contours for the initial segmentation, as well as select the 
ones relevant to determine the perimeter and fire front. 
Moreover, observed data may be used to adjust fire spread 
simulators in real time, such as the one described in Viegas 
et al. (2021) (also outlined in the FIREFRONT project) so 
that they can produce accurate forecasts about fire evolu
tion. These developments can make important contributions 
towards achieving reliable operational decision support sys
tems that can be deployed during an emergency. 

This application is currently in development, supported 
by the VOAMAIS project. The images and metadata (geo
graphical coordinates, camera angles, etc.) obtained by the 
aircraft are transmitted in real time to a ground station using 
a Transmission Control Protocol/Internet Protocol (TCP/IP). 
The data are published in ROS (Robot Operating System) 
topics that the RGB and IR nodes subscribe to. Each node 
corresponds to a graphical user interface that applies the 
algorithms created in the FIREFRONT project and displays 
the results. The IR node will attempt to stitch multiple 
infrared images to construct a local thermal map of the fire 
and at the same time apply the level set segmentation algo
rithm proposed in this work to display the contours to the 
authorities and the geo-location of the fire front to improve 
their response capabilities. 
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