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ABSTRACT 

Background. Wildfires have caused significant damage in Chile, with critical infrastructure being 
vulnerable to extreme wildfires. Aim. This work describes a methodology for estimating wildfire 
risk that was applied to an electrical substation in the wildland–urban interface (WUI) of 
Valparaíso, Chile. Methods. Wildfire risk is defined as the product between the probability of 
a wildfire reaching infrastructure at the WUI and its consequences or impacts. The former is 
determined with event trees combined with modelled burn probability. Wildfire consequence is 
considered as the ignition probability of a proxy fuel within the substation, as a function of the 
incident heat flux using a probit expression derived from experimental data. The heat flux is 
estimated using modelled fire intensity and geometry and a corresponding view factor from an 
assumed solid flame. Key results. The probability of normal and extreme fires reaching the WUI 
is of the order of 10−4 and 10−6 events/year, respectively. Total wildfire risk is of the order of 
10−5 to 10−4 events/year Conclusions. This methodology offers a comprehensive interpretation 
of wildfire risk that considers both wildfire likelihood and consequences. Implications. The 
methodology is an interesting tool for quantitatively assessing wildfire risk of critical infra-
structure and risk mitigation measures.  

Keywords: burn probability, consequence analysis, critical infrastructure, event tree, ignition 
probability, probit, risk, wildland–urban interface. 

Introduction 

In the last decade, wildfires in Chile have caused significant human, ecological and 
economic damage to cities, protected areas and economic sectors such as forestry and 
electricity distribution. In 2014, the Great Valparaíso Fire caused the death of 15 people, 
destroyed 2900 structures and caused losses of over USD 110 million (Reszka and Fuentes 
2014), while the fires that occurred in the central zone of Chile in 2017 caused 11 deaths, 
burned more than 550 000 ha and destroyed more than 1000 structures (Bowman et al. 
2019). Climate change is expected to increase the occurrence and severity of these events 
(McWethy et al. 2018; Pausas and Keeley 2021; United Nations Environment Programme 
2022). Interactions between climate–weather, vegetation and people are not fully under-
stood and are still subject to scientific scrutiny (Flannigan et al. 2009); hence, the 
potential impact of wildfires on communities and assets in the wildland–urban interface 
(WUI) may be assessed by estimating wildfire risk for as many climate scenarios as 
possible (Liu et al. 2021). Incorporating wildfire risk into fire management and land use 
planning would help to achieve this goal (Moritz et al. 2014; United Nations Environment 
Programme 2022). In this context, a need to address wildfire risk with quantitative tools 
has been recognised to support decision-making in the management of assets located in 
the WUI (Lautenberger 2017; Papakosta et al. 2017; Alcasena et al. 2022), an approach 
aligned with modern paradigms of wildfire management focused on avoiding socio- 
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ecological damages and losses via mitigation, adaptation 
and preparation instead of relying solely on fire suppression 
and exclusion (Calkin et al. 2014; Moreira et al. 2020). In 
this sense, wildfire management in Chile has been histori-
cally focused on defining qualitative indices and rankings 
for evaluating fire danger, a framework that rests on a set of 
qualitative indicators of ignition potential, wildfire spread 
and consequences (Castillo Soto et al. 2015). 

Wildfire risk is conventionally considered by the wildfire 
research community as an expectation of loss or benefit, 
defined as the product between the potential impacts of 
the wildfire (a net value change) and the likelihood of 
those impacts occurring (Finney 2005; Miller and Ager 
2013; Johnston et al. 2020). Several frameworks for assess-
ing wildfire risk have been proposed in the past decade. Scott 
et al. (2013) presented a framework based on modelling 
approaches to characterise wildfire likelihood and intensity, 
fire effects, and the relative importance of highly valued 
resources and assets that could be impacted by a wildfire.  
Johnston et al. (2020) synthesised wildland fire risk research 
in Canada to establish a formal quantitative risk framework, 
where fire occurrence, fire behaviour and values are defined 
as inputs to assess wildfire likelihood, the exposure experi-
enced by such values and wildfire impacts, thus giving wild-
fire risk as an output. Recently, the first pan-European 
prototype of a wildfire risk assessment framework was pub-
lished by the European Commission’s Joint Research Centre, 
whose main components are fire danger or hazard (ignition 
and fire behaviour) and vulnerability (of people, ecological 
values and socioeconomical values) (Oom et al. 2022). These 
and other wildfire risk models consider different but inter-
connected components that can be analysed separately, with 
standardisation of model outputs being one among several 
challenges in this matter (Oliveira et al. 2021). 

Although these frameworks are intended to be applicable 
to local, regional and global scales (Oom et al. 2022), they 
are typically used to provide tools and information to fire 
managers and decision makers by assessing risk at national 
or regional levels only. Wildfire risk frameworks for analysis 
at parcel levels have been developed recently (Khakzad et al. 
2018; Maranghides et al. 2022), but simple methods appli-
cable for specific structures, such as industrial buildings and 
infrastructure, are still uncommon in the wildfire literature, 
which represents one among several challenges related to 
this problem (Planas et al. 2023). However, the state of the 
art in quantitative risk assessments considers risk as a prob-
ability of sustaining a loss (for example, in nuclear and 
chemical process industries, aeronautics, and finances). 
Exploring how risk is assessed in other areas may thus be 
fruitful for developing wildfire risk analysis methods at 
parcel levels. For example, in the chemical process industry 
(CPI), risk is defined as a measure of human injury, envir-
onmental damage or economic loss in terms of both the 
incident likelihood and the magnitude of the loss or injury 
(Center for Chemical Process Safety 2000). In the CPI, risk is 

the result of a quantitative assessment that depends on the 
identified scenario, the probability of that scenario and the 
consequence (damage probability) of that scenario. Incident 
frequencies from historical records and event tree analyses 
are used jointly to estimate the distribution of incident 
outcomes and their likelihoods, while physical and effect 
models are used to describe the incident consequences on 
the object of study (Center for Chemical Process Safety 
2000). This approach reduces the inherent uncertainty asso-
ciated with estimating incident likelihood and conse-
quences, enabling risk to be compared with a tolerable 
threshold and subsequently mitigated to a level as low as 
is reasonably practicable (Pike et al. 2020). 

In this context, critical infrastructure such as electrical 
substations and power lines can be particularly vulnerable 
to fires. For example, wildfire-induced temperatures can 
lead to oil-immersed transformer explosions (Waseem and 
Manshadi 2020), power line tripping and failure can occur 
because of annealing processes in overhead conductors 
(Jazebi et al. 2020) and changes in dielectric properties 
(Waseem and Manshadi 2020), leakage currents can be 
induced by soot accumulation in insulators (Fonseca et al. 
1990), and transmission and distribution operations can be 
negatively impacted by aerial discharges of fire retardant 
and preventive shutdowns (Sathaye et al. 2013). 

The goal of this work is to estimate the risk posed by 
wildfires to an electrical substation operated by Chilquinta 
Distribución S.A. (henceforth Chilquinta) in Valparaíso, cen-
tral Chile, using a quantitative methodology. To the authors’ 
knowledge, this is the first time that a quantitative approach is 
applied on a Chilean landscape at the parcel level to assess 
wildfire risk. For this purpose, the definitions of wildfire 
likelihood and exposure provided by Johnston et al. (2020) 
are adopted in the present work. An event tree analysis is 
included to provide more details on the outcomes from the 
ignition of a wildland fuel. The definition given by Miller and 
Ager (2013) for vulnerability is also adopted here, whose 
modelling via empirical response functions in terms of fire 
intensity and distance is available in the literature (Abo El Ezz 
et al. 2022). However, a vulnerability model based on analys-
ing physically how the object of study responds to thermal 
attack from a wildfire would improve the quantitative nature 
of the methodology. Therefore, wildfire consequences are 
operationally defined here as the probability that a target 
will experience an ignition due to an incident heat flux. 
With these techniques for estimating wildfire likelihood and 
consequences, it is expected that this work will contribute to 
bridging the gap between the approaches employed by the 
wildfire research community and the CPI to assess fire risk. 

Methodology 

Modern views on the WUI fire problem suggest focusing 
management practices on addressing the susceptibility of 
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structures to the inevitability of wildfire exposure, given 
that keeping wildfires out of the WUI is an unattainable 
goal (Calkin et al. 2014). Considering that fire risk mitiga-
tion achieved by reducing vulnerability and increasing 
defensibility of developed property is more attractive than 
decreasing exposure to fires (Finney 2021), the methodol-
ogy presented in the present work is developed and imple-
mented to assess risk at the property scale (parcel level), 
being more focused on physically modelling the conse-
quences of a fire on infrastructure rather than on the likeli-
hood of fire arrival at that infrastructure. 

This methodology is illustrated in Fig. 1. First, the system 
to be studied must be defined by establishing the physical 
boundaries of the infrastructure of interest and a portion of 
land where an ignition could take place and develop into a 
wildfire propagating to the infrastructure. These two items 
(infrastructure and land) represent the study area. The fol-
lowing step is hazard identification. A hazard is defined here 
as a condition that has the potential for causing damage to 
people, property, or the environment (Center for Chemical 
Process Safety 2000), and can be regarded as stored energy 
that can cause damage on being released, i.e. a fuel. Thus, 
hazards are wildland fuels spatially distributed in the study 
area in this methodology. Vegetation is the most relevant 
fuel, but other fuels such as trash that has accumulated in 

empty lots may represent additional hazards (Reszka and 
Fuentes 2014). Once the system and hazards are identified, 
the following inputs are required: fire historical records, 
terrain features, weather and fuel properties. With these 
inputs, a fire modelling tool is used to calculate burn prob-
ability (BP), fireline intensity and flame length at the perim-
eter of the infrastructure. 

Fire modelling 

Fire modelling aims to reproduce and anticipate properties 
of wildfire behaviour and its effects. From an operational 
standpoint, these models are usually classified as physics- 
based, empirical and quasi-empirical, and mathematical 
analogues (Sullivan 2009). Nowadays, many wildfire model-
ling tools developed either for operational or research pur-
poses are available for predictive and planning activities 
(Pacheco et al. 2015), with FARSITE and FlamMap being 
the most widely used by the wildfire research community 
(Radočaj et al. 2022). Note that FARSITE was included into 
FlamMap in 2008; henceforth, they are treated as only one 
piece of software. 

FlamMap is a computational tool developed to model 
potential fire behaviour characteristics under static condi-
tions of weather and fuel distribution (Finney 2006). Fireline 
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Fig. 1. Flowchart illustrating the methodology implemented in this work to analyse the risk posed by wildfires to 
critical infrastructure. The first step is system definition and hazard identification. The inputs are represented by 
white blocks. The main components of the methodology and the intermediate calculations are represented by violet 
and grey blocks, respectively. The risk components are the likelihood of a fire reaching the infrastructure and the 
consequences of a fire that has already reached it. The output is wildfire risk.    
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intensity and flame length are among these characteristics. 
The version used in the present work (v. 6.1) also includes a 
module to estimate conditional BP using the Minimum Travel 
Time method (Finney 2002) to a large number of fires ignited 
at random locations in the study area. The number of fires, 
their duration and the ignition locations can be controlled by 
the user. BP is thus computed as the number of times fires 
reached each point in the study area out of the total number of 
fires simulated (Parisien et al. 2019). Firebrand production is 
an important mechanism for wildfire propagation via spot 
fires (Fernandez-Pello 2017), typically acting in parallel to 
continuous propagation through surface and crown fires 
(Pastor et al. 2003). This phenomenon is addressed with 
FlamMap by simulating lofted embers that are tracked to 
determine maximum spotting distance and direction. To 
reduce computational costs, FlamMap allows control of the 
number of crown fires able to launch embers. These features 
justify selecting this tool for the present methodology, because 
it represents a good compromise between a reasonable physi-
cal representation of fire behaviour and spread, and the com-
putational time required to carry out the simulations. It must 
be noted that this wildfire risk methodology is independent of 
the selected tool; hence, any computational tool that provides 
fire intensity, flame length and BP would be equally useful 
depending on the user requirements. 

Likelihood of a fire reaching the infrastructure 
analysed 

According to Scott et al. (2013), ‘annual BP is the probabil-
ity that a wildfire will burn a given pixel during a single 
calendar year’, while ‘conditional BP is the probability that a 
wildfire occurring during a specified weather condition will 
burn a given pixel, given that a fire does occur in that 
weather condition somewhere in the landscape’. The second 
BP definition applies here, because in this methodology, 
wildfire likelihood is considered as the probability that a 
fire propagates to the infrastructure studied, under the con-
dition that an ignition occurred somewhere in the study 
area, i.e. the ignition frequency estimated from a historical 
database multiplied by the conditional BP. Considering that 
the conditional BP is estimated under fixed weather condi-
tions, an event tree is proposed in this methodology to refine 
the calculation of wildfire likelihood. Event trees are used in 
risk analyses to identify the consequences of a potentially 
hazardous initiating event by examining all possible 
responses to that event (Andrews and Dunnett 2000). In 
the CPI, event trees provide coverage of the time sequence 
of an initiating event propagation, and identify incident 
outcomes in post-incident applications by tracing the tem-
poral sequences of occurrence of relevant safety functions or 
events, with each branch representing a separate outcome 
(Center for Chemical Process Safety 2000). 

In the current work, the initiating event is the ignition of 
a wildland fuel, and the outcome of interest is the 

propagation of a wildland fire from that ignition point to 
the infrastructure analysed. This outcome can be the propa-
gation of a normal or an extreme wildfire. The other out-
come is fire propagation to other points, which is of no 
interest for the purpose of this methodology. A succession 
of intermediate events is assumed between the ignition of a 
wildland fuel and the propagation of a fire to the infra-
structure. The first intermediate event is having a burned 
area above some threshold. Historically, most of the fires in 
Chilean landscapes cover small areas, of the order of 1 ha or 
less, with a small fraction of ignitions leading to larger 
wildfires. The following intermediate events are related to 
having weather conducive to fire propagation. In this work, 
these events are temperature and wind velocity surpassing 
some thresholds estimated from historic fire records, which 
represent conditions that have been present in historic fires. 
Therefore, fire propagation to the structure analysed under 
these weather conditions should be more likely than under 
other conditions. To discriminate between the probability of 
normal and extreme wildfires, two wind thresholds are 
defined: one is the most frequent wind speed when ignitions 
took place, whereas the other is representative of the more 
intense winds recorded when ignitions occurred in the study 
area. The final intermediate event is the conditional BP, as 
defined in the paragraph above. The likelihood of a fire 
reaching the infrastructure of interest (Pp) is then estimated 
as: 

P f P f P= = j
N

jp ig p|ig ig =1 p|ig, (1)  

where fig is the historic ignition frequency, Pp|ig is the 
conditional probability of a fire reaching the point of inter-
est, Pp|ig,j is the probability of an intermediate event after 
the jth node in the event tree, and N is the number of nodes 
in the branch leading to the outcome of interest. Note that 
with this technique, the calculation of conditional BP is 
refined by multiplying it with a historic ignition frequency 
and with several additional probabilities representing con-
ditions that were historically present when actual ignitions 
took place in the study area. 

Consequences of a fire reaching the 
infrastructure analysed 

Wildfire consequences depend on the exposure of the asset 
studied to thermal attacks, and asset vulnerability to these 
attacks. These two items are evaluated separately as follows. 

Exposure 

A configuration consisting of a rectangular solid flaming 
front at some distance from the target of interest (Fig. 2) 
has been deemed acceptable for wildfire applications 
(Sullivan et al. 2003; Cohen 2004; Zárate et al. 2008). 
This approach is proposed here to translate the results of 
modelling at landscape level to a scale comparable with that 
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of a structure in the WUI. To estimate incident heat flux from 
a flaming front, it is thus necessary to compute a view factor 
between the front and the target. Thermally excited soot 
particles represent the major source of thermal radiation 
from wildfire flames; hence, emissivity should be estimated 
with correlations found in the literature in terms of a mean 
absorption coefficient for soot (Lautenberger et al. 2016). If 
the flaming front is sufficiently thick, i.e. with a flame depth 
of the order of 4 m or more (Àgueda et al. 2010; Johnston 
et al. 2014), it is reasonable to consider it as a black body. As 
it is likely that flame depths in actual wildfires will be less 
than 4 m, the emissive power from the flaming front would 
be overestimated under this assumption. Nevertheless, given 
the limitations of the fire models used in this study, particu-
larly applied to Chilean wildland fuels, this assumption is 
applied here to simplify the analysis. Thus, assuming the 
flame front as a rectangular black body and neglecting atmo-
spheric transmissivity, radiant heat flux on the target is: 

q F
bI

A
=r

r f

f
(2)  

where F is the view factor between the flaming front and the 
target, r is radiant fraction, Af is the flaming front surface 
(Af = b × H, where b is the rectangular front width, H is 
flame length) and If is fireline intensity. The methodology 
described by Morandini et al. (2013) is used here to estimate 
view factor, which consists of dividing the emitting surface 
into four smaller rectangles and aligning the normal vector 
of the target to the common vertex of the smaller rectangles 
(Fig. 2); hence, the sum of the view factors between the 
rectangles and the target is the view factor for the entire 
surface. Two parameters required for this model are the 
horizontal distance at which the target is located with 

respect to the emitting surface (y = b/2) and the distance 
between the target and the surface (x). The radiant fraction 
(i.e. the fraction of the heat released by combustion that is 
given off as thermal radiation) is assumed as equal to 0.3, a 
value commonly used in fire safety engineering (Mudan 
1984). Note that firebrands may represent a parallel mecha-
nism for target damage owing to their impact on some 
components of the infrastructure analysed, which would 
increase wildfire risk. However, characterising the effects 
of a firebrand attack quantitatively requires extensive data 
and fundamental knowledge related to processes that are not 
fully understood (Manzello et al. 2020). Therefore, exposure 
is considered in the present work as due to thermal radiation 
from the flames only. Also, note that the existence of a wall 
or a fence between the flaming front and the target is 
omitted to simplify the problem. 

Vulnerability 

In fires, for damage to occur, the target must experience some 
physical or chemical alteration that leads to a disruption in 
the continuity of services provided by the infrastructure ana-
lysed. As there is a range of damage severity that the target 
could experience, ignition is considered in this work as the 
criterion to quantify vulnerability as a function of thermal 
exposure. Note that the failure of a component could occur 
before it ignites; therefore, other criteria based on thermal or 
structural properties (such as melting temperature or loss of 
tensile strength) may be also used to assess vulnerability. 
However, a criterion based on ignition allows failure to be 
discerned more directly (because it is modelled as a binary 
response). Additionally, the relationship between ignition and 
incident heat flux has been thoroughly studied via experimen-
tal and theoretical work; hence, extensive flammability data 
are available for modelling ignition probability. Thus, a way 
of evaluating asset vulnerability is to express it in terms of an 
ignition probability Pd for different radiant incident heat 
fluxes, resulting in a dose–response curve. 

A dose–response curve generally takes a sigmoidal form 
that can be converted to a linear function with a probit 
analysis (Center for Chemical Process Safety 2000). The 
probit function Y is the inverse of the cumulative distribu-
tion function (CDF) of the standard normal distribution. As 
the normal CDF and its inverse are not available in closed 
form, computing the probit function requires approxima-
tions, e.g. 

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
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× erf
| 5|

2d (3)  

By converting probabilities into probit variables with this 
equation, the dose–response curve in terms of the probit vari-
able becomes linearly related to the logarithm of the dose D: 

Y k k D= + × log( )1 2 (4) 

Emitting
surface

H
X

Target

n̂

H
2

b

y 4

2
3

1

Fig. 2. Flaming front modelled as four rectangular emitting surfaces 
(numbered 1 to 4 in the figure) to determine its view factor with 
respect to a target of small size within the infrastructure analysed. 
The target unit normal vector points perpendicularly to the common 
vertex of the rectangles. The parameters required are flame length 
(H), flame width (b), the horizontal distance where the target is 
located with respect to the emitting surface (y = b/2) and the distance 
between the target and the surface (x).  
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where k1 and k2 are constants from a linear regression. This 
method is commonly used to evaluate the vulnerability of 
people (Center for Chemical Process Safety 2000) and vessels 
(Cozzani et al. 2005) to thermal exposure, and is implemented 
in the present work to develop a vulnerability model from 
piloted ignition data available in the literature. 

The criterion for piloted ignition is typically defined using 
the thermal ignition theory (Parot et al. 2022), which requires 
measuring the time to ignition as a function of the heat flux in 
standardised experimental configurations. A critical heat flux 
is obtained by linearly extrapolating these data when time to 
ignition tends to infinity, but non-linearities emerge when this 
extrapolation is performed. An alternative approach consider-
ing ignition as a phase transition has been proposed to tackle 
some of these issues (Sabi et al. 2021). This approach suggests 
a probabilistic instead of a deterministic process in the critical 
region, which is well suited to understanding the sigmoid 
nature of the dose–response curve for flammability data in 
terms of an ignition probability. 

Wildfire risk 

The initiating event of any wildfire is a wildland fuel igni-
tion that develops into sustained combustion of the sur-
rounding fuels, and its relevant outcome is the arrival of a 
flaming front at the point of interest. Risk is thus esti-
mated as: 

R P P= ×x y, p d (5)  

where Pp is the probability of a wildfire propagating to point 
(x, y), and Pd is the probability of a target sustaining dam-
age, defined here as ignition of the most vulnerable material 
in the infrastructure analysed. Therefore, the fire risk for the 
infrastructure analysed has units of events/year because it is 
the product of likelihood of a fire reaching the point of 
interest (events/year) and damage probability, which has 
no units but represents a share of the events per year that 
may end in actual damage according to this definition. 

Case study 

The methodology described above can be used to estimate 
risk at any point of a study area but is applied in this work to 
analyse an electrical substation in Valparaíso, central Chile 
(Fig. 3). This substation reduces voltage from 110 to 12 kV 
and belongs to a grid constituted of ~17 000 km of power 
lines operated by Chilquinta to supply electricity to more 
than 600 000 clients. Therefore, a fire reaching this infra-
structure could result not only in material damage or asset 
losses, but also potentially in power cuts, leading to negative 
consequences to a significant fraction of the population 
served by Chilquinta and penalty fees imposed by Chilean 
authorities on the company. Potential targets within the 

substation include transformers, structures, cables, lightning 
rods, isolators and switches, which are manufactured with 
metallic alloys, polymers and ceramics. Therefore, poly-
meric components are expected to be the most vulnerable 
to thermal exposure. 

Study area 

A satellite image of the study area, whose surface is 
~996 ha, is shown in Fig. 3. The dimensions of the study 
area are selected to consider only a strip of wildland beyond 
the WUI of ~500 m, where it is assumed that ignitions could 
lead to fires propagating to the substation before brigades 
could arrive to prevent this. This assumption is justified by 
the existence of a fire station in the urban area, 3 km from 
the electrical substation. Considering fire brigades moving 
from this station at 20 km/h through the urban area, they 
would arrive at the substation 9 min after an alarm was 
raised. This time is in line with those recommended in the 
UK and other countries for urban fire stations (Yang et al. 
2007; Shahparvari et al. 2020). If the fire has a rate of 
spread (ROS) of 50 m/min, which was proposed as the 
maximum ROS for a normal forest fire by Tedim et al. 
(2018), the distance that a fire front would advance in 
9 min would be 450 m. Although ignitions occurring farther 
than 500 m from the WUI may also lead to wildfires escap-
ing control and propagating to the infrastructure analysed, 
the likelihood of these propagations is assumed as negligi-
ble, because in Chile, almost 100% of ignitions are of human 
origin near urban areas and roads (Castillo Soto et al. 2015). 
This assessment will influence the size of the study area, and 
consequently, more remote parts of the WUI (i.e. further 
away from fire stations) should consider larger regions of 
interest. The topography of the study area (Fig. 3) is char-
acterised by hills to the north, with a peak elevation of 
~450 m, and a lower area to the south, where the urban 
infrastructure is located. The elevation in the lower area is 
~340 m, thus generating slopes between 10 and 25° in the 
vicinity of the electrical substation. Weather data for the 
year 2020 were obtained from a meteorological station near 
the study area. Temperature and wind velocity are pre-
sented as histograms, whereas wind direction is presented 
in a wind rose (Fig. 4). The most frequent temperatures and 
wind velocities are 11–12°C and 0–1 m/s. The wind rose 
shown in Fig. 4 indicates that wind comes predominently 
from the southeast (150°). Fig. 5 shows the distribution of 
fuel types in the study area, according to a land classifica-
tion made by the Chilean Forest Service (CONAF). This 
classification indicates that Eucalyptus globulus plantations 
cover most of the study area (~59%); therefore, two fuel 
distributions are considered. One distribution is a simplified 
landscape consisting only of an urban and a wildland area 
(Fig. 5a), with fuel models 91 (urban/developed) and 163 
(moderate load, humid climate timber–grass–shrub) from 
the Scott and Burgan classification (Scott and Burgan 
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2005) assigned to model the urban area and eucalyptus 
plantations, respectively. The other corresponds to a more 
detailed landscape (Fig. 5b), with fuel models 91, 93 (agri-
cultural), 98 (water), 122 (moderate load, dry climate 
grass–shrub), 149 (very high load, humid climate shrub) 
and 163 assigned to each patch of land in the CONAF 
classification. Note that a highway running in the 
north–south direction crosses the study area, which is con-
sidered in the second fuel distribution (Fig. 5b) as an urban 
area. CONAF also reports canopy cover classes for each land 
division: urban area, wide open, open, semi-dense and 
dense. The following canopy cover percentages are assigned 
to these classes: 0, 10, 35, 65 and 90%, respectively. These 
two fuel distributions are used along with the topography 
and wind direction described before as inputs to fire model-
ling. Additionally, canopy cover information is useful for 
crown fire modelling. 

Fire modelling 

FlamMap is selected in this work to provide estimations of 
conditional BP and fireline intensity in the vicinity of the 
infrastructure analysed using the topography, fuel distribu-
tions and wind direction shown in Fig. 3. Crown fire is 

modelled with constant values for stand height (15 m) and 
canopy base height (1 m), which were validated with field 
observations of the substation surroundings. Canopy bulk 
density is set at 0.2 kg/m3 (Keane et al. 2005). Fuel mois-
tures of 6, 7, 8, 60 and 90% are assumed for 1, 10, 100 h, 
live herbaceous and live woody fuels, respectively, for all 
the fuel models in the study area. No weather stream is 
specified; hence, these initial fuel moistures are assumed 
as constant. A uniform wind field coming from the southeast 
(at 150° from the north) is considered in the simulations. 
Two wind velocities are imposed, one representative of 
average conditions (5 m/s) and the other of extreme condi-
tions (25 m/s). 

BP was estimated by simulating 1000 fires ignited at 
random locations in the study area. The number of simu-
lated fires was increased until no relevant difference in the 
results was observed. Resolution for BP calculations was the 
same as the Digital Elevation Model of the study area 
(12.5 m per pixel, Fig. 3). The maximum simulation time 
was defined as 180 min per ignition, as it was assumed that 
by that time, fires were already detected and brigades had 
intervened. The justification for this analysis time frame is 
detailed in the study area section concerning urban fire-
fighters. Additionally, records kept by CONAF for the 
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Fig. 3. Satellite image of the study area, showing the location of the electrical substation (ES) analysed 
(a), along with a Digital Elevation Model (DEM) acquired by the ALOS satellite with a resolution of 12.5 m 
per pixel (b). Slope (c) and aspect (d) maps were produced with this DEM. The orientation and scale shown 
in  Fig. 3a are the same as for all the images showing the study area in this document.   
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hourly data recorded by a weather station (WMO code: 85560) located near the study area for the entire year 2020.   
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Fig. 5. Spatial fuel distribution in the study area. Two distributions are considered: a simplified one consisting only of an urban 
area and wildland (a), and a more detailed distribution determined from a subdivision made by the Chilean Forest Service, 
CONAF (b). Colours represent the fuel models assigned: urban/developed (light grey), agricultural (dark grey), water (blue), 
moderate load, dry climate grass–shrub (brown), very high load, humid climate shrub (dark red), and moderate load, humid 
climate timber–grass–shrub (green) ( Scott and Burgan 2005). The electrical substation (ES) is in the urban area in both figures.   
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Valparaíso and Viña del Mar municipalities indicate that, 
between July 2018 and June 2019, the response time of 
wildland fire brigades (defined as the time elapsed between 
fire detection and the first attack by CONAF brigades) was 
on average 21 min, with 97% of the responses between 
0 and 60 min, while the average time between the first 
attack and fire control was 164 min, with 59% of these 
actions taking between 0 and 60 min. As the substation is 
next to a highway, and predicted fire intensities can be 
handled by firefighters as discussed further in this section, 
these response and fire control times may be lower. 
Considering these aspects, for the purpose of this case 
study, the simulation time was set at 180 min. Note that 
both the simulation time and the size of the study area have 
an effect on the calculated BP. Spot probability was set at 
0.5 to reduce the computational time that would be required 
if this probability was set to 1.0. 

Fig. 6 shows the BP results. In general, similar BP pat-
terns concerning magnitude and alignment with wind direc-
tion are observed for the two wind speeds imposed and the 
two simulated landscapes. In all figures, the highest BP 
magnitudes are observed downstream of the wind, to the 
north of the study area, where the maximum BP is ~0.5. 
However, the substation is in a zone with relative low BP; 
average BPs between 0.028 and 0.102 are estimated on the 
electrical substation perimeter. Note that by considering the 
highway as an urban area in the detailed fuel distribution, 
the study area becomes separated into two areas in terms of 
BP distribution (Fig. 6c, g). This effect is more pronounced 
for lower winds (Fig. 6a vs c) than for a more intense wind, 
where the highway does not significantly affect the BP 
distribution (Fig. 6e vs g). Also, imposing a stronger wind 
produces a decrease in the BP around the substation, an 
effect that is more significant in the simplified landscape 
(Fig. 6b vs f) than in the detailed one (Fig. 6d vs h). 

Fireline intensity of a potential wildfire surrounding the 
substation is estimated from fire behaviour simulations 
(Fig. 7). The patterns observed for the two simulated land-
scapes are rather similar, with the zones of relative highest 
intensity being far from the substation, to the north and east 
of the study area. For low winds (Fig. 7a–d), average fireline 
intensity at the substation perimeter is between 1800 and 
1900 kW/m, while average flame length is of the order of 
4 m. These differences between average fireline intensity 
and flame length estimated for the two simulated landscapes 
are very small; hence, the impact of these differences on 
further results should not be significant. However, for a 
stronger wind (Fig. 7e–h), average fireline intensity and 
flame length are of the order of 65 000 kW/m and 43 m. 
These fire behaviour results are summarised in Table 1. 
Clearly, the imposed wind plays a more significant role on 
these outputs than the modelled fuel distribution in the 
study area. Therefore, varying the wind speed is a conve-
nient way of producing fire behaviours representative of 
normal fires (500–2000 kW/m) and extreme fires 

(30 000–100 000 kW/m), according to the classification pro-
posed by Tedim et al. (2018). 

Likelihood of a fire reaching the infrastructure 
analysed 

Fig. 8 shows event trees developed to estimate the probability 
of a wildfire reaching the substation. Using Eqn 1, the combi-
nation of ignition frequency and the conditional probability of 
a fire reaching the substation are Pp = 7.34 × 10−4 events/ 
year and Pp = 2.24 × 10−4 events/year for the simplified and 
detailed simulated landscapes, respectively. For estimating 
ignition frequency, CONAF records for the Valparaíso and 
Viña del Mar municipalities between 2002 and 2019 
(Fig. 9a) are analysed. Ignition data encompassing this larger 
area are selected to minimise spatial variability that could 
arise owing to the smallness of the study area compared 
with that of the territory where the study area is located. 
Ignition frequency is thus estimated more robustly at 
239 events per year, and because this frequency corresponds 
to the total area of the two municipalities (52 320 ha), it 
is scaled down to the study area (996 ha), giving 
f = 239 × = 4.55ig

996
52 320 events per year. Additionally, 

CONAF has recorded the resulting burned areas from these 
fires, along with ambient temperature and wind velocity 
when they started (Fig. 9b–d). These historic conditions 
are used to estimate the probabilities of intermediate out-
comes in the event tree as follows. 

The first intermediate event is having a burned area 
larger than 1 ha, because ignitions leading to burned areas 
smaller than 1 ha are much less likely to represent an actual 
threat to the infrastructure analysed. This probability is 
calculated as 0.166 (1–0.834, where 0.834 is the frequency 
corresponding to range 0–1 ha in Fig. 9b). The second and 
third intermediate events are having temperature and wind 
velocities representative of weather conditions that occur 
concurrently with actual wildfires, whose probabilities are 
estimated as follows. Temperature and wind velocity 
recorded when actual fires having burned areas >1 ha 
took place in the 2002–2019 period are plotted as histo-
grams (Fig. 9c, d), where the most frequent ranges are 
identified (22–24°C and 4–6 m/s). These magnitudes repre-
sent past weather conditions under which fire ignition and 
propagation are most likely. To predict the probability of 
having these conditions in the future, the hourly data 
recorded in 2020 by the weather station mentioned in the 
study area section is analysed as a proxy for future weather 
conditions (Fig. 4a, b). Only the most recent year is consid-
ered because risk is quantified on an annual basis, and its 
analysis requires addressing the likelihood of a fire reaching 
the infrastructure in terms of current weather, leaving aside 
potential variability in these data induced by climate change 
in past years. The cumulative frequencies corresponding to 
temperatures and wind velocities higher than 22°C and 4 m/ 
s are determined from Fig. 4a and b, giving 0.056 and 0.170, 
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respectively. These frequencies represent the probabilities of 
having future weather conditions conducive to the propaga-
tion of normal fires. Note that the data used for these 
estimations includes those recorded at night-time and in 
months that do not belong to the fire season, as the goal 
of this analysis is to predict probabilities at any time of a 
future year. To discriminate between the propagation of 
normal and extreme wildfires, the event trees are expanded 
with a fourth intermediate event: the probability of having a 
stronger wind leading to the propagation of an extreme fire. 
Historically, in the study area, the most intense winds were 
of the order of 25 m/s (Fig. 9d), but the maximum wind 
speed recorded in 2020 was ∼12 m/s (Fig. 4b). Thus, this 
event was defined as having a wind speed higher than 
10 m/s, and its probability assigned in the event trees was 
the summed frequency of the two deciles corresponding to 
the highest velocities in Fig. 4b, giving 0.003. Finally, the 
fifth intermediate event is the conditional BP, which was 
considered as the average BP in the substation perimeter 
determined in the fire modelling section for the two simu-
lated landscapes and the two wind conditions considered 
(average wind of 5 m/s and an extreme wind of 25 m/s). In 
the simplified landscape, these BPs are 0.102 and 0.047 for 
the average and extreme winds, respectively, while these 
BPs are 0.031 and 0.028 in the detailed landscape for the 
same wind conditions. Therefore, the event trees shown in  
Fig. 8 provide the likelihood of normal and extreme fires 
propagating to the infrastructure of interest. 

Consequences of a fire reaching the 
infrastructure analysed 

Exposure 
The fireline intensity and flame length results described 

in the previous section represent fire behaviour in all pixels 
of the study area. This is equivalent to a wildfire engulfing 
the entire substation perimeter; therefore, a more realistic 
scenario would be a flaming front arriving at one side of the 
substation perimeter at a time. Two scenarios are considered 
(Fig. 10). In scenario A, a fire coming from the left is 
assumed as a rectangle of 40 m  width at 30 m from a 
small target within the substation; hence, the view factor 
is 0.045. Scenario B is a fire on the right side of the sub-
station, 25 m from the target and whose width and view 
factor are 45 m and 0.060, respectively. As the distance 
between the flaming front and the target may have a notice-
able effect on the view factor, this distance is assumed in a 
worst-case scenario with the flaming front at the vegetation 

perimeter. Using Eqn 2 with these calculated view factors, 
the resulting heat fluxes are summarised in Table 1. It is 
observed that the most relevant factor in these results is the 
wind condition assumed in the study area. With an average 
wind of 5 m/s, heat fluxes are of the order of 6–8 kW/m2, but 
with a stronger wind (25 m/s), these fluxes increase to values 
between 171 and 214 kW/m2. The different geometric 
configurations between the flaming front and the target 
(scenario A vs. B) induce a difference of ~2 kW/m2 under 
average wind, but for extreme wind conditions, this differ-
ence rises to ~40 kW/m2. Therefore, scenario geometry 
plays a more prominent role as the wildfire increases in 
intensity owing to stronger winds. Finally, the simulated 
landscape (simplified vs detailed fuel distribution) does not 
represent a relevant factor in the results for a given scenario. 

Vulnerability 
The dose–response method described by Eqns 3 and 4 is 

used in this work to develop a vulnerability model, assum-
ing a binary response for the material (ignition/no ignition). 
Considering that polymer is the most fire-vulnerable mate-
rial among those present within the substation, polymethyl-
methacrylate (PMMA) is selected as a proxy fuel to develop 
this model from flammability data. A probit equation is 
determined from the experimental data compiled by  
Bal and Rein (2011), which is shown in Fig. 11a. In this 
graph, no unique value of critical heat flux is observed. 
Instead, a transition from a very low (~1%) to a very high 
ignition probability (~99%) takes place. To estimate the 
incident heat fluxes that give ignition probabilities of 1% 
and 99%, these data are assumed to be bounded by 
two curves of the kind t C q= × ( )ig e that tend to two 
limiting heat fluxes as time to ignition increases, with γ 
being a common exponent determined with a linear fit 
to the data plotted in logarithmic scales (Fig. 11b). By 
adjusting two curves to bound the data in this plot and 
obtaining the corresponding intersections with the y axis, 
the resulting curves are t q= (1.40 × 10 ) × ( )ig

4
e

1.7133

and t q= (1.11 × 10 ) × ( )ig
5

e
1.7133. To determine a 

critical heat flux, the ignition time should tend to 
infinity. Therefore, by further setting a high ignition time 
(tig = 900 s), the critical heat flux is found to range from 5.0 
to 16.6 kW/m2 (dashed lines in Fig. 11a). 

As probit values corresponding to probabilities of 1 and 
99% are 2.67 and 7.33, respectively, a probit equation 
is obtained by applying a linear fit to these probit 
values as a function of the logarithm of critical heat fluxes 

Fig. 6. Burn probability (BP) estimated with FlamMap for the study area, considering uniform wind velocities of 5 m/s (a–d), and 25 m/s (e–h). 
Results with a simplified fuel distribution (a, b, e, f), and a more detailed distribution (c, d, g, h) are shown. Representative BPs in the electrical 
substation vicinity are calculated by taking the average of the BP curves (b, d, f, h) corresponding to the substation perimeter, giving 0.102 
(b), 0.031 (d), 0.047 (f) and 0.028 (h).    
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(log(5.0) = 1.61 and log(16.6) = 2.81, Fig. 11c). The result-
ing probit equation is: 

Y q= 3.5154 + 3.8571 × log( )e (6)  

Using Eqn 3 to estimate ignition probability from probit 
variables, Fig. 11d shows ignition probability in terms of 
the logarithm of critical heat flux. This curve effectively 
models the transition between the no-ignition and 100% 
ignition conditions and provides a sound model for estimat-
ing vulnerabilities of polymeric targets to thermal exposure. 

Wildfire risk 

Wildfire risk is calculated with Eqn 5, using the probabilities 
of a normal and an extreme fire reaching the electrical 
substation (Fig. 8). With respect to damage probability, 
the vulnerability model developed for PMMA (Eqn 6) is 
applied to calculate the probit variables corresponding to 
the heat fluxes determined in the exposure analysis 
(Table 1). For average wind conditions, these heat fluxes 
are between 6.20 and 8.36 kW/m2, thus being in the critical 
heat flux region for PMMA and representing a thermal 
exposure capable of inducing ignition in this proxy fuel. 
The calculated probits are then converted to ignition proba-
bilities with Eqn 3. However, the estimated heat fluxes 
under extreme wind are between 171 and 215 kW/m2. The 
corresponding probits thus exceed 7.33, which in practice 
means an ignition probability of 100% for PMMA. These 
results are shown in Table 2, along with the risk estimates 
determined with Eqn 5. It is seen that, for a given scenario 
(A or B) and simulated landscape (simplified or detailed), 
there are two risk estimates, one for regular fires and 
another for extreme ones. They are directly added to esti-
mate the total wildfire risk on the asset, resulting in four 
wildfire risk magnitudes for the two scenarios and simulated 

landscapes. Although they are slightly different, it is seen 
that wildfire risk ranges approximately from 10−5 to 10−4 

events/year (i.e. one event every 10 000 to 100 000 years), 
with the scenario considered for the exposure analysis 
inducing a change of one order of magnitude in wildfire 
risk and the detail level of the simulated landscape being 
less relevant in these results. 

Discussion 

A quantitative methodology for estimating the risk posed by 
wildfires to critical infrastructure at the parcel level is pre-
sented. To demonstrate its utilisation, it was applied to 
assess wildfire risk at an electrical substation located in 
central Chile. This is the first time that a methodology of 
this kind is applied in a Chilean landscape. Three aspects of 
this methodology are novel. First, event trees are proposed 
to discriminate the outcomes from the ignition of a wildland 
fuel and estimate the probability of a fire reaching the point 
of interest. Second, a vulnerability model based on the 
response of a target to thermal attack from a flaming front 
is developed for a proxy fuel representative of the infra-
structure analysed, giving its ignition probability. Third, 
risk is calculated as the product between the probability of 
a fire reaching the infrastructure and its ignition probability, 
interpreted as the probability of sustaining a loss. This meth-
odology is focused on critical infrastructure, but could be 
also applicable to other structures, such as dwellings and 
public utilities, by developing and applying appropriate 
probit equations for the specific materials encountered in 
each case. Very few equations of this kind can be found in 
the literature currently, which highlights a significant 
research need on this matter (Planas et al. 2023). 

Fig. 7. Fireline intensity estimated with FlamMap for the study area, considering uniform wind velocities of 5 m/s (a–d), and 25 m/s (e–h). 
Results with a simplified fuel distribution (a, b, e, f), and a more detailed distribution (c, d, g, h) are shown. Representative fireline intensities in 
the electrical substation vicinity are calculated by taking the average of the fireline intensity curves (b, d, f, h) corresponding to the substation 
perimeter, giving 1832 kW/m (b), 1870 kW/m (d), 65 747 kW/m (f) and 65 558 kW/m (h).    

Table 1. Incident heat flux on a target within the electrical substation analysed, for the two fuel distributions and the two flaming fronts 
considered to assess exposure.           

Scenario A B 

Simulated landscape Simplified Detailed Simplified Detailed 

Wind conditions Average Extreme Average Extreme Average Extreme Average Extreme   

Wind (m/s) 5 25 5 25 5 25 5 25 

If (kW/m) 1832 65 747 1 870 65 558 1 832 65 747 1870 65 558 

H (m) 4 43 4 43 4 43 4 43 

q (kW/m )r
2 6.20 172 6.23 171 8.31 215 8.36 214   
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Considerations on data and modelling 

This methodology requires defining a period and spatial 
delimitation for historical ignition data. Data availability 
can be an issue because historical records are imperative 
to estimate ignition frequency. As climate and weather 
impact on the propensity of wildland fuels to ignite, an 
extended period of analysis should be clearly defined so 
that the estimated ignition frequency is representative of 
current climatic conditions. In Chile, CONAF has kept data 
since the 1980s, but additional data from other public and 
private institutions, focused on specific areas or assets, 

would be ideal. The CONAF wildfire database provides an 
overview of the historical weather conditions under which 
ignitions took place in the study area. To predict if current 
weather conditions are conducive to new ignitions, informa-
tion from weather stations in the study area needs to be 
retrieved. In this case study, one station was deemed repre-
sentative of the study area, but if no weather measurements 
are available, predictive tools such as WindNinja 
(Wagenbrenner et al. 2016) may be useful. The spatial 
delimitation of the study area is also relevant: because its 
ignition pattern could be different to that of the territory in 
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Fig. 8. Event trees developed to estimate the likelihood of a wildfire reaching the infrastructure of interest, for the 
simplified (a) and the detailed (b) simulated landscapes. In both cases, the initiating event is the ignition of a wildland fuel, and 
the first four intermediate events are having burned area, temperature and wind above historic thresholds. The fifth 
intermediate event is BP. Finally, the probabilities of the outcomes of interest (propagation of a normal or extreme fire to 
the WUI) result from multiplying the ignition frequency and the five intermediate probabilities. In these event trees, BPs are 
the averages in the substation perimeter, estimated in the simplified (a) and the detailed (b) simulated landscapes for the two 
wind conditions (average and extreme wind).   
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which it is located, varying its boundaries may also impact 
on ignition frequency. Fuel mapping of the study area is 
another challenging aspect, as it needs territorial division in 
terms of plant species, forest type (native or plantation), 
canopy cover, stand height, fuel load, etc. In Chile, 
CONAF has formulated a land classification in terms of 
these variables, but if this information is unavailable, satel-
lite imagery can help to match actual vegetation with stan-
dard fuel models (Aragoneses and Chuvieco 2021), a 
procedure that can be assisted by relating vegetation spec-
tral indices to wildland fuel properties (Villacrés et al. 2019;  
Arevalo-Ramirez et al. 2021). Simplifying the fuel distribu-
tion as done in this case study is also recommended, as it 
does not produce significant variation in the results. 
Therefore, this methodology requires reporting clearly the 
period and spatial distribution of data used to estimate 
ignition frequency, along with the fuel distribution in the 
study area, but at the same time, it provides enough flexi-
bility to be adapted to the site conditions, as demonstrated 
with this case study. 
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Fig. 9. Fire records analysed in this work to estimate ignition frequency and the subsequent conditional 
probability of a fire reaching the point of interest. These records correspond to fires in the Valparaíso and Viña 
del Mar municipalities in the 2002–2019 period: number of ignitions per year (a), histogram of burned area that 
resulted from these fires (b), and histograms of ambient temperature (c), and wind velocity (d) when ignitions leading 
to burned areas larger than 1 ha occurred.   
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Fig. 10. Scenarios for estimating the heat flux on a target within 
the electrical substation analysed. Orange indicates a wildfire engulf-
ing the substation from all sides, whereas yellow rectangles represent 
two flaming fronts coming from the sides of the substation. The scale 
of the image is larger than that in  Fig. 3.  
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In this case study, fire modelling was carried out with 
FlamMap, but the proposed methodology is independent of 
the fire modelling software employed. In these tools, flame 
length is usually correlated with fireline intensity by power- 

law relationships that require two empirical parameters 
(Egorova et al. 2022). This uncertainty may be circum-
vented by employing simulators based on Computational 
Fluid Dynamics (CFD), which may be more suitable to 
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Fig. 11. Flammability data for PMMA, compiled by  Bal and Rein (2011) from several sources and analysed 
here for developing a vulnerability model, presented as time to ignition (in seconds) as a function of heat flux 
(in kW/m2) in linear (a), and log–log scales (b). From these data, a probit function is proposed (c), which serves to 
estimate an ignition probability curve in the critical heat flux region (d).   

Table 2. Wildfire risk estimated for the two fuel distributions and two scenarios considered in the case study.           

Scenario A B 

Simulated landscape Simplified Detailed Simplified Detailed 

Wind conditions Average Extreme Average Extreme Average Extreme Average Extreme   

Wind (m/s) 5 25 5 25 5 25 5 25 

Pp (events/year) 7.32 × 10−4 1.16 × 10−6 2.23 × 10−4 6.74 × 10−7 7.32 × 10−4 1.16 × 10−6 2.23 × 10−4 6.74 × 10−7 

qlog( )r 1.82 5.14 1.83 5.14 2.12 5.37 2.12 5.37 

Y 3.52 16.33 3.54 16.32 4.65 17.20 4.67 17.19 

Pd 0.069 1 0.072 1 0.364 1 0.373 1 

Rx,y (events/year) 5.1 × 10−5 1.2 × 10−6 1.6 × 10−5 6.7 × 10−7 2.7 × 10−4 1.2 × 10−6 8.3 × 10−5 6.7 × 10−7 

Total risk (events/year) 5.2 × 10−5 1.7 × 10−5 2.7 × 10−4 8.4 × 10−5 

The likelihood of a fire reaching the point of interest is estimated with event trees ( Fig. 8). Ignition probabilities are converted from the probits estimated with the 
probit equation developed for the proxy fuel ( Eqn 6), using the heat fluxes calculated in the exposure analysis ( Table 1). For a given scenario and simulated 
landscape, the risk of normal and extreme fires is summed, giving the total risk on the asset.  
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estimate incident heat fluxes at specific points within the 
infrastructure analysed by increasing the spatial resolution 
of the analysis and considering the geometry between the 
flaming front and the target in more detail, as proposed by 
some authors for housing vulnerability (Vacca et al. 2020). 
This approach would also allow one to estimate flame depth 
and to verify the black body assumption for the flaming 
front, thus providing a more precise estimation of heat 
flux on the target. 

Risk mitigation 

Wildfire risk management requires information from risk 
analyses to evaluate strategic options affecting risk factors, 
so that cost-effective investments in risk mitigation can be 
implemented (Calkin et al. 2014) and assessed in terms of 
the risk remaining after their implementation, i.e. the resid-
ual risk, as defined by Thompson et al. (2016). Some miti-
gation measures can be suggested by inspecting the main 
components of risk considered in the methodology pre-
sented here. The probability of a fire reaching the infra-
structure analysed depends on the historic ignition 
frequency, which could be reduced by educational cam-
paigns, law enforcement or other measures of this kind. 
This likelihood also depends on burn probability: because 
a patchy landscape typically hinders wildfire propagation, 
BP could be lowered by treating the wildland fuels and 
reducing the fuel load near the infrastructure analysed 
(i.e. increasing the non-fuel buffer zone around it). The 
probability of a wildfire in the study area reaching the 
infrastructure analysed is of the order of 10−4 events/year, 
but this result cannot be considered as a full risk metric, 
because it does not consider the potential consequences on 
the substation, which include potential exposure to the 
wildfire and how the asset responds to this exposure (igni-
tion in this work). In this case study, it was observed that 
the incident heat flux on the target analysed is sensitive to 
the scenario considered regarding the idealised flaming 
front; hence, wildland configuration in the infrastructure 
perimeter plays a relevant role in this calculation. Asset 
ignition probability, which depends on the heat flux 
received by the target, was between 0.07 and 0.37 for 
average wind, and practically 1.00 for extreme wind. 
These probabilities could be decreased by establishing 
fuel breaks, fire walls and other active and passive fire 
protection measures. But this probability alone is also insuf-
ficient to quantify risk because it does not consider the 
likelihood of a wildfire producing such thermal exposures. 
It is therefore necessary for these two components (wildfire 
likelihood and consequences) to be considered when ana-
lysing wildfire risk in a more comprehensive manner than 
frameworks relying only on ignition occurrence (KC et al. 
2022), exposure (Haas et al. 2013), burn probability (Meier 
et al. 2023) or other risk components, as noted by Johnston 
et al. (2020). 

Limitations 

The essence of a risk analysis is to use existing knowledge 
(normally gained through experience) to estimate the safety 
and environmental threat of a particular hazardous event 
(Wilson and Crouch 1987), wildland fuel ignition in this 
case. But because this analysis requires projecting past 
data into the future, uncertainty in risk estimates depends 
on the assumptions made in the analysis, which also serve to 
indicate the limitations of the methodology. This is particu-
larly significant when estimating ignition frequency in 
Chilean landscapes, because in Chile, most fires are 
human-related, and predicting ignition trends would thus 
require modelling human behaviour. However, these 
human-related ignitions are located near urban areas and 
roads in Chile, which justifies neglecting the likelihood of 
wildfires starting outside the study area boundaries and 
propagating to the infrastructure analysed. Estimating this 
likelihood would help improve the study area delimitation 
and the fire modelling process. 

In this study, spotting is considered in fire spread model-
ling, but when a wildfire front arrives at the infrastructure of 
interest, spotting due to firebrand action becomes a crucial 
ignition mechanism. It should be noted that, in actual wild-
fires, thermal radiation and spotting work in parallel; hence, 
the risk they pose to a target should be addressed separately, 
and then summed. A vulnerability model considering fire-
brand attack requires experimental data on ignition proba-
bility due to firebrand landing. Some data on ignition 
probability in terms of incident heat flux can be found in 
the literature (Fang et al. 2021), but incorporating spotting 
into this methodology needs a more extensive database, 
which is as yet not compiled, considering the complex igni-
tion characteristics of structural fuels (Manzello et al. 2020;  
Abo El Ezz et al. 2022). Promising results have been obtained 
using experimental apparatuses where variables such as heat 
flux and wildland fuel properties are fully controlled (Rivera 
et al. 2021). Ignition probability due to firebrands could thus 
be quantified in bench-scale configurations and incorporated 
into this wildfire risk methodology. 

Conclusion 

The risk posed by wildfires to an electrical substation in 
central Chile was quantified with a novel methodology 
developed for assessing risk at the parcel level. FlamMap 
was used for fire modelling, but the methodology is inde-
pendent of the fire modelling tool. Two fuel distributions 
were assumed for the study area to estimate BP and fire 
behaviour with FlamMap, while two wind conditions (5 and 
25 m/s) were imposed in the fire modelling to simulate 
average and extreme wind conditions. The historic ignition 
frequency along with probabilities of having burned area, 
temperature and wind speed larger than historic thresholds 
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were incorporated into event trees to refine the conditional 
BP calculation, giving the probabilities of normal and 
extreme fires reaching the infrastructure analysed. The con-
sequences of the wildfire on a proxy fuel for the electrical 
substation were estimated by considering the modelled fire-
line intensities and two idealised flaming fronts to estimate 
the heat flux on the substation. Asset vulnerability was 
modelled by linking these incident heat fluxes with ignition 
probability via dose–response curves determined with a 
probit analysis. Wildfire risk was computed as the product 
between wildfire likelihood and ignition probability, and 
the risk of normal and extreme fires was summed for each 
scenario and simulated landscape considered, and found to 
be between 10−5 and 10−4 events/year. 

Risk analyses are not formulated to make a judgment: 
this falls to society, by way of a criterion of risk acceptance 
or tolerance (Wilson and Crouch 1987). An interesting cri-
terion is reducing risk to a level both technically and eco-
nomically feasible known ‘As Low As Reasonably 
Practicable’ (ALARP, Pike et al. 2020). In the absence of a 
current ALARP criterion for wildfires, risk estimates for 
other activities may serve as comparison. For example, the 
maximum tolerable risks posed by industrial activities to the 
public are between 10−4 and 10−6, as established by several 
national authorities (Muhlbauer 2004). Therefore, the 
results obtained with the methodology described in the 
present work are reasonable, beause they are of the same 
order of magnitude as industrial risks. This comprehensive 
methodology considers both wildfire occurrence probability 
and asset vulnerability, thus enabling a systematic analysis 
of wildfire risk evolution in time (particularly under climate 
change scenarios) and of risk mitigation measures. 
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