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ABSTRACT 

Background. Canadian fire management agencies track drought conditions using the Drought 
Code (DC) in the Canadian Forest Fire Danger Rating System. The DC represents deep organic 
layer moisture. Aims. To determine if electronic soil moisture probes and land surface model 
estimates of soil moisture content can be used to supplement and/or improve our understanding 
of drought in fire danger rating. Methods. We carried out field studies in the provinces of 
Alberta and Ontario. We installed in situ soil moisture probes at two different depths in seven 
forest plots, from the surface through the organic layers, and in some cases into the mineral soil. 
Results. Our results indicated that the simple DC model predicted the moisture content of the 
deeper organic layers (10–18 cm depths) well, even compared with the more sophisticated land 
surface model. Conclusions. Electronic moisture probes can be used to supplement the DC. 
Land surface model estimates of moisture content consistently underpredicted organic layer 
moisture content. Implications. Calibration and validation of the land surface model to organic 
soils in addition to mineral soils is necessary for future use in fire danger prediction.  

Keywords: boreal forest, Drought Code, fuel moisture, in situ, modelling, remote sensing, soil 
moisture probe, wildfire. 

Introduction 

Throughout most typical fire seasons, the principal day-to-day short-term indicators of 
fire danger, ignition potential and rate of spread are of primary concern to fire managers. 
The moisture content of the litter layer and underlying fine to medium organic fuels 
heavily influence fire behaviour through their interaction with local weather and topog
raphy. Hot, dry and windy conditions can quickly dry out these layers, which can lead to 
more fire activity and more intense fires. Long-term drought and continuous drying in 
deeper, denser organic fuels can make a challenging fire season quickly turn into 
something much worse. With climate change, drought conditions are becoming more 
commonplace (Kitzberger et al. 2017; Pausas and Keeley 2021) and can lead to more 
problematic fire seasons (Elmes et al. 2018; Chavardès et al. 2019; Thompson et al. 2019;  
Whitman et al. 2019). Therefore, our ability to quantify drought in fire danger rating is 
becoming more important. 

The Drought Code (DC), one of three moisture codes in the Fire Weather Index (FWI) 
System, measures drought in the Canadian Forest Fire Danger Rating System (CFFDRS). 
Similar drought indices used for fire danger rating exist in other jurisdictions, such as the 
Keetch–Byram Drought Index (Keetch and Byram 1968) and the Palmer Drought Index 
(Palmer 1965). One important, but subtle, difference is that the DC is designed to directly 
estimate the lack of moisture in denser organic layers rather than using hydrologic 
drought in the mineral soil as a proxy for fuel moisture deficiencies. The DC has been 
associated with moisture changes in deep, dense organic layers and large downed woody 
debris (Muraro and Lawson 1970; Van Wagner 1974b; Russell 1975; Lawson 1977). The 
layer of the forest floor nominally tracked by the DC has depth of 15–18 cm and nominal 
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fuel load of 25 kg/m2, in keeping with the standard pine fuel 
on which the FWI System is based (Van Wagner 1987). 

The DC was developed from the Soil Moisture Index 
(SMI) (Turner 1966) by transforming the SMI from a scale 
of available moisture to an index of cumulative drying 
for use within the FWI System (Turner 1972). For each 
rainless day, the DC increases by one-half the Potential 
Evapotranspiration (PET). Moisture is added to the DC as 
effective rainfall once a minimum rainfall amount of 2.8 mm 
is exceeded (Van Wagner 1987). The effective rainfall is 
assumed as the amount of moisture available for storage 
within the fuel after interception by the canopy (Turner 
1972). The PET calculation in the DC is a simplification of 
the method proposed by Thornthwaite and Mather (1955); 
it has been adjusted to be consistent with the FWI System’s 
daily inputs and its output of moisture ‘codes’. It uses the 
daily temperature at noon local standard time, 24-h accu
mulated precipitation and a seasonal adjustment of day 
length. To be consistent with the format of the other mois
ture codes in the FWI System, the SMI was converted to a 
logarithmic scale that increases in value with increasing 
dryness. At their inception, neither the SMI nor the DC 
were intended to represent the moisture content of any 
specific class of fuels, but validation after the fact indicated 
moisture changes in dense organic layers fitted the simple 
exponential drying model of the DC (Van Wagner 1974a;  
Russell 1975; Lawson 1977). 

The conversion from DC to Moisture Content (MC) takes 
the form   

MC = 400e DC/400 (1)  

It is important to note that this equation as given in Wotton 
(2009) differs slightly from that given in Van Wagner (1987) 
in order to account for the fact that the moisture content is 
one-half the moisture equivalent at saturation. Van Wagner 
(1987) did not explicitly present the conversion between DC 
and gravimetric moisture itself, but noted that the maximum 
gravimetric moisture content of the DC is 400% at saturation 
(DC = 0), which corresponds to a soil moisture equivalent of 
800 in the original DC model. This important difference in the 
interpretation of the conversion between measured actual 
moisture content and the code value has been a problem in 
more recent studies that have looked at further field valida
tion of the DC (e.g. Lawson and Dalrymple 1996; Wilmore 
2001). Those studies highlighted differences between ground- 
sampled data and the soil moisture equivalent value from the 
DC calculation and not the moisture content conversion. 

Operationally, the DC has been used to assess potential 
lightning ignition holdover, persistent deep smouldering 
and mop-up problems (Muraro 1975; Hirsch and Martell 
1996). It has also been associated with increased depth of 
burn (de Groot et al. 2009), the occurrence of long-term 
drought conditions (Girardin et al. 2004) and the control 
time for human-caused fires in Ontario (Morin et al. 2015). 

Lastly, the season-ending values of the DC are often consid
ered at the start of the new fire season. The DC is often used 
as a method to account for the accumulated effect of year-to- 
year drought in Canada because it integrates a deeper, 
heavier and consequently more slowly changing layer of 
the forest floor, making it well suited to accumulate the 
effect of longer-term weather (Van Wagner 1985). The DC 
has a timelag of approximately 53 days (Lawson and 
Armitage 2008), although this value varies with tempera
ture. Because of this long timelag and the large water- 
holding capacity of the layer modelled by the DC, it was 
hypothesised that the DC could carry over drought effects 
from one season into the next using an overwintering pro
cedure (Turner and Lawson 1978). This procedure adjusts 
the spring starting value of the DC based on the DC value 
prior to freeze-up, or snow accumulation the previous fall 
(autumn), and the estimated amount of moisture available 
for recharge from overwinter precipitation. 

Since the development of the DC, most research has 
focused on how to establish the starting spring values and 
field validation of the DC using destructive sampling meth
ods (Stocks 1979; Alexander 1982; Lawson and Dalrymple 
1996; Otway et al. 2007). More recent studies have devel
oped correlations with organic soil moisture using electronic 
moisture probes (Keith et al. 2010; Terrier et al. 2014; Elmes 
et al. 2018). Such methods are less time consuming and 
allow greater temporal and spatial variability in measure
ments. Those instruments rely on soil dielectric properties, 
which can vary with soil composition, and clay and organic 
content (Kellner and Lundin 2001; Bourgeau-Chavez et al. 
2010). Despite good correlations with the measurements 
produced using these probes, questions remain operation
ally around probe installation and use and what soil layers 
best correlate with the DC. 

The DC has also been shown to have strong correlation to 
C-band (~6 cm wavelength) Synthetic Aperture Radar 
(SAR) backscatter in low-biomass areas (Bourgeau-Chavez 
et al. 1999, 2007). An algorithm developed by Bourgeau- 
Chavez et al. (2007) was shown to be useful to initialise DC 
start-up values in Alaska. Further work by Bourgeau-Chavez 
et al. (2013) using polarimetric C-band SAR (Radarsat2) was 
successful at improving the soil moisture estimation in 
higher-biomass areas. Although such research demonstrates 
the potential use of earth observation to map organic soil 
moisture, there remain limitations to remote sensing of soil 
moisture in forested regions due to high biomass and water
bodies (Magagi et al. 2013; Pan et al. 2016; Jin et al. 2017). 

More sophisticated land surface models may alleviate 
some of the remote sensing issues; studies in other regions 
have shown improved drought estimation by incorporating 
land surface modelling outputs (Cooke et al. 2012; Yang 
et al. 2015; Vinodkumar and Dharssi 2019) into fire danger 
methods to represent soil moisture changes. This approach 
has not been explored for the dense boreal forests in Canada. 
Inclusion of earth observations from an existing product, 
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like Environment and Climate Change Canada’s (ECCC) 
Canadian Land Data Assimilation System (CaLDAS) (Carrera 
et al. 2015, 2019), is an emerging area for fire science in 
Canada. CaLDAS integrates information from L-band satellites 
SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture 
Ocean Salinity) as well as the geostationary satellite GOES 
(Geostationary Operational Environmental Satellite) with 
high-resolution land surface modelling and ground-level 
observations to produce estimates of soil moisture and surface 
temperature across Canada every 3 h. 

To further explore what organic soil depths the DC is 
tracking, and determine the potential added intelligence 
electronic soil moisture content probes and land surface 
modelling data could provide, a field-based study was con
ducted in the provinces of Alberta and Ontario, Canada. This 
study had the following three objectives: (1) determine how 
well the DC correlates to organic soil moisture and at which 
depths, using WCR (water content reflectometry) probes; 
(2) explore the use of land surface models (CaLDAS) to 
represent moisture changes in these deep organic layers; 
(3) determine if CaLDAS estimates of soil moisture can be 
used to estimate or correct the DC. 

Methods 

Field data 

Four field sites were included in the study; two in Alberta 
near Edson and Red Earth Creek (REC), and two in Ontario 
near Dryden and Chapleau (Fig. 1). At each study site, 
except Chapleau, one 200 × 200-m plot was installed in a 
specific forest type (Table 1). There were four 200 × 200-m 
plots at the Chapleau site, each in a different forest type. 
Each of the four study sites is located within 40 km of a fire 
weather station. Each plot was instrumented with eight to 
twelve 30-cm Campbell Scientific (CS) CS616 WCR probes 
(Supplementary Table S1). Electronics embedded in the 
probe head send a signal down the probe; the probe then 
acts as a wave guide. The return time of the signal is measured 
as the period. The period of the electromagnetic wave is a 
function of the wave guide length, the speed of light and the 
electrical permittivity of the surrounding medium (Overduin 
et al. 2005). Calibration equations convert the probe period 
to Volumetric Moisture Content (VMC) based on the 
probe sensitivity to the dielectric constant of the medium 

1 Aspen plot

1 Mixedwood plot

1 Mixedwood plot

0 140 280 560 840
km

N

Legend
Field sites
Ecozones
Provincial outlines (Alberta, Ontario)

1 Jack pine plot
1 Mixedwood plot
1 Black spruce plot
1 Aspen plot

Fig. 1. Top: map of North America with Canadian and United States borders highlighting the general area of our study region 
(box). Bottom: the four moisture probe field sites (shown as stars) in Alberta and Ontario; REC on this map designates the Red 
Earth Creek site. The number and vegetation type of each plot, within the different sites, are indicated in the orange boxes.    
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surrounding the probe rods (Campbell Scientific 2020). 
Probes were installed from the surface at an angle so that 
the length of the probe integrated its measurement over a 
prescribed depth (10 and 18 cm) within the litter, fermenta
tion and humus layers (also known as duff layers). 
Depending on the depth of installation and organic layer 
depth at the plot, some of the probes were in contact with 
the mineral horizon. The WCR probes were randomly fanned 
out from the data loggers to cover as much area as possible. 
Soil temperature probes (CS-109L) were installed horizon
tally at specific depths (Supplementary Table S1); tempera
ture probes at Edson were not installed owing to field access 
issues related to COVID-19 travel restrictions. A default CS 
temperature correction, using the in situ temperature probes, 
was applied to the period output of the CS616 probes 
(Campbell Scientific 2020). Calibration of the temperature- 
corrected period to VMC was conducted using the calibration 
equations developed by Bourgeau-Chavez et al. (2010) for 
different organic soil layers. 

VMC was recorded hourly at all sites. For the purposes of 
analysis and the comparison with daily DC values, the daily 
VMC for each plot was the average of all sensors at a specific 
depth that were reporting at 16:00 LST (Local Standard 
Time). The data from REC was an exception owing to the 
lack of consistent hourly data; at this site, the daily average 
was used. 

Fire weather data 

DC values were calculated using temperature and 24-h accu
mulated precipitation from fire weather stations near each 
field site. Operationally, FWI System values, including the DC, 
are assumed to be highly reliable within a 40-km radius of 
weather stations. This is the standard laid out in the Weather 
Station Guides for the FWI System (Turner and Lawson 1978;  
Lawson and Armitage 2008). Where we had a second weather 
station nearby, we were able to test this assumption, as we 
know it is not always applicable. In keeping with the FWI 
System standard, weather observations, taken at local noon, 
were used to calculate the conditions at the period of peak 

burning, approximately 16:00 LST. DC values were converted 
to gravimetric moisture content using Eqn 1, then multiplied 
by the standard DC bulk density (139 kg/m3) to convert to 
VMC (Supplementary Fig. S1). In order to convert to gravi
metric moisture content, the bulk density is needed surround
ing each of the probes. Accurate bulk densities for each probe 
location are not known at this time; therefore, it was more 
precise to convert the DC to VMC. For comparison of DC with 
field observations, the DC values were taken as is from the fire 
management agencies (i.e. if DC spring start values were 
overwintered these were used as is); they were also calculated 
without overwintering. For comparison of DC with CaLDAS, 
DC values were not overwintered and the default value 15 
was used to start the spring season calculations for all plots. 

CaLDAS data 

In the CaLDAS version used for this study, short-range (6-h) 
forecasts from ECCC’s High Resolution Deterministic 
Prediction System (HRDPS) are provided as atmospheric 
forcing to the SVS (Soil, Vegetation and Snow) land surface 
scheme (Alavi et al. 2016; Husain et al. 2016). Precipitation 
forcing was provided to SVS by the Canadian Precipitation 
Analysis (CaPA) (Fortin et al. 2018). The model first guess 
from SVS is combined with L-band brightness temperature 
from SMOS and with surface temperature retrievals from 
GOES, which are assimilated in CaLDAS using an Ensemble 
Kalman Filter methodology to generate analyses of soil 
moisture and surface temperature every 3 h. Final moisture 
values at 21:00 UTC (Coordinated Universal Time) 
(17:00 LST) were compared for each 2.5-km grid cell that 
encompassed the field plots based on geographic coordi
nates. CaLDAS VMC values at three depths – 0–5, 5–10 
and 10–20 cm – were obtained for each plot. 

Analysis 

Comparisons were made between observed field measure
ments of moisture content at depths, 10 and 18 cm and: (1) 
daily DC values converted to VMC, and (2) CaLDAS VMC 

Table 1. Characteristics of each moisture monitoring site and associated plots, including the physical properties of the duff (litter, 
fermentation and humus (LFH) organic soils).         

Site Plot Mean depth 
LFH (cm) 

Mean bulk density 
duff (kg/m3) 

Underlying material Above-ground 
biomass (kg/m2) 

Distance to fire 
weather station (km)   

Chapleau Mixedwood  13  101 Sandy loam  14.5  13 

Jack pine  7  110 Sandy loam, some clay  11.7  18 

Aspen  5  109 Sandy loam, some clay  15.7  12 

Black spruce  8  89 Sandy loam  9.8  34 

Dryden Mixedwood  9  90 Sandy clay  20.3  39 

Edson Mixedwood  8  131 Silty clay  11.8  11 

REC Aspen  11  133 Silty clay  10.9  19   
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estimates at all three depths. A third comparison was made 
between daily DC values (expressed as VMC) and CaLDAS 
VMC at three depths. All analyses were first conducted on 
daily time series of VMC during the fire season from late 
spring (May) until early fall (September) for 2019–2021 
where available. The hydroGOF R package (Zambrano- 
Bigiarini 2020) was used to calculate goodness-of-fit statis
tics for these time series comparisons in R (R Core Team 
2020) including: R2 (coefficient of determination), RMSE 
(root mean square error), NSE (Nash Sutcliffe efficiency), 
and Pbias (percentage bias). Nash Sutcliffe efficiency is 
commonly used to assess the predictive skill of hydrologic 
models and ranges from negative infinity to one, where one 
represents a perfect match and values of zero indicate model 
predictions are as accurate as the mean of the observed, and 
less than zero, the mean is a better predictor than the model 
(Nash and Sutcliffe 1970). Goodness-of-fit statistics were 
first calculated for the entire 2019–2021 time series (May 
through September), then again for each individual year 
separately to show annual variations. 

To further examine the bias between CaLDAS modelled 
and observed moisture, time series data were first checked 
for normality. Linear regression analysis was then con
ducted in R using the lm function, to determine the inter
cept. The degree of autocorrelation within the time series 
was then identified using the acf function in R. The maxi
mum lag, where there was evidence of correlation in the 
time series, was taken from the autocorrelation plots. 

Results 

Overall, the DC showed good correspondence with duff 
moisture between 10 and 18 cm, with minimum R2 values 
of 0.46 for the majority of plots, RMSE between 6 and 16% 
VMC (Table 2). The differences in goodness-of-fit statistics 
were generally smaller between different observation depths 
within a plot compared with differences between plots. The 
DC to observed moisture relationship had a positive bias for 
all plots and observation depths in Ontario, implying the DC 
indicated moister conditions than were observed at the sites, 
with the exception of the Dryden mixedwood plot at 18 cm 
VMC, although the Pbias at that site was minimal at 1.8%. 
The DC to observed moisture relationship had a larger, 
negative bias for both plots in Alberta at all depths; that is, 
the DC indicated drier conditions overall than were observed 
at these locations. The carry-over drought included in the 
calculation of the DC through overwintering may be the 
reason for the negative bias in Alberta, especially at REC. 
For Alberta, the starting DC values in the spring were over
wintered each year, therefore starting the seasons’ ‘book
keeping’ of drying and wetting in the deep organic layers 
in a much drier state than one would assume had saturation 
occurred at the time of snowmelt. When these original DC 
time series are compared with non-overwintered DC esti
mates of VMC (i.e. spring default value = 15) at Edson 
(Fig. 2), it is apparent that overwintering the DC had signifi
cant impacts on moisture estimation beyond the spring 

Table 2. Goodness-of-fit statistics comparing field measured volumetric moisture content (VMC%) of the duff layer up to various depths with 
Drought Code (DC) estimated VMC calculated from the nearest fire weather station.         

Site Plot Field depth (cm) R2 RMSE NSE Pbias   

Chapleau Aspen  10  0.55  11.93  −2.44  39.8  

18  0.53  13.85  −5.95  51.7 

Jack pine  10  0.53  14.69  −5.28  58.2  

18  0.59  11.37  −1.57  37.5 

Black spruce  10  0.49  11.62  −2.37  37.1  

18  0.46  13.54  −5.81  48.6 

Mixedwood  10  0.74  9.64  −1.01  31.1  

18  0.83  5.99  0.70  9.6 

Dryden Mixedwood  10  0.58  9.74  0.30  19.2  

18  0.59  7.39  0.59  −1.8 

Edson Mixedwood  6  0.68  10.86  −0.70  −18.4  

10A  0.64  10.74  −0.56  −19.5  

30  0.69  16.05  −2.44  −28.3 

REC Aspen  10  0.11  17.10  −1.09  −27.1  

18  0.14  15.67  −0.93  −24.9 

Statistics listed (R2; RMSE (root mean square error); NSE (Nash Sutcliffe efficiency); Pbias (percentage bias)) are for time series from 2019 to 2021, May until 
September, where field data permitted. 
ΑNo data for 2019.  
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period; the use of the non-overwintered DC resulted in quite 
different goodness-of-fit statistics (i.e. for 2020 and 2021). 
For 2019, observations at Edson did not start until July 2019 
and for that year, overwintering effects were gone by July. 
Overall, the non-overwintered DC for all years combined did 
not improve the goodness-of-fit statistics (Tables 2, 3) again 
indicating overwintering may be necessary but not accurate 
at the Edson plot in 2021. 

The results at the REC plot differed from those observed 
at the Edson plot. Overwintering of the DC at the REC plot 
appears to be the reason for the poor predictive skill of the 
DC there (Table 2), resulting in much lower spring moisture 
values that were not representative of much wetter observed 
VMC in the duff layers (Fig. 3). Goodness-of-fit statistics for 
REC for all years compared with those in Table 2 for 18 cm 
were R2 0.58, RMSE 8.02, NSE 0.43, Pbias −9.1 when the 

DC was not overwintered (Table 3). Therefore, REC is not 
the outlier it appears to be in Table 2. The poor fit is due to 
the application of the DC overwintering adjustment, not a 
lower predictive skill of the DC model. 

In addition to impacts of overwintering, differences in 
precipitation can also significantly influence the DC model 
skill in tracking observed moisture content. Although fire 
weather data up to 40 km is assumed representative of local 
conditions, this range does not always capture all convective 
precipitation events, as shown by the differences in model fit 
for the Dryden mixedwood plot (Fig. 4). At this site, the fire 
weather station is 39 km from the plot. As a comparison, the 
DC was also calculated using a closer ECCC weather station 
(7 km away). This recalculation resulted in better predictive 
skill in all years (18 cm R2 0.76, RMSE 6.89, NSE 0.64, Pbias 
−8.3, Table 3). 

10

10 Jul 2019 12 Aug 2019 16 Sep 2019

20

30

40

50

60

70

80 2019
DC

R2 0.43
RMSE 3.67
NSE –0.21
Pbias –4.5

obs

10

01 May 2020 22 Jun 2020 10 Aug 2020

20

30

40

50

60

70

80 2020
DC

R2 0.61
RMSE 5.59
NSE 0.49
Pbias –5.5

obs

10

01 May 2021 05 Jul 2021 06 Sep 2021

20

30

40

50

60

70

80 2021
DCR2 0.13

RMSE 13.37
NSE –6.65
Pbias –33.6

obs

10

10 Jul 2019 12 Aug 2019 16 Sep 2019

20

30

40

50

60

70

80 2019
DC

R2 0.43
RMSE 3.66
NSE –0.20
Pbias –4.5

obs

10

01 May 2020 22 Jun 2020

Day
10 Aug 2020

20

30

40

50

60

70

80 2020
DC

R2 0.82
RMSE 4.67
NSE 0.64
Pbias –6.0

obs

10

01 May 2021 05 Jul 2021 06 Sep 2021

20

30

40

50

60

70

80 2021
DCR2 0.04

RMSE 12.29
NSE –5.47
Pbias –9.8

obs

Edson overwintered

Edson no overwintering

V
M

C
 (

%
)

Fig. 2. Influence of overwintering the Drought Code (DC) on Volumetric Moisture Content (VMC) at the Edson mixedwood plot. 
Goodness-of-fit statistics and time series are shown for 2019–2021. The top row of graphs is the DC VMC with the overwinter 
adjustment as applied by fire management. The bottom row of graphs is the DC VMC calculated without overwintering. The black 
dotted line is the observed (obs) field measured VMC up to 18 cm; the grey line is the DC estimated VMC.   
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In comparison, plots within an equal distance (<15 km) 
of the same fire weather station illustrate that the local plot 
conditions can also significantly affect the DC model skill 
(Fig. 5) depending on stand type. The DC estimated VMC at 

the Chapleau mixedwood plot, which is typically a wet plot 
with duff 8–12 cm deep (Table 1), had the best overall skill 
at predicting observed moisture content (Tables 2, 3, Fig. 5). 
In contrast, the nearby aspen plot, which had comparably 

Table 3. Updated goodness-of-fit statistics from  Table 2 for Dryden, Edson and Red Earth Creek.         

Site Plot Field depth (cm) R2 RMSE NSE Pbias   

Dryden Mixedwood  10  0.73  7.39  0.6  11.3  

18  0.76  6.89  0.64  −8.3 

Edson Mixedwood  6  0.36  9.77  −0.29  −8  

10A  0.35  14.13  −1.67  −21.2  

30  0.43  19.75  −2.31  −44.4 

REC Aspen  10  0.55  8.83  0.32  −11.3  

18  0.58  8.02  0.43  −9.1 

Drought Code (DC) estimated Volumetric Moisture Content (VMC %) was calculated using the Environment and Climate Change Canada (ECCC) weather 
station for Dryden. At Edson and Red Earth Creek (REC) the fire weather station DC VMC was used, but the DC was not overwintered. 
ΑDoes not include 2019.  
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Fig. 3. Influence of overwintering the 
Drought Code (DC) on Volumetric Moisture 
Content (VMC) at the Red Earth Creek (REC) 
aspen plot. Goodness-of-fit statistics and time 
series are shown for 2019–2020. The top row of 
graphs is the DC VMC with the overwinter 
adjustment applied by fire management. The 
bottom row of graphs is the DC VMC calculated 
without overwintering. The black dotted line is 
the observed (obs) field measured VMC up to 
18 cm; the grey line is the DC estimated VMC.   
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drier and thinner duff (~5 cm), had relatively poor skill at 
estimating 18-cm moisture content (Table 2). Again, predictive 
skill varied somewhat between years (Fig. 5) for both plots. 

Overall, once input issues including local precipitation 
discrepancies and overwintering were eliminated, the DC 
model had good skill in predicting observed VMC through
out the season. The DC generally captured the timing of 
precipitation events (Figs 2–5), although the magnitude of 
response was not always accurate. The mid-summer VMC 
had reasonable agreement at most plots following drying 
trends that typically occur. When deviations between the DC 
and observed moisture were observed, they tended to occur 
most in the beginning or end of the seasons (Figs 2–5). 

In contrast, the more complex CaLDAS model estimates 
of VMC had poorer skill overall (Table 4) compared with 
the simpler DC model (Table 2), based on all goodness-of-fit 

statistics. CaLDAS VMC had a consistent, relatively large 
negative Pbias, for all modelled depths, compared with all 
observed VMCs (Table 4). All NSE values indicate the mean 
observed VMC was a better predictor than the CaLDAS mod
elled VMC. R2 values >0.4 indicate some higher skill for the 
Chapleau aspen and Edson mixedwood plots, keeping in mind 
the Edson 10-cm depths were only for 2020–2021. Although 
the relationship to the deeper 30-cm observed VMC and 
shallower 6-cm VMC (not shown) at Edson had better skill 
than the other plots as well, the improved model skill may be 
due to something other than a shorter period of record. 
Despite relatively higher R2 values for Edson, RMSE were 
quite high (19–28%) and the Pbias was similar to other plots. 

Similarly to the DC model results, differences in goodness- 
of-fit statistics were greater between plots than between 
different depths of observed VMC and CaLDAS model output 
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Fig. 4. Time series plots from the Dryden mixedwood plot comparing Drought Code (DC) Volumetric Moisture Content (VMC) 
from the local fire weather station (39 km away) and the nearby Environment Canada and Climate Change (ECCC) weather station 
(7 km away). Goodness-of-fit statistics and time series are shown for 2019–2021. The black dotted line is the observed (obs) VMC 
of the duff layer (field measured up to 18 cm) and the grey line is the DC VMC.   
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depths (Table 4). R2 values were consistently highest for the 
10–20-cm CaLDAS VMC at all field depths, but RMSE and 
Pbias were lower for 5–10-cm VMC, although differences 
between depths were typically small. Therefore, it is not 
consistently clear what CaLDAS modelled depth had the 
better skill as it varied between plots. 

There was also high variability in fit within a plot between 
years as shown in the examples from the Chapleau aspen and 
mixedwood plots (Fig. 6). Overall, the aspen plot had a better 
fit compared with the mixedwood plot (Table 4) but in 2021, 
this was reversed (Fig. 6). The CaLDAS VMC seemed to 
capture the timing of most events, but overall the moisture 
range was consistently lower and the magnitude of change in 
moisture was not well represented. Linear regression analysis 
gave better indication of the magnitude of the bias in the 

CaLDAS VMC (Fig. 7). The intercept for most regression 
models was ~10% VMC. 

Regression plots also illustrate the limited range of 
moisture for CaLDAS between ~10 and <40% VMC for 
all plots. The observed range in VMC is generally much 
larger, especially for mixedwood plots in Chapleau and 
Dryden as well as the lowland REC aspen site, which was 
sometimes inundated. Autocorrelation analysis indicated 
that all time series were highly autocorrelated, up to 
26 days; therefore, further analysis would require more 
sophisticated methods to account for this if a more robust 
estimate of the true correlation between CaLDAS output and 
observed VMC was desired. Overall, the timing of changes in 
moisture seem similar in the two methods, but the magni
tude of the response does not match. 
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Fig. 5. Example of a better match for the Chapleau mixedwood plot (top graphs) between observed (obs, 18 cm) and 
DC (Drought Code) volumetric moisture content (VMC), and a worse match for the Chapleau aspen plot (bottom 
graphs). Both sites are within 15 km of the same weather station. Goodness-of-fit statistics and time series are shown for 
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Table 4. Goodness-of-fit statistics comparing field observations of Volumetric Moisture Content (VMC%) at various depths with CaLDAS 
(Canadian Land Data Assimilation System) estimated VMC at three depths.          

Site Plot CaLDAS 
depth (cm) 

Field 
depth (cm) 

R2 RMSE NSE Pbias   

Chapleau Aspen 0–5  10  0.27  11.89  −2.19  −37.5  

18  0.28  9.25  −2.10  −32.3 

5–10  10  0.34  11.2  −2.03  −37.1  

18  0.35  8.92  −1.88  −31.7 

10–20  10  0.46  11.94  −2.45  −41.0  

18  0.48  9.65  −2.37  −36.0 

Jack pine 0–5  10  0.11  7.72  −0.74  −22.2  

18  0.05  11.30  −1.53  −32.4 

5–10  10  0.14  7.65  −0.71  −22.7  

18  0.07  11.24  −1.51  −32.8 

10–20  10  0.18  7.92  −0.83  −25.0  

18  0.11  11.55  −1.65  −34.8 

Black spruce 0–5  10  0.18  11.00  −4.61  −35.7  

18  0.17  14.46  −4.24  −42.2 

5–10  10  0.20  10.95  −4.56  −35.7  

18  0.19  14.43  −4.22  −42.2 

10–20  10  0.24  11.32  −4.94  −37.4  

18  0.24  14.81  −4.50  −43.7 

Mixedwood 0–5  10  0.05  10.02  −1.17  −22.2  

18  0.10  15.94  −1.10  −35.0 

5–10  10  0.04  8.55  −0.58  −15.0  

18  0.08  14.49  −0.74  −28.9 

10–20  10  0.10  8.89  −0.71  −19.7  

18  0.18  14.94  −0.85  −32.9 

Dryden Mixedwood 0–5  10  0.10  17.40  −1.22  −41.8  

18  0.04  23.16  −3.06  −52.0 

5–10  10  0.11  17.38  −1.22  −41.7  

18  0.05  23.12  −3.05  −52.0 

10–20  10  0.11  17.63  −1.28  −42.7  

18  0.05  23.40  −3.15  −52.8 

Edson Mixedwood 0–5  10A  0.61  20.69  −4.80  −48.2  

30  0.44  29.52  −10.65  −56.2 

5–10  10A  0.58  19.23  −4.01  −44.2  

30  0.40  28.30  −9.71  −53.6 

10–20  10A  0.61  19.04  −3.91  −43.6  

30  0.41  28.16  −9.60  −53.3 

REC Aspen 0–5  10  0.04  30.20  −5.51  −61.5  

18  0.04  28.81  −5.53  −60.4 

(Continued on next page) 
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The last comparison of both models with each other 
indicated that overall, the current version of CaLDAS 
could not be used to correct the DC during the fire season. 
The goodness-of-fit statistics were poor, with very low R2 

values, and high RMSE and percentage bias. All NSEs were 

well below zero, indicating the CaLDAS VMC had little to no 
skill predicting DC VMC. 

An example of this lack of skill was evident at the Chapleau 
aspen plot (Fig. 8) but again, the skill varied year to year. 
The Edson mixedwood was an exception, where CaLDAS VMC 

Table 4. (Continued)         

Site Plot CaLDAS 
depth (cm) 

Field 
depth (cm) 

R2 RMSE NSE Pbias   

5–10  10  0.19  29.01  −5.01  −59.6  

18  0.22  26.82  −4.87  −57.7 

10–20  10  0.33  29.49  −5.21  −61.1  

18  0.36  28.06  −5.20  −59.9 

The statistics listed summarise time series from 2019 to 2021, May until September, where field data permitted, without considering any autocorrelation from day to day. 
RMSE, root mean square error; NSE, Nash Sutcliffe efficiency; and Pbias, percentage bias. 
ADoes not include 2019.  
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Fig. 6. Example of a better match between observed (obs, 18 cm) and CaLDAS (Canadian Land Data Assimilation System) 
volumetric moisture content (VMC) for 10–20 cm moisture for the Chapleau aspen plot (top graphs) and a worse match for the 
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had R2 values above 0.4 for all CaLDAS modelled depths; 
RMSE and percentage bias were still high (Table 5). This 
may be due to the tendency of the CaLDAS model to predict 
much drier conditions overall (Fig. 8). Also, for the Edson 
mixedwood plot, there appeared to be better agreement 
between the timing of precipitation events, which was likely 
the reason for the higher R2 values. 

Discussion 

Overall, our results indicate that the simple DC model had 
good skill predicting moisture of the deeper organic layer 
depths (i.e. 10–18 cm), even compared with the more com
plex CaLDAS land surface model and data assimilation system. 
The WCR probes installed through the litter, fermentation and 

0

0 10 20 30 40

20

40

18
-c

m
 o

bs
 V

M
C

%

10–20 cm CaLDAS VMC%

60

80
R2 0.18
intercept 11.3
lag 26 days

Chapleau mixedwood

0

0 10 20 30 40

20

40

10
-c

m
 o

bs
 V

M
C

%
10–20 cm CaLDAS VMC%

60

80
R2 0.18
intercept 8.3
lag 26 days

Chapleau jack pine

0

0 10 20 30 40

20

40

18
-c

m
 o

bs
 V

M
C

%

10–20 cm CaLDAS VMC%

60

80

R2 0.48
intercept 10.2
lag 25 days

Chapleau aspen

0

0 10 20 30 40

20

40

18
-c

m
 o

bs
 V

M
C

%

10–20 cm CaLDAS VMC%

60

80

R2 0.05
intercept 11.3
lag 25 days

Dryden mixedwood

0

0 10 20 30 40

20

40

6-
cm

 o
bs

 V
M

C
%

10–20 cm CaLDAS VMC%

60

80

R2 0.65
intercept 5.1
lag 25 days

Edson mixedwood

0

0 10 20 30 40

20

40

18
-c

m
 o

bs
 V

M
C

%

10–20 cm CaLDAS VMC%

60

80

R2 0.24
intercept 12.0
lag 26 days

Chapleau black spruce

0

0 10 20 30 40

20

40

18
-c

m
 o

bs
 V

M
C

%

5–10 cm CaLDAS VMC%

60

80

R2 0.22
intercept 14.5
lag 21 days

REC aspen

Fig. 7. Linear regression models comparing daily CaLDAS (Canadian Land Data Assimilation System) estimated volumetric 
moisture content (VMC) with observed VMC to further explore the bias between the two. Included in each plot is the R2 and 
intercept value of models where P < 0.05. The autocorrelation lag, i.e. number of days after which the autocorrelation is no longer 
present in the time series, is also included.   

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

847 

https://www.publish.csiro.au/wf


humus layers, and in some cases into the mineral soil, had 
good agreement with the DC model estimated VMC. 
Therefore, the DC may be representative of moisture changes 
in a wider range of depths and soil horizons than just its 
standard description (i.e. dense organic layer of nominal 
depth 15–18 cm). There was greater variability between 
different forest plots than between years and probe depths. 
Model inputs, particularly precipitation and DC starting val
ues, had a large influence on DC model fit. 

Differences in statistics and time series plots showed a 
clear trend that the DC had the best fit to the observed VMC 
in the wetter and deeper mixedwood Chapleau plot. At the 
lower end of the goodness-of-fit statistics was the shallower 
and drier aspen plot, also at the Chapleau site. Beyond those 
bookends, there was no obvious signal that indicates what is 
influencing overall organic moisture changes and the ability 

of the DC to represent them (i.e. duff depth, moisture 
regime, forest type); further analysis and more sampling 
are necessary to definitively tease that out. It may be that 
in some shallow, well-drained sites, the DC is likely to satu
rate at low values, as fuel moisture may not increase beyond 
a given value. Otway et al. (2007) found a poor relationship 
between the DC and observed moisture at 2–4 cm (using 
destructive sampling) in an upland aspen site with shallow 
organic layer depths, whereas Terrier et al. (2014) found a 
good correlation to DC in relatively wet lowland black spruce 
stands with organic layers depths up to 25 cm. They also 
used WCR probes, but installed horizontally at specific 
depths (5, 15 and 25 cm). Other studies pointed to differ
ences in DC fit, depending on organic layer thickness and 
forest type. Johnson et al. (2013) found the humus layers 
(~150 kg/m3 bulk density and 10-cm depth) in alpine spruce 

10

10 Jul 2019 12 Aug 2019 16 Sep 2019

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

802019
CaLDASR2 0.67

RMSE 22.11
NSE –37.2
Pbias –46.1

DC

01 May 2020 22 Jul 2020 10 Aug 2020

2020
CaLDASR2 0.75

RMSE 20.28
NSE 12.89
Pbias –44.5

DC

01 May 2021 05 Jul 2021 06 Sep 2021

10 Jul 2019 12 Aug 2019 16 Sep 2019 01 May 2020 22 Jul 2020 10 Aug 2020 01 May 2021 05 Jul 2021 06 Sep 2021

2021
CaLDASR2 0.50

RMSE 14.42
NSE –0.52
Pbias –32.6

DC

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

802019
CaLDASR2 0.12

RMSE 22.25
NSE –9.05
Pbias –52.0

DC

Day

2020
CaLDASR2 0.03

RMSE 19.68
NSE –8.2
Pbias –50.4

DC

2021
CaLDASR2 0.00

RMSE 16.62
NSE –3.64
Pbias –44.4

DC

Edson mixedwood

Dryden mixedwoodV
M

C
 (

%
)

Fig. 8. Example of a better match between Drought Code (DC) volumetric moisture content (VMC) and CaLDAS (Canadian Land 
Data Assimilation System) moisture for the Edson mixedwood plot (top graphs) and a worse match for Dryden mixedwood plot 
(bottom graphs). Goodness-of-fit statistics and time series are shown for 2019–2021. The black dotted line is the DC VMC. The 
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and pine forests underestimated DC in both wet and dry 
years in the spruce forest, and underestimated moisture con
tent in the dry year and overestimated in the wet year in the 
spruce forest. Lawson and Dalrymple (1996) developed sepa
rate DC calibration curves for coastal cedar–hemlock forests 
with organic layers 6–10-cm deep, white spruce forests for 
6–10 cm, and another curve for a mix of forest types in the 
interior of British Columbia with organic layer depths less 
than 10 cm. To further complicate things, D’Orangeville 
et al. (2016) showed a good relationship between DC and 
hydrologic drought in mineral soils up to depths of 34 cm. 
Therefore, further analysis is needed to determine what is 
driving the differences in DC model fit between plots. 

Clearly better representation of precipitation is a simple 
way to improve DC tracking of forest floor moisture. This is 
not surprising as other studies have shown that FWI System 
codes and indices overall were improved compared with basic 
interpolation of stations with better precipitation inputs (i.e. 
gridded precipitation, especially using radar; Hanes et al. 
2017; Cai et al. 2019). Although the CaLDAS model includes 

high-resolution gridded precipitation products (Carrera et al. 
2015), its outputs still consistently underestimated observed 
moisture contents. This strong bias is most likely due to the 
validation and calibration of CaLDAS (Carrera et al. 2019) to 
focus primarily on agricultural areas and mineral soil mois
ture. This is similar to other remote sensing soil moisture 
calibrations/validations (Magagi et al. 2013; Pan et al. 
2016). Although land surface models have been proposed 
as an alternative to drought modelling for fire danger in 
some areas (Cooke et al. 2012; Vinodkumar et al. 2017;  
Vinodkumar and Dharssi 2019), the majority of such studies 
assume mineral soil moisture as proxy for fuel moisture con
tent. Clearly, overall drier conditions are more conducive to 
fire, but it is the day-to-day changes in fine fuel moisture that 
are of primary importance in influencing the daily variability 
in fire behaviour from the fire management perspective, espe
cially in forests (Van Wagner 1985). Many remote sensing and 
fire danger studies to date largely ignore the organic layer and 
focus only on ‘surface soils’, which can include litter but are 
essentially mineral soil. Organic material contains more pore 

Table 5. Goodness-of-fit statistics comparing Volumetric Moisture Content (VMC%) of the Drought Code (DC) with CaLDAS (Canadian 
Land Data Assimilation System) estimated VMC at three depths.         

Site Plot CaLDAS depth (cm) R2 RMSE NSE Pbias   

Chapleau Aspen 0–5  0.04  22.27  −6.87  −55.3 

5–10  0.07  21.98  −6.66  −55.0 

10–20  0.15  22.82  −7.26  −57.8 

Jack pine 0–5  0.01  20.61  −5.95  −50.8 

5–10  0.01  20.62  −5.95  −51.1 

10–20  0.03  21.06  −6.25  −52.6 

Black spruce 0–5  0.01  20.48  −5.99  −50.8 

5–10  0.01  20.43  −5.95  −50.9 

10–20  0.02  20.82  −6.23  −52.1 

Mixedwood 0–5  0.19  16.78  −3.67  −40.7 

5–10  0.08  15.21  −2.83  −35.2 

10–20  0.29  15.82  −3.14  −38.8 

Dryden Mixedwood 0–5  0.02  21.44  −4.97  −51.1 

5–10  0.02  21.38  −4.94  −51.1 

10–20  0.02  21.65  −5.09  −51.9 

Edson Mixedwood 0–5  0.43  19.75  −2.31  −44.4 

5–10  0.46  18.65  −1.95  −41.1 

10–20  0.53  18.48  −1.9  −40.8 

REC Aspen 0–5  0.09  20.19  −1.5  −49.4 

5–10  0.35  18.774  −1.16  −46.3 

10–20  0.34  19.21  −1.27  −47.8 

Statistics listed summarise time series from 2019 to 2021, May until September, where field data permitted, without considering any autocorrelation from day- 
to-day. 
RMSE, root mean square error; NSE, Nash Sutcliffe efficiency; and Pbias, percentage bias.  
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space and is therefore generally wetter than mineral soils 
(Otway et al. 2007). Therefore, to better model organic mois
ture directly, remote sensing retrieval algorithms and land 
surface models need to refine the soil dielectric models 
based on soil organic carbon properties (e.g. higher porosity 
and typically lower bulk density) (Jin et al. 2017). Organic 
soils typically have a lower dielectric content than mineral soil 
with the same VMC (Bourgeau-Chavez et al. 2010; Jin et al. 
2017). Integration of national maps of organic layer thickness 
(e.g. Mansuy et al. 2014; Beguin et al. 2017; Hanes et al. 
2022) into land surface models, like the SVS scheme used in 
CaLDAS, in combination with organic layer-specific algo
rithms are then needed to improve model skill for estimating 
drought indices for fire within the CFFDRS. Doing so would 
allow greater use of land surface models directly as additional 
sources of fire intelligence, especially for regions without 
good weather station coverage; this would also allow fire 
managers to take advantage of the forecast capabilities of 
these sophisticated models. 

Inclusion of land surface model data could also provide 
an alternative way to correct the DC in the spring, when the 
overwintering adjustment is not representative of the 
observed moisture. In situ soil moisture probes are also a 
potential to supplement the DC model (Elmes et al. 2018), 
especially during the spring and fall, but like weather sta
tions themselves, such instrumentation cannot be located 
everywhere. In addition, the soil moisture probes need to 
be installed in forested stands, not in the open where the 
weather stations are located. In the short term, hand held 
moisture probes may be a good option. In the medium term, 
it makes more sense to improve the DC overwinter adjust
ment model itself using available field data. Lastly, in the 
long term, once confidence in remote sensing of organic 
layer moisture is established, especially in forested regions, 
land surface models and remote sensing of the organic soil 
moisture directly may provide additional intelligence to fire 
danger rating systems that rely on it. 

Limitations 

Like most field studies, this work has its limitations. Not all 
of the soil moisture probes were temperature-corrected, 
which can introduce an error of ~3% depending on the 
soil temperature and moisture (Campbell Scientific 2020). 
In addition, the depth of installation was not consistent at all 
sites, but results showed differences in the depth of probe 
installation had less influence. Furthermore, the calibrations 
of the probe output to VMC were assumed to be accurate but 
are still associated with some error (standard error ranged 
from 0.92 to 7.33% VMC from Bourgeau-Chavez et al. 
(2010) depending on soil horizon type). We did some labo
ratory calibrations of the probes with large destructively 
sampled forest floor blocks from the sites to attempt to 
refine these calibrations and reduce the sensor error, but 
owing to COVID-19 travel restrictions, we could not get 

destructive samples from all plots. This probe calibration 
noise may not have a large influence overall, as the DC is not 
expected to predict the absolute VMC at any exact location, 
but rather indicate relative changes in moisture day to day 
and between regions. Missing precipitation events within 
the 40-km radius contributed greater uncertainty in the 
DC moisture content estimates. 

Future studies with long-term in situ installations could 
attempt to minimise calibration issues by normalising the 
soil moisture through the use of minimum and maximum 
soil wetness observations from their own long time series 
(similar to methods used by Vinodkumar et al. 2017 and  
Vinodkumar and Dharssi 2019). Additionally, with datasets 
collected using identical methods in a range of forest floor 
types, mixed effects models could be used to look at the 
influence of other plot-specific variables on the VMC to DC 
relationship. Such an analysis could be used to determine 
the variability between individual probes within a plot and 
contrast these values with variability observed from plot to 
plot. For a more accurate assessment of the correlation 
between observed VMC and the DC estimates of moisture 
content, the high autocorrelation (up to 26 days) of the daily 
time series data would also need to be taken into account. 

Conclusions 

The results presented here reiterate that the fairly simple DC 
model does a reasonable job of representing observed mois
ture changes in the deeper organic layers over a wide range of 
forest types for depths 10–18 cm. Electronic probes that use 
the dielectric content of soil moisture installed at these depths 
can be used to supplement or correct DC estimates. More 
sophisticated physically based hydrologic models have been 
proposed because we have the capacity to use them (i.e. Keith 
et al. 2010; Johnson et al. 2013). Yet the simplicity of the 
DC model and ease of application without the necessity to 
parameterise to a specific region still outweigh any validation 
improvements in moving to a more complex model. Although 
land surface models like CaLDAS hold much promise to 
integrate earth observation and high-resolution numerical 
weather prediction outputs into wildfire danger prediction, 
their bias to mineral soils limits their use at this time. We 
anticipate better performance in the future once organic soils 
are integrated into CaLDAS and the SVS land surface scheme. 
This is not to say the DC model is perfect. Much clarity could 
come from expanding the definition of what the DC model 
represents (i.e. beyond the elusive standard 15–18-cm depth). 
This may require a shift in the definition from an exact 
moisture value for a specific soil horizon towards a definition 
that includes a wider range of slower-drying organic layers 
and fuels as data permit. The bigger source of error is with the 
DC overwintering adjustment, as shown here and in Hanes 
et al. (2020). Quantification of these errors and potential 
solutions are needed. 
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