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ABSTRACT 

In the last decades, numerous large forest fires have been recorded in Portugal. On 15 and 16 
October 2017, seven extreme wildfires events (EWEs) took place in the central region of 
Portugal. Aiming to contribute to the assessment of the smoke impact of these EWEs, this 
study estimates their atmospheric emissions using a bottom-up approach with high spatial and 
temporal resolution. To this end, fire data were used, such as ignition location and time, 
propagation, burned area, and fuel load and emission factors according to forest species. A 
particular fire – EWE in Lousã with a high fuel load – emitted ~50% of the sum of the emissions of 
the six other case studies. The spatial distribution of the EWE emissions indicates that fuel load is 
an important component of emissions estimation. The obtained results were compared with 
remote sensing data, showing good agreement in terms of total values. During these EWEs, 
particulate matter and carbon monoxide emissions were higher than Portuguese anthropogenic 
emissions in 2017. This approach contributes to the state of the art on forest fire emissions, 
reducing uncertainty and obtaining the best possible and detailed quantification of the temporal 
and spatial variability of EWE emissions.  

Keywords: bottom-up approach, emissions, extreme events, high resolution, Mediterranean 
conditions, satellite data, smoke, wildland fire. 

Introduction 

Wildfires can produce substantial emissions of carbon dioxide (CO2), carbon monoxide 
(CO), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate 
matter (PM) (Crutzen et al. 1979; Miranda et al. 1994, 2005; Andreae and Merlet 
2001; Reddington et al. 2016). These emissions affect global atmospheric chemistry 
(Spracklen et al. 2007; Jaffe et al. 2008; Monks et al. 2012), impact radiative transfer 
in the atmosphere (Clinton et al. 2006) and reduce visibility (Wade and Ward 1973;  
Valente et al. 2007). Moreover, they strongly degrade air quality (Valente et al. 2007;  
Miranda et al. 2009; Bytnerowicz et al. 2010; Carvalho et al. 2011; Martins et al. 2012;  
Turquety et al. 2014; Keywood et al. 2015), with significant effects on human health 
(Miranda et al. 2010, 2012; Johnston et al. 2012; Knorr et al. 2012; Martins et al. 2012;  
Akagi et al. 2014; Dennekamp et al. 2015; Reid et al. 2016; Apte et al. 2018). 

San-Miguel-Ayanz et al. (2013) estimated that 2% of ‘mega-fires’ contribute to 80% of 
the total area burned in Europe. These extreme wildfire events (EWEs) are usually 
clusters of fires that burn simultaneously and propagate rapidly owing to critical mete-
orological conditions, such as hot and dry conditions with strong winds (Pereira et al. 
2005), and are particularly difficult to control. There are several examples in which the 
yearly national emissions of EWE exceed those of anthropogenic activities, despite the 
former being concentrated in both time and space. Such are the cases of the Portuguese fires 
in 2003, 2015 and 2017 or the Greek fires in 2007 or the Russian fires in 2010 (Hodzic et al. 
2007; Turquety et al. 2009; Konovalov et al. 2011; Hodnebrog et al. 2012; Martins et al. 
2012). The fires that occurred in 2017 in central Portugal are the most recent example of 
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large (and deadly) wildfires in Europe, and have not yet been 
sufficiently investigated (Solomos et al. 2019). 

Most forest fire emission studies rely on the model pro-
posed by Seiler and Crutzen (1980) and Ward and Hardy 
(1991), which is based on information about burned area 
extent, the amount and type of vegetation burned (fuel types, 
fuel loads) and the conditions under which fires take place 
(combustion efficiencies). Emission factors are also used to 
estimate the amount of emissions of each species (gases and 
particles). More recently, global satellite-derived burned 
area information has become available. Thus, the scientific 
community has put considerable effort into quantifying the 
impact of wildland fires by remote-sensing approaches to 
improve these estimates (Giglio et al. 2006; Mouillot et al. 
2006; Reid et al. 2009; Mieville et al. 2010; Wiedinmyer 
et al. 2011; Kaiser et al. 2012; Ichoku and Ellison 2014;  
Monteiro et al. 2014; Darmenov and da Silva 2015;  
Chuvieco et al. 2016; van der Werf 2017). Furthermore, 
instantaneous fire radiative power (FRP) is used nowadays 
as a measure of the rate of radiant energy emission from the 
fire to derive the amount of fuel burned directly (Freeborn 
et al. 2008), in particular, to facilitate real-time applications 
(Sofiev et al. 2009; Kaiser et al. 2012). 

Although much progress has been made over the last 
couple of decades in improving the quality of vegetation 
fire emission datasets (e.g. Pereira et al. 2009; van der Werf 
et al. 2010, 2017; Sofiev et al. 2013; Rémy et al. 2017;  
Prichard et al. 2020), uncertainties are still an issue but 
are poorly estimated and considered in modelling, mainly 
at regional and local levels (e.g. Liousse et al. 2010; Kaiser 
et al. 2012; Petrenko et al. 2012; Bond et al. 2013; Zhang 
et al. 2014; Ichoku et al. 2016; Pereira et al. 2016;  
Reddington et al. 2016; Pan et al. 2020). They are mainly 
associated with fire characteristics (vegetation burned and 
fuel load consumed) and emission factors (EFs) (Miranda 
et al. 2008; Ottmar et al. 2008; Langmann et al. 2009). 
Regarding EFs, the majority of the available information is 
for United States of America (USA) forest (Urbanski 2013), 
and it is not a suitable proxy for wildfires in Europe, owing to 
vegetation cover and the differences in combustion character-
istics (e.g. flaming and smouldering phases). Efforts to narrow 
the uncertainties in the EFs are ongoing in the form of numer-
ous field campaigns and laboratory studies (e.g. Alves et al. 
2011; Vicente et al. 2012, 2017; van der Werf et al. 2017). 

Thus far, no forest fire emission inventory delivers 
data with high enough spatial (e.g. ~5 km or better) and 
temporal (e.g. approximately hourly or better) resolution 
(e.g. Reid et al. 2009; Shi et al. 2015; Pereira et al. 2016;  
Reddington et al. 2016). The accuracy and high resolution 
of fire emissions inventories are particularly important for air 
quality modelling studies at regional- and local-scale (Miranda 
et al. 2005; Valente et al. 2007; Akagi et al. 2011; Martins 
et al. 2012; van Marle et al. 2017; Mota and Wooster 2018). 

The main objective of the present study is to estimate the 
atmospheric emissions from the October 2017 Portuguese 

EWEs with a high-resolution methodology. We rely on a 
combination of burned area maps and land cover maps, 
forest inventory data, statistical growth models for forests 
and shrublands, and EFs updated according to recently pub-
lished data. We also compare these emissions with satellite 
data and with Portuguese anthropogenic emissions. 

Emissions estimation methodology 

On the morning of 15 October, at 6:00 hours in the central 
region of Portugal, a serious wildfire situation started and 
developed into seven EWEs that lasted until 8:00 hours on 
16 October. The dry vegetation and soil due to the hot and 
dry season throughout 2017, combined with the strong and 
persistent southerly winds caused by the close passage of 
hurricane Ophelia to the Portuguese mainland, increased 
the intensity of the EWEs (Turco et al. 2019; Augusto 
et al. 2020). Fig. 1 shows the location of the seven EWEs. 

Atmospheric emissions during these EWEs were estimated 
using a bottom-up methodology based on the following 
equations that should be well known (e.g. Wiedinmyer 
et al. 2006; Carvalho et al. 2011): 

E A= EF × FC ×i i (1)     

BFC = × (2)  

where Ei is the emission of compound i (g), EFi the EF for 
compound i (g kg−1), FC is fuel consumption (kg m−2), β 
the burning efficiency, B the fuel load (kg m−2), and A the 
burned area (m2) (Wiedinmyer et al. 2006; Carvalho 
et al. 2011). 

The hourly fire progression (burned area) was estimated 
based on detailed data collected by the Associação para o 
Desenvolvimento da Aerodinâmica Industrial (Viegas et al. 
2019) (see Burned area below), while fuel load data over the 
study areas were obtained using the National Forest 
Inventory (ICNF 2019) and Portuguese land use data (DGT 
2018) with a high horizontal spatial resolution (see Fuel load). 
A literature review was performed to obtain the burning 
efficiency values (Burning efficiency) and the most suitable 
EFs (Emission factors) to be considered for the 2017 EWEs. 

The uncertainty for the estimated emissions was quantif-
ied applying the Monte Carlo approach. Random values 
were generated for each input parameter (i.e. EF, burning 
efficiency and fuel load) assuming a normal distribution and 
taking their coefficient of variation into account. 

According to Ottmar et al. (2008), the coefficient of 
variation for the EFs is 16%, for the burning efficiency, 
30% and for the fuel load, 83%. Notwithstanding the focus 
of the analysis of Ottmar et al. (2008) on a region in the 
USA, these coefficients of variation were considered in the 
present study assuming that methods for the quantification of 
EFs, burning efficiency and fuel load parameters were similar 
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to those used in Portugal. Multiple runs (maximum of 500 
iterations) were performed until results converged (i.e. an 
average difference less than 0.3% between multiple runs). 

Burned area 

Fire data, such as ignition location and time and burned area, 
for each EWE were acquired from the report delivered by 
the Associação para o Desenvolvimento da Aerodinâmica 
Industrial (Viegas et al. 2019). This report resulted from a 
careful and detailed study based on fire data collected in the 
field, namely on many interviews with operational and 
affected people, among others who experienced the fire 
first-hand. These interviews enabled the identification of a 
set of thousands of georeferenced points with an associated 
time. In many cases, the time information was confirmed by 

registration on mobile phones, as people tried to call when the 
fire reached the surroundings of their homes. Further, several 
photographs and videos of fire progression were considered. 
Notwithstanding the great effort to obtain a rigorous determi-
nation of fire spread, owing to the extent of the burned area 
and the complexity of the EWEs, slight deviations are still 
expected. This detailed information allowed the different igni-
tion points and how the fires spread and affected the terri-
tories to be inventoried and therefore estimation of the burned 
area with a high spatial and temporal resolution. Table 1 
shows a summary of the information on burned area, ignition 
time and wildfire duration considered in this work to estimate 
the emissions for each EWE (Viegas et al. 2019). 

According to the information provided by the report of 
ADAI on these EWEs (Viegas et al. 2019), the first forest fire 
warning was issued in Seia, where 17 003 ha of forest and 

Table 1. Information about burned area, ignition time and wildfire duration for the seven EWEs (Leiria, Lousã, Oliveira do Hospital, Quiaios, 
Seia, Sertã and Vouzela) recorded between 15 and 16 October 2017 ( Viegas et al. 2019).       

Extreme wildfire 
event (EWE) 

Burned 
area (ha) 

Start time 
(day – hours) 

Finish time 
(day – hours) 

Duration 
(hh:mm)   

Leiria 20 014 15 – 13:51 16 – 01:00 10:50 

Lousã 54 407 15 – 08:41 16 – 03:00 17:45 

Oliveira do Hospital 51 429 15 – 10:26 16 – 05:00 18:00 

Quiaios 23 844 15 – 13:34 16 – 00:00 12:10 

Seia 17 003 15 – 06:03 16 – 08:00 26:00 

Sertã 30 977 15 – 12:02 16 – 01:00 13:10 

Vouzela 15 959 15 – 17:21 16 – 03:00 09:30   
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Fig. 1. Location of the Portuguese areas (Quiaios, 
Vouzela, Lousã, Oliveira do Hospital, Seia, Sertã and 
Leiria) affected by the extreme wildfire events 
between 15 and 16 October 2017.   

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

991 

https://www.publish.csiro.au/wf


shrubland were burned. Four hours later, a second occur-
rence was registered in Lousã, where 54 407 ha were burned. 
The fire in Oliveira do Hospital started at 10:26 hours and 
resulted in the destruction of several houses and industrial 
facilities as well as burning a vast area (51 429 ha). In Sertã, 
the fire started at ~12:00 hours on 15 October (30 977 ha 
burned). In the coastal zone of Portugal, the first forest fire 
ignition occurred at ~14:00 hours in Leiria and Quiaios with 
burned areas of 20 014 and 23 844 ha, respectively. The last 
forest fire alert was registered at 17:21 hours in Vouzela, 
with the smallest burned area (15 959 ha). 

Fuel load 

Fuel load was obtained from the sixth Portuguese Forest 
Inventory (ICNF 2019), which is based on data collection 
from aerial images and vegetation measurements on the 
ground (~12 000 measurement sites) across the Portuguese 
mainland in 2015. This inventory provides surface fuel load 
by land-use type (trees, under vegetation cover, standing 
trees, fallen trees, stump and foliage) and forest species 
(acacia, carob, chestnut, cork oak, eucalyptus, holm oak, 
oaks, other hardwoods, other resinous, Pinus pinaster and 
stone pine) for the Portuguese Nomenclature of Territorial 
Units for Statistical Purposes (NUTS) III. 

To improve the spatial distribution of the fuel load data 
over the study areas, values were spatially disaggregated using 
the Portuguese land use data (Carta de Uso e Ocupação do 
Solo – COS) (DGT 2018) and applying an area-weighting 
technique. The COS dataset was produced based on visual 
interpretation of orthorectified aerial images with a spatial 
resolution of 0.5 m. Other sources of information, including 
satellite images, were also used during the production process 
as well as in quality control. This database provides informa-
tion on the areas covered by different forest species (acacia, 
chestnut, eucalyptus, holm oak, oaks, other hardwoods, other 
resinous, Pinus pinaster and stone pine) with a minimum 
cartographic unit, minimum distance between lines and mini-
mum polygon width of 1 ha, 20 and 20 m, respectively. 

In addition, measurement datasets (7964 sites across the 
Portuguese mainland) provided by the Portuguese Institute 
for Nature Conservation and Forests were also used to 
improve the accuracy of the estimated fuel load as well as 
the identification of the forest species in the study area. This 
joint compilation of data allowed reduction in the uncer-
tainty of the fuel load considered, as well as producing fuel 
load maps per forest species with a high spatial horizontal 
resolution. 

Burning efficiency 

Burning efficiency was introduced to the emissions study 
community at least as early as 1991 by Ward and Hao (1991). 
Usually, burning efficiency is defined as the ratio of carbon 
released as carbon dioxide (CO2) to the total carbon present 
in the fuel (Miller 2011). In field and laboratory experiments, 

burning efficiency can be expressed as the fraction burned 
relative to the total available biomass. Many researchers 
relate burning efficiency with fire type (surface fire, crown 
fire or ground fire), fire phase (smouldering or flaming), and 
other factors such as wind speed, month of occurrence (veg-
etation has different water contents in spring and summer), 
soil moisture and even different slope aspect (Kauffman et al. 
2003; Miranda et al. 2005; Chang and Song 2010; van der 
Werf et al. 2010; Akagi et al. 2011; Guo et al. 2017). Despite 
the difficulty in accurately estimating it, there is a wide 
range of burning efficiency data (e.g. PNAC 2002; Miranda 
et al. 2005; Wiedinmyer et al. 2006; Martins et al. 2012;  
Urbanski 2013) for shrubs and forest species. In the present 
study, for shrubs, a burning efficiency value of 0.8, suggested 
by the National Program for Climate Changes (PNAC 2002), 
was selected because it represents Portuguese conditions for 
understorey vegetation as well as fine fuel from other vege-
tation species. Regarding forest, a burning efficiency value of 
0.25 was taken from the EEA (2019) guidance document as 
representing southern European forest species, namely com-
munities of eucalyptus, and resinous and deciduous trees. 

Emission factors 

Emission factors for southern European conditions were cho-
sen based on a bibliographic review taking into consideration 
Portuguese land-use types, as well as considering values 
selected by previous studies (Miranda 2004; Alves et al. 
2011; Martins et al. 2012; Vicente et al. 2012, 2017; van 
der werf et al. 2017). Most of the studies reported in the 
literature provide EFs for American fuels (e.g. McMeeking 
et al. 2009; Akagi et al. 2011) and savannas or pastures, 
tropical and extratropical forests (van der Werf et al. 2017), 
with few studies for Mediterranean species. Table 2 lists the 
average EFs (in g kg−1 fuel burned, dry basis) for the relevant 
air pollutants. All reported values were obtained from experi-
mental forest fires. 

The EFs listed for eucalyptus, acacia and Pinus pinaster 
species express the average of the EFs obtained experimen-
tally in Portugal by Alves et al. (2011) and Vicente et al. 
(2012, 2017). These averages were calculated using the 
harmonic mean (Fujioka 1985). The EFs reported by van 
der Werf et al. (2017) were used for the other hardwoods 
species. The EFs for other resinous, oak, chestnut, cork oak 
and stone pine species were obtained from Miranda (2004). 
Emission factors still are one of the main uncertainty sources 
in emissions estimations, and it is important to work on this 
topic with more field measurements, in particular for south-
ern European conditions. 

Results 

The methodology considered for analysing the obtained atmo-
spheric emissions was based on approaches used in similar 
previous studies (e.g. Giglio et al. 2006; Mouillot et al. 2006;  
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Reid et al. 2009; Mieville et al. 2010; Wiedinmyer et al. 2011;  
Kaiser et al. 2012; Ichoku and Ellison 2014; Monteiro et al. 
2014; Darmenov and da Silva 2015; Chuvieco et al. 2016; van 
der Werf et al. 2017). In Emission data and maps, the spatial 
distribution and hourly total atmospheric emissions of the 
main smoke pollutants are shown and discussed. The impact 
of each EWE (e.g. Leiria and Lousã) and forest species (e.g. 
eucalyptus and other resinous) on total emissions was ana-
lysed. The results were also compared with data from other 
approaches (Comparison with satellite data), and with emis-
sions from anthropogenic sectors in mainland Portugal 
(Smoke vs anthropogenic emissions). The main purpose of 
these comparisons was to understand the accuracy and mag-
nitude of the atmospheric emissions during the study period. 

Emission data and maps 

The analysis of the atmospheric emissions (particles with an 
aerodynamic diameter smaller than 10 µm – PM10 – and 
2.5 µm – PM2.5, NOx, CO, SO2, NH3, CO2 and CH4) from the 
seven EWEs between 15 and 16 October 2017 was based on 
their spatial and hourly distributions, as well as on the total 
emissions by case (Quiaios, Vouzela, Lousã, Oliveira do 
Hospital, Seia, Sertã and Leiria) and by burned species 
(acacia, chestnut, cork oak, eucalyptus, oak, other hard-
woods, other resinous, Pinus pinaster and stone pine). 

Fig. 2 shows the spatial distribution (500 × 500 m2) of 
the atmospheric pollutant emissions (in kt) during the EWEs. 

The spatial correlation coefficient between the different 
atmospheric pollutants (e.g. PM10 vs PM2.5) ranged from 
0.81 to 0.99, showing that the analysed pollutants have a 
similar spatial distribution. The lowest correlation values 
(0.81–0.90) were calculated when comparing the spatial dis-
tribution of NH3 with the other atmospheric pollutants. As the 
SO2 and NH3 EFs are the same for the most representative 
species (except other hardwoods) in the study areas (Table 1) 

and their spatial distributions are similar to those from the 
remaining pollutants (PM10, PM2.5, NOx, CO, CO2 and CH4), 
fuel load is the main parameter that affects the spatial distri-
bution of the estimated emissions. 

The highest emission values were estimated for the Lousã 
EWE, where the available fuel load was higher mainly owing 
to the high percentage of acacia covering the area (41.1%), 
with a fuel load of 6238.5 kt. Based on spatial distribution, it 
was possible to quantify the maximum emissions (over 
space) of the different EWEs in relation to the Lousã event: 
88.1% (in Quiaios), 95.6% (in Vouzela), 60.0% (in Oliveira 
do Hospital), 95.8% (in Seia), 58.0% (in Sertã) and 71.1% 
(in Leiria). The lowest maximum value was obtained in 
Vouzela, which is an area mainly covered by Pinus pinaster 
(83.5%), with an average fuel load of 364.7 kt (87.2% less 
than the average Lousã fuel load). 

To understand the temporal distribution of PM10, PM2.5, 
NOx, CO, SO2, NH3, CO2 and CH4 atmospheric emissions from 
each EWE, Fig. 3 presents hourly emissions (in kt) during the 
study period. 

Fig. 3 shows that the Lousã, Leiria and Sertã EWEs were 
the largest contributors, with emissions from the Lousã EWE 
predominating. The period with the highest total emission 
values lasted for 12 h, between 15:00 hours on 15 October 
and 02:00 hours on 16 October. The time with highest emis-
sion values was 21:00 hours on 15 October, with the biggest 
contribution from the Lousã EWE (61.38%) and Leiria EWE 
(21.58%). Furthermore, the temporal distribution profiles of 
the pollutants were similar, but with different absolute values, 
because for each pollutant, the burned area, burning effi-
ciency and fuel load values considered varied the same way. 

The total emissions (in space and in time) of PM10, 
PM2.5, NOx, CO, SO2, NH3, CO2 and CH4 were estimated 
for each case study and are presented in Fig. 4. 

For NH3, the estimated highest total emissions were 
in the Lousã EWE (5.22 ± 0.91 kt), followed by Sertã 

Table 2. Averaged emission factors (g kg−1 fuel burned, dry basis) of the main smoke pollutants per vegetation type.          

Species EucalyptusA,B,C Other 
resinousD 

Oak, chestnut, 
cork oakD 

AcaciaA,B,C Other 
hardwoodsE 

Pinus 
pinasterA,B,C 

Stone 
pineD   

PM10 21 10 13 11 8.3 13 10 

PM2.5 19 9 11 10 6.3 11 9 

NOx 5 3 3 5 3.11 3 5 

CO 170 100 128 232 102 204 91 

SO2 0.8 0.8 0.8 0.8 0.4 0.8 0.8 

NH3 0.6 0.6 0.6 0.6 2.17 0.6 0.6 

CO2 1408 1497 1393 1561 1585 1398 1487 

CH4 6 6 6 4.7 5.82 6 5 

A Vicente  et al.  (2012). 
B Vicente  et al.  (2017). 
C  Alves   et al.   (2011). 
D Miranda (2004). 
E van der Werf et al. (2017).  
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Fig. 2. Spatial distribution (500 × 500 m2) of atmospheric emissions for PM10, PM2.5, NOx, CO, SO2, NH3, CO2 and CH4 

(kt) in Quiaios, Vouzela, Lousã, Oliveira do Hospital, Seia, Sertã and Leiria, over combustion time from 15 to 16 October 2017.   
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Fig. 3. Hourly total atmospheric emissions of PM10, PM2.5, NOx, CO, SO2, NH3, CO2 and CH4 (in kt) for the Quiaios, 
Vouzela, Lousã, Oliveira do Hospital, Seia, Sertã and Leiria EWE, from 15 to 16 October 2017.   
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(3.25 ± 0.75 kt), Leiria (2.77 ± 0.51 kt), Oliveira do Hospital 
(1.15 ± 0.24 kt), Quiaios (0.94 ± 0.15 kt), Vouzela (0.08 ±  
0.1 kt) and Seia (0.03 ± 0.01 kt), whereas for the remaining 
atmospheric pollutants, the largest total emissions were in the 
Lousã EWE, followed by Leiria, Sertã, Quiaios, Oliveira do 
Hospital, Vouzela and Seia. 

The emissions in Lousã were 43.4–45.8% higher than the 
sum of emissions from all the other case studies. This EWE 
was responsible for the largest burned area (54 407 ha –  
Table 1) and also had the highest available fuel load 
(15 188.8 kt). The lowest emissions were calculated for the 
Seia EWE (17 003 ha – Table 1) and Vouzela EWE (15 959 ha 
– Table 1), which are the regions with the smallest burned 
area, representing 0.19–0.32% and 0.61–0.63%, respectively, 
of the total emissions in the study region. 

The contribution of each forest species considered in this 
work for the total emissions of PM10, PM2.5, NOx, CO, SO2, 
NH3, CO2 and CH4 is also shown in Fig. 5. 

According to Fig. 5, the forest species that contributed 
the largest emission values were Pinus pinaster 
(37.49–42.47%) and eucalyptus (22.65–23.12%), followed 
by acacia (13.87–19.56%), chestnut (10.76–12.40%) and 
other hardwoods (4.45–6.77%). That contribution profile 
was obtained for all pollutants considered (PM10, PM2.5, 
NOx, CO, SO2, NH3, CO2 and CH4). 

Comparison with satellite data 

To compare the obtained results with data from other 
approaches, Fig. 6 shows the PM10 and PM2.5 emissions 

from the wildfires events between 15 and 16 October 2017 
(~24 h) from MODIS (Moderate Resolution Imaging 
Spectroradiometer) and SEVIRI (Spinning Enhanced Visible 
and InfraRed Imager) sensors. To facilitate comparison 
between the results obtained by the different approaches 
(SEVIRI vs bottom-up vs MODIS), Fig. 6 presents the PM10 
and PM2.5 emission values with a horizontal spatial resolu-
tion of 10 × 10 km2 for the study period. 

MODIS is onboard the polar-orbiting satellite platforms 
Terra and Aqua. It provides data with 1 × 1 km2 horizontal 
resolution and typically makes two to four overpasses per 
day over each specific region of the globe (Sofiev et al. 
2013). SEVIRI is onboard the Meteosat Second Generation 
(MSG) geostationary satellite, supplying measurements at 
15-min temporal resolution; however, the pixel size of 
3 km is coarser than for MODIS (Turquety et al. 2014). The 
high temporal coverage of the SEVIRI observations increases 
the probability of detecting a fire, but the coarse spatial 
horizontal resolution (3 × 3 km2) increases the limit of detec-
tion and small fires may be missed (Turquety et al. 2020). 
Detailed information on the methodology applied to estimate 
the atmospheric emissions of wildfires using the SEVIRI and 
MODIS sensors is presented in Sofiev et al. (2013). 

The ratios between the PM2.5 and PM10 emissions were 
on average 0.99 (SEVIRI), 0.94 (bottom-up) and 0.99 
(MODIS). Table 1 shows that the PM2.5/PM10 EF ratios 
for the main vegetation species in the study area ranged 
from 0.76 to 0.91 (average 0.87). In this bottom-up study, 
the spatial distribution of PM10 and PM2.5 emissions cov-
ered the seven EWEs, whereas with the MODIS and SEVIRI 
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approaches, some burned areas did not show atmospheric 
emissions. These results are probably due to the coarse 
spatial (3 × 3 km2) and temporal (two to four overpasses 
per day) resolutions of the SEVIRI and MODIS sensors, 
respectively. Table 3 summarises the SEVIRI, bottom-up 
and MODIS results presented in Fig. 6. 

With the different approaches, the highest PM10 and 
PM2.5 emissions were obtained at different EWEs: for 
SEVIRI in Sertã, PM10, 6.13 kt; PM2.5, 6.08 kt; present study 
in Lousã: PM10, 50.8 kt, PM2.5, 50.3 kt; MODIS in Lousã, 
PM10, 109 kt; PM2.5, 108 kt (Table 3). The difference 
between the maximum values from the current study and 
the other two approaches ranged between −44.7 kt (SEVIRI) 
and +58.2 kt (MODIS) for PM10 and from −44.3 kt (SEVIRI) 
to +57.7 kt (MODIS) for PM2.5. The same type of differences 
were also estimated for the PM10 and PM2.5 total emissions 
over the study area. For example, calculated PM10 values with 
the bottom-up approach were on average 4.5 times higher 
than SEVIRI values and 1.7 times lower than MODIS values. 

Smoke vs anthropogenic emissions 

To understand the magnitude of the atmospheric pollutant 
emissions during the study period, Fig. 7 shows PM10, PM2.5, 
NOx, CO, SO2 and NH3 emissions (in kt) by anthropogenic 
sector in mainland Portugal for the year 2017 (European 
Monitoring and Evaluation Programme (EMEP); http:// 
www.emep.int/). The Portuguese atmospheric emissions 

include the following Selected Nomenclature for Air 
Pollution (SNAP) activities: SNAP1 – energy production, 
SNAP2 – commercial, services and residential combustion, 
SNAP3&4 – industrial combustion and production processes, 
SNAP5 – extraction and distribution of fossil fuels, SNAP6 – 
solvents use, SNAP7 – road transport, SNAP8 – maritime 
transport, aviation and off-road transport, SNAP9 – waste 
treatment and disposal, and SNAP10 – agriculture. 

During the EWEs in October 2017 (~ 26 h), wildland fires 
emitted 2.7, 3.6 and 4.7 times more PM10, PM2.5 and CO, 
respectively, than Portuguese anthropogenic sources for the 
entire 2017 year. For NOx, the EWEs emitted a total of 
74.9 kt, which is higher than the annual emission from the 
Portuguese industrial (SNAP3&4 38.2 kt) and road transport 
(SNAP7 65.6 kt) sectors. The SO2 (15.2 kt) and NH3 (13.4 kt) 
emissions were lower (on average 4.8 times) than the total 
emissions from anthropogenic sectors. Notwithstanding 
these lower emissions, it is important to mention that 
EWEs emitted more SO2 (15.2 kt) than the annual emissions 
from public power activity (SNAP1 14.1 kt) as well as more 
NH3 (13.5 kt) than the Portuguese industrial sector for 2017 
(SNAP3&4  5.6 kt). 

Conclusions 

The present study focuses on estimating the atmospheric 
emissions resulting from the Portuguese wildfires of 2017 
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emissions (bottom panel) (in kt) from 
extreme wildfire events in October 
2017 quantified using SEVIRI, present 
study and MODIS approaches with a 
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10 × 10 km2.   

Table 3. Summary of the SEVIRI, bottom-up and MODIS results.       

Parameter Pollutant SEVIRI Bottom-up MODIS   

Maximum (kt) PM10 6.13 (Sertã) 50.8 (Lousã) 109 (Lousã) 

PM2.5 6.08 (Sertã) 50.3 (Lousã) 108 (Lousã) 

Total (kt) PM10 57.5 261 428 

PM2.5 57.0 250 425   
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with a high-resolution methodology. Burned area and land 
cover maps were used, together with forest inventory data 
for fuel load data and EFs updated for the Portuguese envir-
onment (as well as burning efficiency conditions). 

Based on estimated emissions, a high-detail spatial anal-
ysis was done and the most affected areas were identified. 
Fuel load has an important role in the final spatial distribu-
tion of emissions. The contribution of each forest species 
tototal emissions, per pollutant, was also assessed, with 
Pinus pinaster having the highest impact (37.49–42.47%), 
followed by eucalyptus (22.65–23.12%). 

The estimated emissions were then compared with satel-
lite data (SEVIRI and MODIS), showing good agreement in 
terms of total values. Satellite-based data, however, did not 
allow detection of the spatial variability found with the 
current high-resolution approach. These emissions were 
also compared with the total national anthropogenic emis-
sions throughout the Portuguese territory for the entire year 
2017, confirming the extreme importance of this type of 
event in relation to air quality levels over the year. 

This approach contributes to state-of-the-art knowledge on 
forest fire emissions, reducing the uncertainty level involved 
in this type of study and obtaining the best quantification – 
temporal and spatial – of the EWEs that occurred in Portugal 
in 2017. Unfortunately, it is impossible to fully validate the 
results by comparison with measured data, but quantitative 
values obtained indicate that fuel load has a very important 
role, and the spatial and temporal distributions provide fur-
ther insights into smoke emission during EWEs. In the near 
future, these emissions will be used as input data in a chemi-
cal transport model and comparison between its results (atmo-
spheric concentrations) and measured air quality data will 
contribute to validating the approach. Finally, the sample 
size is limited and is biased towards EWEs, so future work 
should use more fires across a broader range of severities. 
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