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Abstract. Live fuel moisture content plays a significant and complex role in wildfire propagation. However, in situ

historical and near real-time live fuel moisture measurements are temporally and spatially sparse within wildfire-prone

regions. Routine bi-weekly sampling intervals are sometimes exceeded if the weather is unfavourable and/or field
personnel are unavailable. To fill these spatial and temporal gaps, we have developed a daily gridded chamise
(Adenostoma fasciculatum) live fuel moisture product that can be used, in conjunction with other predictors, to assess
current and historical wildfire danger/behaviour. Chamise observations for 52 new- and 41 old-growth California sites

from the National Fuel Moisture Database were statistically related to dynamically downscaled high-resolution weather
predictors using a random forest machine learning model. This model captures reasonably well the temporal and spatial
variability of chamise live fuelmoisture content within California. Comparedwith observations, model-predicted live fuel

moisture values have an overallR2, root mean squared error (RMSE) and bias of 0.79, 15.34% and 0.26%, respectively, for
new growth and 0.63, 8.81% and 0.11% for old growth. Given the success of the model, we have begun to use it to produce
daily forecasts of chamise live fuel moisture content for California utilities.
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Introduction

Live fuel moisture content (LFMC) plays an integral role in
the propagation and intensity of wildfires because it affects
combustion and heat transfer rates within vegetation

(Dimitrakopoulos and Papaioannou 2001; Chuvieco et al. 2004;
Jurdao et al. 2012). Although the moisture content is higher
within the herbaceous portion of the plant (new growth) com-

pared with the woody material (old growth), both exhibit the
same annual cycle in California, typically peaking in the spring
(March–May) and declining to minima in early autumn
(August–September). This annual cycle is shaped by the amount

and frequency of winter/spring precipitation and the return of
summer drought (Keeley et al. 2009; Pivovaroff et al. 2019).
Tracking LFMC’s rate of decline from its spring maximum is

very important because it affects the onset and severity of larger
fire activity (Nolan et al. 2016). Importantly, summer/autumn
LFMC minima coincide with the return of the Southern

California Santa Ana wind season, creating a favourable envi-
ronment for large and destructive wildfires (Dennison et al.

2008; Rolinski et al. 2016).

LFMC has long been used by fire agencies, particularly fire
managers, to evaluate wildfire danger across their supported
territories. Wildfire danger is assessed and predicted using a
variety of fire behaviour metrics, including rates of spread,

flame length, and fireline intensity, all of which are a function of

LFMC. More recently, most of California’s electric utilities are
also beginning to use LFMC to assess wildfire potential.
Specifically, LFMC is used extensively by Southern California

Edison (SCE), where they have started sampling LFMC bi-
weekly within their service area to help understand the vegeta-
tion’s susceptibility to wildfire and to bolster their situational

awareness, especially during periods of critical fire weather.
LFMC is generally measured bi-weekly by physically

extracting small portions of the plant and performing a gravi-
metric process on the sample to determine its water content. The

calculation for LFMC is expressed as a percentage using the
following equation:

LFMC ¼ Weight of water in the vegetation

Dryweight of the vegetation
� 100

Because the vegetation water weight can exceed that of

the dry matter, LFMC can exceed 100%. In California, LFMC
is sampled by various federal, state, and local fire agencies,
with the most commonly sampled species consisting of:
chamise (Adenostoma fasciculatum); buckwheat (Fagopyrum

esculentum); sagebrush (Artemisia tridentata); hoaryleaf and
bigpod ceanothus (Ceanothus crassifolius and ceanothus
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megacarpus); and manzanita (Arctostaphylos). Although there
are other native species across the landscape, these are most
frequently sampled due to their abundance and ease of access

within wildfire-prone regions. This paper focuses on chamise,
which has relatively abundant observation data, a prerequisite
for building a skilful LFMC model.

LFMC is modulated by plant phenology, and both are
affected by short-term (days) and long-term (months) changes
in weather and root zone soil moisture. Important weather

variables include incoming solar radiation, near-surface air
temperature and relative humidity, and precipitation. Root zone
soil moisture is influenced by both soil type and time integra-
tions of these weather variables, all of which can be a function of

location, elevation and proximity to large bodies of water.
Additionally, soil moisture is impacted by rainfall runoff
(to and from the location of interest), evaporation (from the

surface and evapotranspiration), and soil water recharge. All of
the above factors can influence plant photosynthesis, the timing
of reproduction cycles, and LFMC (Dennison and Moritz 2009;

Holden and Jolly 2011; Qi et al. 2014).
Although LFMC observations are critical to understanding

the environmental conditions that may lead to significant fire

activity, they are severely undersampled (temporally and
spatially). This problem is exacerbated when regular sampling
is disrupted due to changes in staffing (such as when key
personnel are committed to fire incidents), and/or when a fire

consumes the vegetation within the sampling collection site. For
these reasons, there is a need for a daily gridded LFMC product.
Higher spatial and temporal resolution LFMC data can be used

to assess fire danger in between sparse observation locations as
well as provide inputs for high-resolution fire spread modelling
simulations.

Many efforts to model LFMC have been made in recent
years, most of which include the use of remote sensing technol-
ogies to measure leaf water content (Chuvieco 2003; Danson
and Bowyer 2004; Peterson et al. 2008; Qi et al. 2012; Yebra

et al. 2013;Garcı́a et al. 2020;McCandless et al. 2020; Rao et al.
2020; Michael et al. 2021). Specifically, the use of Moderate
Resolution Imaging Spectroradiometer (MODIS) and Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) has been
reported by Serrano et al. (2000), Yebra et al. (2008) and
Myoung et al. (2018). Additionally, a combination of the

Normalized Difference Vegetation Index (NDVI) and surface
temperature was used to estimate LFMC by Chuvieco et al.

(2004). These remote-sensed based products help fill in the

spatial and temporal gaps left by in situ LFMC observations.
In comparison, several studies have used in situmeteorolog-

ical predictors in their LFMC models, without using remotely
sensed data. Viegas et al. (2001) estimated LFMC in various

plant species in Catalunya and Central Portugal as a function of
several fire weather indices calculated based on the Canadian
Forest Fire Weather Index System. In addition to these fire

weather indices, Castro et al. (2003) also explored numerous
other predictors in their LFMC model for Cistus monspeliensis
in the Catalonia region of Spain, including temperature,

relative humidity and soil water reserve. Dimitrakopoulos and
Bemmerzouk (2003) modelled LFMC in three plant species in
theMediterranean region of Crete, Greece as a linear function of
the Keetch–Byram Drought Index (KBDI). Their study was

extended by Pellizzaro et al. (2007) by including other well
known drought indices. More recently, Ruffault et al. (2018)
have evaluated the usefulness of various drought indexes in

modelling LFMC.
In this paper, we adopt an approach similar to the latter, with

a goal of providing historical and near real-time chamise LFMC

estimates across California. This is accomplished by building a
random forest machine learning model relating in situ LFMC
observations to high-resolution, validated numerical weather

model data. In contrast with previous studies that use automatic
weather station data, this effort uses LFMC meteorological
predictors (Table 1) taken from a gridded product. This is
necessary to generate a high-resolution gridded LFMC product.

Our method is also advantageous over the remote sensing
approach in that it can provide not only historical LFMC values
well before the satellite era, but also near real-time LFMC

forecasts afforded by operational weather forecasting.
This paper will present the methodology used to develop our

machine learning model to approximate new- and old-growth

chamise LFMC within California. First, we will illustrate the
types of data collected and generated for this modelling effort,
which includes in situ LFMC observations and high-resolution

weather data. Second, we will describe the predictor screening
process and the random forestmodel construction and validation

Table 1. List of LFMC model predictors

All predictors are standardised before being used to build random forest

models. All temperature and relative humidity (RH) variables are at 2m

above the ground, wind speed is at 10m above the ground and incoming

shortwave radiation is at the surface

Predictor

abbreviation

Description

Day length Day length

VPD Vapour Pressure Deficit

Sine(Jday) Sine of Julian Day

Cosine(Jday) Cosine of Julian Day

TempMax3Day 3-day sum of daily maximum temperature

TempMax7Day 7-day sum of daily maximum temperature

RHMax3Day 3-day sum of daily maximum RH

RHMax7Day 7-day sum of daily maximum RH

Precip3Day Sum 3-day sum of daily total precipitation

Precip7Day Sum 7-day sum of daily total precipitation

Temp90Day Moving Average 90-day temperature

Temp150Day Moving Average 150-day temperature

RH150Day Moving Average 150-day RH

Wind30Day Moving Average 30-day wind speed

SolarRad150Day Moving Average 150-day incoming

shortwave radiation

Precip30Day Decay Daily total precipitation with a 30-day decay

function

Precip90Day Decay Daily total precipitationwith a 90 day decay function

Precip240Day Decay Daily total precipitation with a 240-day decay

function

Precip30Day Count Number of days when precipitation .6.35mm

(0.25 inch) within past 30 days

Precip90Day Count Number of days when precipitation .6.35mm

(0.25 inch) within past 90 days

Precip240Day Count Number of days when precipitation .6.35mm

(0.25 inch) within past 240 days
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process. Third, we will assess our model performance using
correlation, bias and root mean squared error (RMSE), and
compare our model skill with other studies. Finally, we will

summarise our results and discuss future work.

Data collection

For the purpose of developing our models, we acquired histor-
ical chamise new- and old-growth LFMC observations from the

National Fuel Moisture Database (NFMD) web-based interface.
This database serves as a central repository for national LFMC
observations, thus eliminating the time-consuming task of

contacting and gathering measurements from each fire agency
separately. LFMC measurements were initially retrieved for
more than 100 sites across California. However, this initial site

count decreased as measurements were carefully screened
before building the machine learning model.

Because multiple fire agencies contribute data to the national

archive, the data need to be vetted to make sure LFMC new- and
old growth are consistently categorised among sites. Some fire
agencies sample both new- and old-growth chamise and store
and label the data as such, while others do not. To categorise the

LFMC data as either new or old growth for unclearly labelled
sites, we applied a historical pattern analysis by taking the
following steps. First, we calculated the typical magnitude of

yearly LFMC ranges for both new- and old growth based on the
clearly labelled sites. LFMC typically ranges from 50% to 200%
for new growth and 40% to 150% for old growth. Then, we

tentatively categorised a site with the magnitude of yearly
LFMC ranges greater than or equal to 150% as a new-growth
site or less than or equal to 110% as an old-growth site. Sites that
did not fall into these two categories were discarded. Finally, we

conducted one-tailed two-sample t-tests at 5% significance level
to evaluate if themean of the LFMC time series resembles either
the new-growth population mean of 89% or the old-growth

population mean of 67%. Those time series that passed our tests
were either designated as new or old growth. Data that did not
meet our LFMC new- or old-growth criteria described above

were discarded. After vetting our data, 52 chamise new-growth
sites and 41 chamise old-growth sites were retained for our study
(Fig. 1). Tables 2 and 3 provide the site name and associated start

date, end date and record count for each new- and old-growth
site location. The earliest vetted LFMC data start in 1983, with
most sites having data through 2020.

To produce a gridded LFMC product, a high spatial and

temporal resolution historical weather dataset was built provid-
ing data at all of the screened site observation locations and time
spans reported in Tables 2 and 3. These historical weather

data were generated using a validated configuration of the
Advanced Research Weather Research and Forecast model
(WRF) version 4.0.3 (Skamarock et al. 2019). WRF dynami-

cally downscaled the National Centers for Environmental
Prediction Climate Forecast System Reanalysis (CFSR)
(Saha et al. 2010) using 52 vertical levels and three domains
consisting of an outer 18-km resolution domain with two inner

6- and 2-km resolution nested domains (Fig. 1). Multiple poten-
tial WRF configurations were validated using three observation
data sources: Remote Automated Weather Stations (RAWS)

(Zachariassen et al. 2003), Automated Surface Observation

System (ASOS; ASOS 1998), and SCE’s weather stations. The
WRF configuration that minimised the near-surface wind speed,
temperature and dew point verification metrics (e.g. RMSE,

correlation) was selected. This configuration includes the Morri-
son double-momentmicrophysics scheme (Morrison et al. 2009),
the new Goddard longwave and shortwave radiation schemes

(Chou and Suarez 1999), the Mellor–Yamada Nakanishi and
Niino Level 3 (MYNN3) PBL (Nakanishi and Niino 2006), the
Noah-MP (multi-physics) Land Surface Model (Niu et al. 2011)

and the Kain–Fritsch cumulus scheme (Kain 2004), which was
activated in the outermost domain only. Historical weather data
from the WRF grid cell closest to each LFMC site were matched
to LFMC measurements, with hourly WRF data temporally

aggregated to obtain daily values. Potential predictor variables
(e.g. air temperature, relative humidity, soil moisture and
precipitation) across various time spans were then created for

LFMC model development.

LFMC machine learning models

Model construction

To model daily LFMC as a function of weather predictors, we

adopted a random forest (RF) regression method. RF was found
to minimise the LFMC error compared with several other
machine learning methods, according to a recent study by
McCandless et al. (2020). Separate chamise new- and old-

growth RF models were trained using predictors from the
gridded high-resolution weather data. Feature selection and
parameter tuning was performed to achieve optimised RF

models. Following peer-reviewed literature, we derived many
predictors from the gridded weather data output, with temporal
scales ranging from short-term (1–7 days) to long-term (30–240

days) periods. We then screened each predictor based on the
incremental change in LFMC RMSE resulting from the inclu-
sion or exclusion of that predictor. The end result is a set of
optimised RF models relating a set of key predictors to LFMC,

which are listed in Table 1.
Different RF parameter configurations were tested to mini-

mise LFMCRMSE. Tuneable RF parameters include node size,

number of trees, and percentage of randomly selected variables
(Probst et al. 2019). Our algorithm converged when the number
of random forest trees reached 200. The LFMC RMSE were

minimised with a parameter node size of five and the percentage
of randomly selected variables of 80%. The importance rank
plot for the final new- and old-growth model is presented in

Figs 2 and 3, respectively. Long-term precipitation predictors
(90–240 days) emerge as the most important predictors in
both new- and old-growth models. This makes physical sense
given that plant material development is a moisture limited

process and root zone soil moisture is a function of cumulative
precipitation, potential evapotranspiration as well as soil physi-
cal properties (e.g. texture, depth, stone cover, etc.). In fact,

Dennison and Moritz (2009) indicated that long-term precipita-
tion accumulations (previous one-month to three-month period)
impact the timing of LFMC decline and are strongly correlated

with historical California wildfires. Day length is also a key
predictor for the new-growth model, and long-term (150 days)
near-surface air temperature is crucial for the old-growthmodel.
Both of these predictors change with the seasons and modulate
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plant activity and development. Finally, our RF new- and old-

growth models, now trained using the full dataset with optimal
parameter settings, are stored for historical and operational
implementation.

Model validation

Our goal is to produce a gridded high-resolution daily chamise

LFMC hindcast and forecast model for California, assuming
chamise grows across the state. Given the sparse NFMD site
locations (52 chamise new-growth sites and 41 chamise old-

growth sites), we must test whether our models perform rea-
sonably well at locations without observations. To do this, we
perform many cross-validation iterations. For each validation
iteration, we leave one site out for testing and use LFMC

observations from all other sites to train an RF model using
optimal model settings. Overall, we conducted a 52-fold
(41-fold) cross-validation assessment for the new (old) growth

model that corresponds to the number of sites available in each

chamise fuel category. This allows us to determine if the model
trained at sites with observations can be applied at locations
without chamise observations across California, where mod-

elled LFMC is influenced by the spatial and temporal variability
of the weather predictors.

Results

To assess the performance of the RF models, we collected
testing results from all cross-validation iterations for all sites. In

Fig. 4, observed LFMC is plotted against model-predicted
LFMC for both new- and old-growth sites. Our models per-
form well, with an overall correlation, RMSE and bias of 0.89,

15.34% and 0.26%, respectively, for new-growth LFMC and
0.79, 8.81% and 0.11% for old-growth LFMC (see Tables 2
and 3). Furthermore, the predicted and observed LFMC are

distributed along the perfect fit line (y ¼ x) for both new- and

Fig. 1. Map showing the region of interest containing portions of California, Nevada and Arizona. Colour scheme represents vegetation density ranging

from urban areas (white), deserts (tan) to forests (green). Figure inset top right shows all three of theWRF domain extents (red boxes). In themain portion

of the figure, the innermost WRF domain (red box) encompasses the National Fuel Moisture Database observation locations for new-growth chamise

(open black circles) and old-growth chamise (filled red circles).
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Table 2. Site level chamise new-growth random forest model summary table ranked by testing RMSE in

increasing order

All 11 021 new-growth LFMC records are used to calculate overall statistics. RMSE and bias have units of %. Dates

formatted as year–month–day

Site information Testing Training

Site Start date End date Records RMSE Bias RMSE Bias

Case Springs RAWS 2009–04–15 2010–09–17 9 7.29 4.92 2.91 2.02

Priest Grade 2020–05–26 2020–10–05 5 7.91 –6.25 3.11 –2.40

Peach Motorway 2005–01–22 2015–06–25 244 10.12 1.57 3.98 0.66

Stunt Road Calabasas 2006–01–01 2020–10–30 339 10.59 –0.15 4.22 –0.04

Pico Canyon 1990–01–12 2004–12–22 273 10.94 –2.78 4.30 –1.08

Schueren Road Malibu 1990–01–12 2020–10–30 554 11.05 0.59 4.35 0.23

Laurel Canyon Mt Olympus 1990–01–12 2020–10–30 591 11.15 2.65 4.40 1.07

Bitter Canyon Castaic 1992–01–17 2020–10–30 519 11.24 –0.19 4.51 0.00

Clark Motorway Malibu 1990–01–12 2018–11–13 631 11.78 –2.00 4.67 –0.85

Cameron 2009–07–15 2009–07–15 1 12.11 12.11 4.70 4.70

Laguna Ridge Casitas 2009–01–08 2020–09–01 224 12.77 4.99 5.10 1.96

Placerita Canyon 1990–01–12 2016–07–22 541 12.78 –2.12 5.16 –0.90

Woolsey Canyon 1990–01–12 2018–11–13 443 12.84 –3.85 5.18 –1.49

Sedco Hills 2019–09–16 2020–10–26 30 13.00 2.34 5.09 0.78

Sycamore Canyon 1990–01–12 2002–09–17 202 13.14 –2.01 5.22 –0.85

Irish Hills 2006–05–01 2020–10–15 192 13.25 2.27 5.47 0.97

Lamb Canyon 2019–09–16 2020–10–26 30 13.77 2.54 4.99 1.17

Templin Highway 1990–01–12 2020–10–30 290 13.80 1.38 5.39 0.63

Bouquet Canyon 1990–01–12 2020–10–30 620 13.90 0.47 5.51 0.21

Gifford 2011–12–15 2020–10–15 149 14.11 5.75 5.66 2.18

Parkhill 2006–05–01 2020–10–15 200 14.21 1.64 5.66 0.61

Lake Hughes 2009–01–15 2019–05–14 130 14.41 1.85 5.94 0.60

Smith Ranch 1983–06–01 2020–09–15 310 14.63 2.55 5.88 0.92

Elk Creek 1997–05–29 2020–10–21 325 15.44 3.15 6.36 1.25

San Marcos 2012–01–01 2020–10–15 117 15.48 0.91 6.22 0.21

Sisar Canyon Upper Ojai Valley 2009–01–08 2017–11–14 182 16.61 7.17 6.61 2.77

Marshall Grade 2002–07–15 2020–06–22 143 16.92 –2.36 6.98 –0.93

Los Alamos 2012–01–01 2020–10–15 151 17.07 –0.04 6.71 –0.14

Glendora Ridge Glendora 2002–11–12 2020–10–30 350 17.12 –3.99 6.92 –1.60

Descanso Station 2004–05–15 2018–08–14 144 17.23 5.28 6.80 1.96

Black Star 2008–03–01 2020–10–13 178 17.27 2.04 7.16 0.69

White Star 2009–04–15 2020–10–05 90 17.33 –1.08 6.81 –0.43

Strawberry 1984–03–09 2018–09–24 304 17.45 3.87 7.01 1.48

Valley Springs 2013–05–23 2020–07–03 34 17.50 15.23 6.89 5.90

Rose Valley 2012–05–01 2020–10–15 122 17.71 –2.28 7.36 –0.77

Gold Creek 2009–01–07 2017–11–30 121 17.84 –1.58 7.16 –0.72

Oak Flat 2012–05–01 2020–10–15 139 18.21 2.96 7.67 1.11

Cottonwood 2017–03–21 2018–09–24 21 18.26 –0.48 7.54 –0.50

Reyes Creek 2012–01–01 2020–10–15 139 18.41 8.96 7.28 3.39

Warner Springs 2009–04–15 2020–09–29 84 18.61 3.22 7.44 1.13

Usbor 1983–06–13 2020–10–26 727 18.92 0.49 7.71 0.19

Glendora Motorway 2007–04–26 2019–04–26 108 19.96 –3.83 8.28 –1.60

Lopez Lake 2006–05–01 2020–10–15 198 20.55 –9.73 8.40 –3.93

Mt Woodson Station 2010–03–16 2020–06–17 75 21.24 0.97 8.35 0.59

Tonzi Road 2002–05–15 2020–06–22 167 21.29 0.45 8.81 0.23

Sonora 2003–03–19 2020–10–05 121 21.53 –3.99 8.97 –1.51

El Portal 2001–05–29 2014–09–24 117 21.77 1.79 9.17 0.61

Black Star CNF 2010–01–01 2014–07–01 35 22.72 1.03 9.70 0.77

Groveland 2014–07–02 2020–10–01 66 22.78 6.48 9.60 2.37

Lady Bug 2015–06–02 2019–05–14 19 23.64 –7.46 8.99 –3.05

Jake Flat 1984–07–18 2015–01–20 180 26.22 –7.77 10.71 –2.86

El Cariso CNF 2010–01–01 2014–07–01 37 26.47 –7.29 10.94 –2.96

Overall statistics 11 021 15.34 0.26 6.21 0.09
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old-growth models. Nevertheless, the old-growth LFMC model
underestimates observations for the few outliers that are greater
than 100%. For the new-growth model, the scatter increases as
observed LFMC values increase, indicative of a model perfor-

mance degradation as LFMC approaches extremely high values.
Clearly, the fluctuations within the lower range of the

LFMC spectrum play a significant role in the propagation and

intensity of wildfires (Peterson et al. 2008). To assess the model
performance for this critical range, we also conducted more
targeted model validations during periods when observed

LFMC dropped to 100% or below for new-growth sites and

90% or below for old-growth sites. Within these LFMC ranges,
our model has an overall correlation, RMSE and bias of 0.73,
11.02% and 3.46% for new growth, respectively, and 0.80,
7.20% and 1.07% for old growth. Although there is minimal

change in correlation and bias, the LFMC RMSE is reduced by
,4% and,2% for the new- and old-growth sites, respectively.
This suggests that the LFMC model will capture the late spring

to early summer vegetation drying period, which precedes the
start of peak wildfire season in California.

To further evaluate the model, we calculated training and

testing error statistics for each of the 52 new-growth and 41

Table 3. Site level chamise old-growth random forest model summary table ranked by testing RMSE in

increasing order

All 4917 old-growth LFMC records are used to calculate overall statistics. RMSE and bias have units of %. Dates

formatted as year–month–day

Site information Testing Training

Site Start date End date Records RMSE Bias RMSE Bias

Case Springs RAWS 2009–04–15 2010–09–17 9 4.28 0.36 1.77 –0.03

Cottonwood 2017–03–21 2018–09–24 21 5.47 0.84 2.16 0.28

Descanso Station 2003–11–15 2018–08–14 155 5.56 0.62 2.31 0.30

Converse 2017–03–21 2018–06–26 14 5.82 –1.00 2.30 –0.44

Lady Bug 2015–06–02 2019–05–14 19 6.15 2.88 2.39 0.96

Irish Hills 2006–05–01 2020–10–15 203 6.28 1.09 2.55 0.52

RMV 2015–04–14 2020–09–15 50 6.39 3.48 2.48 1.32

Upper Oso 2012–05–01 2020–10–15 88 6.64 3.69 2.59 1.46

Parkhill 2006–05–01 2020–10–15 210 6.70 0.97 2.69 0.43

Potrero Station 2010–12–03 2020–10–05 83 7.04 1.20 2.84 0.51

Elk Creek 1997–05–29 2020–10–21 325 7.10 2.04 2.87 0.82

Lake Hughes 2009–01–15 2019–05–14 130 7.17 1.05 2.86 0.44

Strawberry 1984–03–09 2018–09–24 303 7.39 2.61 2.92 1.03

Black Star 2009–01–15 2020–10–13 162 7.41 1.05 3.35 0.39

Groveland 2014–07–02 2020–10–01 68 7.49 1.42 3.03 0.62

Smith Ranch 1983–06–01 2020–09–15 359 7.50 1.47 3.04 0.58

Warner Springs 2009–04–15 2020–09–29 131 7.54 –2.05 3.06 –0.75

Temescal CNF 2009–05–01 2014–07–01 30 7.70 –1.50 2.89 –0.43

Gold Creek 2009–01–07 2017–11–30 121 7.72 –0.79 3.20 –0.37

Gifford 2011–12–15 2020–10–15 149 7.75 0.77 3.14 0.29

Los Gatos 2010–08–18 2012–02–15 8 7.78 –3.07 3.18 –1.40

Lockwood Old Growth 2011–07–15 2020–09–16 91 7.85 4.22 3.11 1.69

Rose Valley 2012–05–01 2020–10–15 122 7.97 –0.10 3.23 –0.04

Reyes Creek 2012–01–01 2020–10–15 139 8.28 2.93 3.34 1.11

White Star 2009–04–15 2020–10–05 135 8.59 –1.51 3.47 –0.50

Marshall Grade 2002–07–01 2020–06–22 157 8.64 –1.24 3.45 –0.34

Parkfield Old Growth 2011–07–17 2020–09–18 78 8.75 –1.42 3.45 –0.58

Jake Flat 1984–07–18 2015–01–20 183 9.14 –2.14 3.82 –0.77

El Cariso CNF 2010–02–01 2014–07–01 36 9.34 0.10 3.68 0.07

Oak Flat 2012–05–01 2020–10–15 139 9.44 0.05 4.10 –0.02

San Marcos 2012–01–01 2020–10–15 117 9.90 –1.32 4.47 –0.59

Los Alamos 2012–01–01 2020–10–15 151 9.97 –3.02 4.24 –1.25

Mt Woodson Station 2009–04–15 2020–06–17 137 10.11 –1.20 4.05 –0.45

Glendora Motorway 2007–04–26 2019–04–26 104 10.18 –2.26 4.15 –0.83

Valley Springs 2013–05–23 2020–07–03 34 10.21 7.43 4.14 2.97

Black Star CNF 2009–08–01 2014–07–01 38 10.50 1.75 5.53 1.14

Lopez Lake 2006–05–01 2020–10–15 208 10.89 –5.22 4.52 –2.10

Rainbow Camp 2009–05–15 2020–09–29 154 13.14 –3.30 5.54 –1.30

El Portal 2001–05–29 2014–09–24 129 14.16 –0.29 6.01 –0.14

Sonora 2003–03–19 2020–10–05 122 15.41 –1.65 6.83 –0.71

Priest Grade 2020–05–26 2020–10–05 5 22.85 –15.71 10.17 –6.70

Overall statistics 4917 8.81 0.11 3.67 0.06
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old-growth sites. In Table 2, the 52 new-growth sites (consisting

of a total of 11 021 LFMC vetted records) are ranked from the
best to worst performance according to the testing RMSE.

For most new-growth sites, the training RMSE are below

9.0%, indicating that the RF model fits the data reasonably
well. Not surprisingly, the testing RMSE are somewhat larger,

ranging from 7.3% to 26.5%. The degradation in model

performance for testing may be attributable in part to the
sparseness and inconsistency in LFMC sampling, as discussed
in the introduction. Another possible culprit may be the

modelling errors in weather predictors, which arise in part
from the intrinsic limitation on weather predictability over
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increases along the abscissa.
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regions with complex terrain (Doyle et al. 2011). Nevertheless,

the overall testing RMSE (15.34%) calculated from all new-
growth LFMC site testing data remains relatively small com-
pared with the magnitude of the new-growth LFMC, which

typically ranges from 50% to 200%, but can occasionally
exceed 240%. As for model biases, the training bias is near
zero, typically ranging from –2% to 2% among new-growth

sites. In comparison, the testing bias is somewhat larger,
typically ranging from –6% to 6%. However, the overall
training (0.09%) and testing (0.26%) biases are near zero,

which indicates that the new-growth model provides an
approximately unbiased LFMC estimation.

In Table 3, the 41 old-growth sites (consisting of a total of
4917 vetted records) are ranked according to testing RMSE.

Both training and testing biases are centred near zero, mostly
between –1.5% and 1.5%. Similar to the new-growth LFMC
model, approximately unbiased predictions can be expected

when we implement the old-growth model within California.
The testing RMSE of LFMC are typically much smaller for the
old-growth sites compared with the new-growth sites. For

example, 78% of the old-growth sites have a testing RMSE
below 10%, whereas 81% of the new-growth sites have a testing
RMSE less than 20%. This is consistent with the fact that woody
material contains less water and tends to have less annual

variability than the herbaceous portion of the plant
(Countryman and Dean 1979; see Figs 5 and 6 as well).

To assess whether the RF model can capture the inter-annual

variability in LFMC, we compared the LFMC time series for a
recent dry year (2015) and wet year (2017) at two different sites:
Bitter Canyon Castaic and Irish Hills. Bitter Canyon Castaic is a

new-growth LFMC site and Irish Hills is an old-growth LFMC
site. Both sites have the most LFMC observations during these
2 years compared with other sites. Figures 5 and 6 compare the

observed and modelled LFMC time series for both years at the

Bitter Canyon Castaic and Irish Hills sites respectively. Each
site’s observed historical monthly mean LFMC time series is
plotted to help detect the differences between wet and dry years.

For both old and new-growth LFMC sites, our RF model
captures the observed LFMC wet and dry year contrast with
relatively higher LFMC values throughout most of the year in

2017 compared with 2015. These LFMC differences are more
pronounced earlier in the year and trend towards smaller
differences at the end of each year. As expected for old-

growth LFMC, the annual observed and modelled LFMC time
series comparison between 2017 and 2015 yields a less dramatic
difference at the Irish Hills site.

The various testing verification metrics presented above

were obtained via cross-validation, which leaves one site out
as the testing data at each iteration. The high correlations,
relatively low RMSE and near-zero biases give us confidence

that our models can provide reliable LFMC estimates at loca-
tions without observations. To demonstrate that, we computed
LFMC at all locations within our domain using the RF LFMC

model and gridded weather predictors for both 2015 and 2017.
Figures 7 and 8 show the geographic distributions of the new-
and old-growth LFMC inMay of 2015 and 2017 respectively. In
all maps, the LFMC spatial variability appears to be realistic,

with the coast and higher elevations being moister than interior
low- to mid-elevation locations. This confirms that our model
can capture spatial variability in LFMC, when combined with a

good sample of significant predictors that may vary consider-
ably from one location to another. Furthermore, there is a
noticeable distinction in LFMC between dry and wet years for

both the new (Fig. 7) and old growth (Fig. 8), which confirms
that our model can adequately capture inter-annual LFMC
variability.
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Fig. 4. Scatter plots of predicted and observed LFMC for old- (left) and new-growth models (right). The red dotted line indicates a perfect fit.
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Discussion and conclusion

As discussed in the introduction, many LFMCmodels have been

developed in the past. It is therefore beneficial to comparemodel

performance between our LFMC model and others. The LFMC

model in Rao et al. (2020) has an overall R2, RMSE and bias of

0.63, 25.0% and 1.9%; the Yebra et al. (2018) model has an

overall R2 and RMSE of 0.58 and 40.0%; the Qi et al. (2012)

model has an overall R2 and MAE of 0.27 and 28.1%; the
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Fig. 5. Observed (black line and dots) and modelled (red line and dots) daily new-growth LFMC time series for the Bitter Canyon Castaic site during

2 years. Each LFMC observation (black dots) is paired with modelled LFMC from the same location and day (red dots). The light blue line is the observed

historical monthly mean LFMC for the Bitter Canyon Castaic site. The year 2015 (left plot) is a relatively dry year and the year 2017 (right plot) is a

relatively wet year.
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Fig. 6. Observed (black line and dots) and modelled (red line and dots) daily old-growth LFMC time series for the Irish Hills site during 2 years. Each
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Fig. 7. Monthly average chamise new-growth LFMCmodel output validMay 2015 (left) andMay 2017 (right) across a portion of California.

Model output is provided for all land locations below 3300m (approximate elevation of the tree line in California), regardless of whether or not

chamise exists. Black circles indicate Irish Hills and Bitter Canyon Castaic sampling site locations.
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Fig. 8. Monthly average chamise old-growth LFMCmodel output valid May 2015 (left) and May 2017 (right) across a portion of California. Model

output is provided for all land locations below 3300m (approximate elevation of the tree line in California), regardless of whether or not chamise exists.

Black circles indicate Irish Hills and Bitter Canyon Castaic sampling site locations.

Modelling chamise fuel moisture across California Int. J. Wildland Fire 145



Ruffault et al. (2018) model has an R2 and RMSE of 0.3 and
20%; and the McCandless et al. (2020) model has an overall
RMSE of ,22% (all figures respective). The R2 in various

LFMCmodels proposed in Viegas et al. (2001) range from 0.12
to 0.79. Our random forest model has an overall R2, RMSE and
bias of 0.79, 15.34% and 0.26% for chamise new growth and an

overall R2, RMSE and bias of 0.63, 8.81% and 0.11% for cha-
mise old growth (all figures respective). Based on these verifi-
cation metrics, our model appears to compare favourably with

the LFMC models developed in those studies. However, we
acknowledge that a more vigorous comparison is required to
make ameaningful assessment about the performance of various
LFMC models, because different studies have focused on dif-

ferent vegetation species at different locations while using dif-
ferent validation methods.

Model accuracy suffers when attempting to capture peak

chamise LFMC values. We believe this can be mostly attributed
to having fewer observed peak values because the majority of
LFMC values are below 100%, especially for old-growth

chamise (Fig. 4). However, we are less concerned about model
performance associated with peak values because higher fire
danger occurs with lower LFMC values (Peterson et al. 2008).

Capturing the rate of change and values at the lower spectrum
are more important for determining the yearly timing of the
onset of large fire occurrence as well as wildfire spread and
behaviour (Dennison et al. 2008). Our reported reduced RMSE

for lower LFMC ranges indicates that our model performs
reasonably well in this regard.

Several studies document the use of in situ observations that

include meteorological predictors. For example, Castro et al.

(2003) demonstrated skill in estimating LFMC in Cistus mon-

speliensis across the Catalonia region of Spain using some of the

same meteorological variables used herein. Of particular interest
was the use of the summation of temperatures and precipitation
over multiple-day periods in their regression models. This
provides an indirect formof validation for ourmodel construction

since we found these types of predictors to be important as well.
Given the success of our LFMC model, we have begun to

produce multiple day forecasts for California utilities operation-

ally. These forecasts are provided on a 2-dimensional grid in
different domains within California. We have also applied our
models to dynamically downscaled historical weather data and

obtained a multi-decadal historical LFMC dataset for California
utilities to facilitate their wildfire research initiatives. It is
important to note that although our LFMC model can provide

hindcasts and forecasts for any location with necessary weather
data, this model output should be used only over regions where
chamise is the dominant vegetation type. Such information is
typically provided by a gridded fuel category dataset (e.g.

LANDFIRE 2008).
Future work may include several research topics. First, the

2-km resolution WRF simulations, which are employed in this

study, do not perfectly resolve terrain features including slope
and aspect, and soil type features. Therefore, there is a need to
use higher resolutions to improve the accuracy of weather

predictors used in our LFMCmodel. This will be made possible
by the ever-increasing power of computational resources. Sec-
ond, our models can be retrained to improve performance as
more observations become available. With more LFMC

observations, we will also be able to explore other machine
learning approaches such as various deep learningmethods (Jain
et al. 2020) to further improve LFMC modelling. Finally, a

similar methodologymay be developed tomodel LFMC in other
vegetation types that are common within the wildland environ-
ment and have abundant observations as suggested by many

other studies.
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J, Pérez F (2004) Combining NDVI and surface temperature for the

estimation of live fuel moisture content in forest fire danger rating.

Remote Sensing of Environment 92, 322–331. doi:10.1016/J.RSE.2004.

01.019

Countryman CM, Dean WH (1979) Measuring moisture content in living

chaparral: a field user’s manual. USDA, Forest Service Pacific South-

west Forest and Range Experiment Station, General Technical Report

PSW-36. (Berkeley, CA, USA)

Danson FM, Bowyer P (2004) Estimating live fuel moisture content from

remotely sensed reflectance. Remote Sensing of Environment 92, 309–

321. doi:10.1016/J.RSE.2004.03.017

Dennison PE, Moritz MA (2009) Critical live fuel moisture in chaparral

ecosystems: a threshold for fire activity and its relationship to antecedent

precipitation. International Journal of Wildland Fire 18, 1021–1027.

doi:10.1071/WF08055

146 Int. J. Wildland Fire S. B. Capps et al.

http://www.wfas.net/index.php/national-fuel-moisture-database-moisture-drought-103
http://www.wfas.net/index.php/national-fuel-moisture-database-moisture-drought-103
http://www.r-project.org/foundation/
http://www.python.org
http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf
http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf
http://dx.doi.org/10.1016/S0168-1923(02)00248-4
http://dx.doi.org/10.1016/J.RSE.2004.01.019
http://dx.doi.org/10.1016/J.RSE.2004.01.019
http://dx.doi.org/10.1016/J.RSE.2004.03.017
http://dx.doi.org/10.1071/WF08055


Dennison PE, MoritzMA, Taylor RS (2008) Evaluating predictivemodels of

critical live fuel moisture in the Santa Monica Mountains, California.

International Journal of Wildland Fire 17, 18–27. doi:10.1071/

WF07017

Dimitrakopoulos AP, Bemmerzouk AM (2003) Predicting live herbaceous

moisture content from a seasonal drought index. International Journal of

Biometeorology 47, 73–79. doi:10.1007/S00484-002-0151-1

Dimitrakopoulos AP, Papaioannou KK (2001) Flammability assessment of

Mediterranean forest fuels. Fire Technology 37, 143–152. doi:10.1023/

A:1011641601076
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