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Abstract. Wildland fire occurrence prediction (FOP) modelling supports fire management decisions, such as suppres-

sion resource pre-positioning and the routeing of detection patrols. Common empirical modelling methods for FOP
include both model-based (statistical modelling) and algorithmic-based (machine learning) approaches. However, it was
recently shown that many machine learning models in FOP literature are not suitable for fire management operations

because of overprediction if not properly calibrated to output true probabilities. We present methods for properly
calibrating statistical and machine learning models for fine-scale, spatially explicit daily FOP followed by a case-study
comparison of human-caused FOPmodelling in the Lac LaBiche region ofAlberta, Canada, using data from 1996 to 2016.

Calibrated bagged classification trees, random forests, neural networks, logistic regressionmodels and logistic generalised
additive models (GAMs) are compared in order to assess the pros and cons of these approaches when properly calibrated.
Results suggest that logistic GAMs can have similar performance to machine learning models for FOP. Hence, we
advocate that the pros and cons of different modelling approaches should be discussed with fire management practitioners

when determining which models to use operationally because statistical methods are commonly viewed as more
interpretable than machine learning methods.
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Introduction

Human-caused wildland fires have caused growing levels of
concern across the globe (e.g. Costafreda-Aumedes et al. 2017).
In Canada, the threat of wildland fires to life, property and natural

resources has increased over the last several years (Canadian
Council of ForestMinistersWildland FireManagementWorking
Group 2016). In the province of Alberta alone, over 7000 wild-

land fires occurred from2011 to2016, burning over 1.5million ha
of land (Government of Alberta 2018). Hundreds of millions of
dollars are spent on efforts to mitigate the negative impacts
associated with wildland fires. For example, the average annual

expenditure on fire management in the province of Alberta,
Canada exceeds CA$200 million (Stocks 2013). In order to
increase the effectiveness of wildland fire management without

increasing its costs, statisticians, operations research specialists
and other researchers have studied a variety of wildland fire-
related problems, including attempting to optimise wildland fire

detection strategies, initial attack strategies and wildland fire
occurrence prediction (FOP) (Martell 2007).

More and more, wildland fire management is being regarded

as a type of natural hazards riskmanagement, where ‘risk’ in this
context considers the likelihood of fire and its potential impacts
(Xi et al. 2019; Johnston et al. 2020). Fine-scale, spatially

explicit daily FOP plays a crucial role in wildland fire risk
modelling since it quantifies likelihood (namely probability) of
fire occurrence, a necessary component for any risk computa-

tion. Fire occurrences can be thought of as following a spatio-
temporal point process (e.g. Turner 2009), but a binary approxi-
mation to this process is typically used in FOP literature (e.g.
Woolford et al. 2011; Magnussen and Taylor 2012). Wildland

fires are very rare events when modelled on a fine space–time
scale (e.g. 10 � 10 km daily cells). Thus, the number of cells
withmore than one fire occurrence is negligible, so observations

are represented as either a fire occurrence or a non-fire occur-
rence, generating what is referred to as a highly imbalanced
binary classification problem.

There are many different methods that have been used to
model wildland fire occurrences. Recent summaries, reviews
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and discussions appear in Plucinski (2012), Taylor et al. (2013),
Costafreda-Aumedes et al. (2017), Nadeem et al. (2020) and
Woolford et al. (2021). These methods can be broadly viewed as

coming from one of the following two dominant data modelling
cultures: model-based (i.e. statistical modelling/learning) or
algorithmic-based (i.e. machine learning) (e.g. Breiman

2001b). Statistical modelling techniques assume the response
data are generated by a specified stochastic model that involves
other predictors/covariates. Examples of this approach include

regression-type models, such as logistic regression (LR) and
logistic generalised additive models (GAMs) (e.g. Wood 2017).
Machine learning approaches employ an algorithm to make
predictions of a response given a set of predictors.

Early FOP models used LR (e.g. Martell et al. 1987, 1989;
Vega-Garcia et al. 1995). More recently, extensions of that
method that allow for non-linear relationships and automatic

variable selection have been used. Non-linear relationships
between the response and covariates are commonly modelled
using spline-smoothers in logistic GAMs (e.g. Brillinger et al.

2003; Preisler et al. 2004; Vilar et al. 2010;Woolford et al. 2011,
2021;Magnussen andTaylor 2012).Automatic variable selection
methods are based on regularisation approaches, such as lasso LR

(Tibshirani 1996), that modify the likelihood function used to fit
the models so that coefficients for non-important predictors are
‘shrunk’ towards zero (e.g. Nadeem et al. 2020). Several other
studies have employed machine learning methods (e.g. Vega-

Garcia et al. 1996; Alonso-Betanzos et al. 2003; Stojanova et al.
2006, 2012; Sakr et al. 2010, 2011; Van Beusekom et al. 2018).
For a thorough review of machine learning applications in

wildland fire, see Jain et al. (2020).
Recently, Phelps andWoolford (2021) demonstrated that the

machine learning methods developed thus far for FOP are not

well suited for operational use. This was done through a case
study that included the comparison of uncalibratedmodels using
the same data and study regionwe consider herein. They showed
that if one does not account for any undersampling (also called

downsampling) to create balanced datasets required for training
machine learning-based FOPmodels, the resulting fittedmodels
‘systematically overpredicted the number of fire occurrences’

when applied to testing data that representedwhatwould be used
in operational practice for fine-scale, spatially explicit human-
caused FOP.

A balanced dataset in this context is one where the number of
fire and non-fire observations are equal. This is not representative
of fire occurrence in space–time. Wildland fires are extremely

rare on a fine spatio-temporal scale.When anything other than the
complete dataset or a simple random sample of the complete
dataset is used to create a dataset for training a model, the
resulting data do not represent what happens in practice and the

fitted model will overpredict unless it is properly calibrated. For
example, generating a balanced dataset for model training leads
tomodelswhose systematic overprediction of fire occurrence can

be orders ofmagnitude higher thanwhat is actually observed (e.g.
see Phelps and Woolford 2021, figs 3 and 4). Consequently, it is
crucial to properly fit or calibrate an FOP model to account for

how the training data were generated so that it will output true
probabilities when making predictions in practice.

In this work, we introduce calibration methods for machine
learning-based FOP modelling that are new to FOP modelling

literature. These facilitate the development of well-calibrated
machine learningmodels for fine-scale, spatially explicit FOP in
the sense that the calibrated models output predictions that are

true probabilities. Employing these methods, we develop mod-
els for human-caused FOP in the Lac LaBiche region inAlberta.
We use and calibrate three machine learning approaches:

bagged classification trees (BCTs), random forests (RFs) and
neural networks (NNs). Those models are compared with both
the historically dominant and state-of-the-art statistical model-

ling approaches, LR and logistic GAMs, respectively.
Machine learning models for FOP have been compared with

LR previously (e.g. Vega-Garcia et al. 1996; Stojanova et al.

2006, 2012), but to our knowledge, this is the first comparison of

machine learning models with logistic GAMs for FOP. In
particular, we believe that our work may be the first to use
calibrated machine learning models and the first to compare

machine learning models with a state-of-the-art statistical model.
Thus, the two contributions of this work are introducing calibra-
tion methods for machine learning models to FOP literature and

comparing calibratedmachine learning and state-of-the-art statis-
ticalmodels for a case study of theLacLaBiche region ofAlberta.

Materials and methods

Study region and data

Our study region and period are the Lac La Biche area of the

province of Alberta, Canada (Fig. 1) over the 1996–2016 fire
seasons, which are defined operationally to be March through
October of each year. This region was chosen in collaboration

with fire management practitioners at Alberta Agriculture and
Forestry because it is an area that commonly experiences many
human-caused wildland fires each year.

To develop spatially and temporally explicit models, we
partitioned our region and period into a set of spatio-temporal
voxels (space–time cells). Excluding cells on the boundary, each
grid cell is,10 km2 in size. The temporal resolution used for the

modelling is 1 day. For each day, a count of the number of
wildland fires in each grid cell was recorded, stratified based on
the ignition cause of the fire (e.g. lightning or human, where the

latter can take a variety of sub-categories such as being caused
by recreation, by residents, or by industrial logging operations).
Since lightning-caused fires may require a different modelling

framework because they can smoulder for many days before
being detected and reported (see Wotton and Martell 2005), we
focused our analysis on human-caused fire occurrences. Our

response was whether or not a given voxel had at least one
human-caused fire occurrence (i.e. ignition), recorded as a
dichotomous response with 1 denoting that voxel experiencing
a fire day and 0 indicating that no human-caused fires occurred

in that grid cell on that given day. The spatial resolution was set
in collaboration with fire management practitioners at Alberta
Agriculture and Forestry and was chosen to be fine enough so

that counts of human-caused fires were mapped essentially to a
dichotomous (i.e. 0 or 1) process. This permits the use of binary
classification methods to develop fine-scale, spatially explicit

models representing individual fire occurrences.
Alberta Agriculture and Forestry provided several datasets

that were used to create the voxel-based data for training and
testing our models. Voxel-specific covariates available for FOP
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modelling are shown in Table 1 and can be viewed as either
static or dynamic in space–time. Static variables include land

use characteristics such as the length of highways, railways and
powerlines in the cell, as well as the percentage of each cell that
is classified as being in the wildland–urban interface (WUI), the
wildland–industrial interface (WUI-Ind) and the wildland–

infrastructure interface (WUI-Inf) areas as defined by Johnston
and Flannigan (2018). Other static variables are ecological
characteristics such as fuel type inventories (e.g. vegetation,

water and non-fuel proportions) and nature region. Dynamic
variables include weather (e.g. precipitation, temperature, wind
speed) as well as fire-weather variables (e.g. the Fine Fuel

Moisture Code (FFMC), Initial Spread Index (ISI) and Fire
Weather Index (FWI); see Wotton 2009). The fire-weather
variables were computed using the cffdrs package (Wang

et al. 2017) in R (R Core Team 2017), with the default FFMC,
Duff Moisture Code (DMC) and Drought Code (DC) values
used for initialisation at the start of each year. The fire-weather

data consist of observations recorded daily at 1300 hours local
daylight time at a network of weather stations within the

province of Alberta as well as stations that were within (but
not in) 200 km of its provincial boundary in order to avoid
boundary effects when the weather variables at those points are
then interpolated (Flannigan andWotton 1989) to the centroid of

each daily grid cell (i.e. voxel) used in our analysis. For October
31, 2016, the dynamic weather variables were not measured, so
observations from this day were discarded.

In order to both fit our models as well as examine their
predictive performance, we split our study period into training
and testing datasets. The training dataset, used for fitting the

models, was composed of data from 1996 to 2011. Data from the
last 5 years (2012–2016) were reserved for model testing, namely
making predictions on data thatwere not used in themodel-fitting

process.Wildland fire occurrences are rare at the fine space–time
scale of our modelling. Our training dataset contained only 550
,10 km2 � daily voxels in which a fire occurred, which
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Fig. 1. Mapof Canada (light grey) with provincial and territorial boundaries (white lines), highlighting the province of Alberta (dark grey) and the Lac

La Biche study region (black). Inset: The Lac La Biche study area’s spatial grid used for modelling.
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corresponds to less than 0.06% of the voxels. Fire occurrences
exhibit seasonal and spatial patterns in this region. Fig. 2 illus-

trates that the majority of fires in the study region occurred in the
spring, while Fig. 3 shows the number of fires for each sector of
the study region in the training dataset (1996–2011).

Statistical and machine learning modelling methods

In what follows, we present overviews of each of the statistical
and machine learning modelling techniques used for our FOP

models, as well as methods for calibrating such models so that
they predict true probabilities. For a detailed technical discus-
sion of LR andGAMs, seeWood (2017). James et al. (2013) also

provide an excellent overview of statistical and machine
learning methods including logistic models, smoothing with
GAMs, BCTs and RFs. A thorough treatment of NNs appears in
Goodfellow et al. (2016).

Logistic regression (LR)

LR is a modelling technique that is part of the family of

generalised linear models. It is used to model a dichotomous

response based on relationships between the predictors and the

response, which are assumed to be linear on the log odds scale.

The model for the probability of a human-caused wildland fire

in a specific region on a particular day is summarised by the

following equation, with p representing the probability of a

wildland fire in a specific region on a particular day as a

function of predictors xj representing the value of the jth

predictor and bj representing the coefficient associated with

the jth predictor:

Z ¼ logit pð Þ ¼ log
p

1� p

� �
¼ b0 þ b1x1 þ b2bx2 þ . . .þ bkxx;

Table 1. Overview of data types and variables used for modelling

Unless indicated otherwise in its description, each variable was viewed as a potential predictor for model building

Variable Description

Fire record data

General cause information General cause of ignition (used to identify human-caused fires)

Start date Date and time of ignition (used to map occurrences to voxels)

Latitude and longitude Geographic coordinates of ignition (used to map occurrences to voxels)

Location and administration data

Latitude and longitude Geographic coordinates of the centre of the grid cell (used for interpolating fire-weather and for modelling)

Cell ID The unique ID for each grid cell (artefact of the spatial grid)

Date Year, month, day and Julian day of year (used to define voxels and for seasonality component, when included in

a model)

Shape area Area of the grid cell (m2)

Landscape conditions and wildland fuels within cells

Nature region The nature region of the cell

Canadian Forest Fire Behaviour Prediction

(FBP) System fuel type

A fuel complex of sufficient homogeneity with distinctive species, form, size, arrangement and continuity,

including non- and unknown fuel (see Stocks et al. 1989); percentage of cell that is composed of each FBP fuel

type

Water Percentage of cell that is water (e.g. lakes, rivers, creeks)

Provincial recreation area Percentage of cell that is provincial recreational area

Public recreation area Percentage of cell that is public recreational area

Public trail area Percentage of cell that is public trail area

Human activity indicators within cells

Highways Total length of highways in the cell (m)

Roads Total length of roads in the cell (m)

Railways Total length of railways in the cell (m)

Powerlines Total length of powerlines in the cell (m)

Cutlines Total length of cutlines in the cell (m)

Interface values (as defined in Johnston and Flannigan 2018)

WUI Percentage of cell that is wildland–urban interface

WUI-Ind Percentage of cell that is wildland–industrial interface

WUI-Inf Percentage of cell that is infrastructure interface

Weather and Canadian Forest FireWeather Index System (VanWagner 1987) codes and indices, observed at a set of weather stations and interpolated to each

grid cell

Meteorological data Temperature, relative humidity, wind speed and precipitation

FFMC Fine Fuel Moisture Code

DMC Duff Moisture Code

DC Drought Code

ISI Initial Spread Index

BUI Buildup Index

FWI Fire Weather Index

DSR Daily Severity Rating
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which can be mapped back to the probability scale by inverting
the logit-transformation as follows:

p ¼ eZ

1þ eZ

Logistic generalised additive models (GAMs)

Logistic GAMs extend the LR framework by using smooth-
ing functions to model the effect of each predictor, facilitating

non-linear relationships between the predictors and the response

on the log odds scale. With sj(xj) representing a smoothing
function for the jth predictor, the equation for logistic GAMs
using only univariate smoothing functions is as follows:

Z ¼ logit pð Þ ¼ log
p

1� p

� �
¼ b0 þ s1 x1ð Þ þ s2 x2ð Þ þ . . .þ sk xkð Þ

Multivariate smoothing functions can also be used. We

implemented the logistic GAMs using the mgcv package
(Wood 2011), which uses thin plate regression splines as its
default smoothing basis. For more technical details on LR and
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how it can be extended using penalised spline smoothing in
GAMs, see Wood (2017). Like an LR model, probabilities can
be obtained using the inverse logit function.

Calibration of logistic-based statistical models

A common strategy when modelling rare events given a large
volume of highly imbalanced data is to use a response-dependent

sampling design to augment the dataset used for model fitting. In
FOP literature, one typically keeps all of the fire observations and
only some proportion, p, of the non-fire observations. This

sampling procedure is commonly referred to as undersampling
or downsampling (e.g. He and Garcia 2009). It was first
employed for FOP by Vega-Garcia et al. (1995) and has been
employed successfully in several fine-scale, spatio-temporal

FOP studies (e.g. Brillinger et al. 2003, 2006; Preisler et al.
2004; Vilar et al. 2010; Woolford et al. 2011; Nadeem et al.

2020). Undersampling induces a bias because the distribution of

the training data is not a simple random sample from the
population and therefore its distribution differs from that of the
testing data. In other words, the models are not well calibrated;

they predict event probabilities that systematically deviate from
the true probability of the event. For LRs and logistic GAMs, this
bias is accounted for by adding a deterministic offset (i.e. an

adjustment to the intercept term) of –log(p) to the model (e.g.
Brillinger et al. 2003; Taylor et al. 2013). As illustrated by
Woolford et al. (2011), enough non-fire voxels must be retained
when undersampling in order to ensure the relationships with the

predictors are estimated accurately. As inWoolford et al. (2011),
we sampled 10% of the non-fire voxels (i.e. p ¼ 0.1) when
augmenting our training data for model fitting.

Tree-based methods

Two of the machine learning methods we employed are
based on classification trees (Breiman et al. 1984), which use

recursive binary splitting of the data in order to create groups,
called nodes, within the data. Splits are selected greedily by
choosing the split that provides the greatest improvement in

node purity, which in our context with a binary response
corresponds to a node that contains either only 0s or only 1s
being viewed as pure. Here, greedy selection means that the best

split at that time in the algorithm is selected; in other words,
possible splits further down the tree are not considered. The
splitting continues until some criterion is reached. For example,

the splitting may continue until all terminal nodes, or leaves, of
the tree are pure.

Classification trees are high-variancemodels and are suscep-
tible to overfitting, which is when a model fits its training data

well but performs relatively poorly on new data. In an attempt to
avoid overfitting, classification trees are often pruned. Pruning
involves removing some of the splits that are lower in the tree

near the terminal nodes. Alternatively, ensemble techniques that
use multiple individual models can be used to build models that
are based on classification trees but have lower variance. We

employed the latter approach in this study.

Bagged classification trees (BCTs)

Bagging (Breiman 1996) is an ensemble technique com-
monly used with classification trees (e.g. Stojanova et al.

2006, 2012). The bagging process involves creating many
training datasets using bootstrapping (resampling with
replacement from the training dataset), then fitting a classifi-

cation tree to each of these training datasets. When using
bagging, each tree is typically fitted perfectly to its training
data so that all terminal nodes are pure, and pruning is not used.

In order tomake a prediction, each tree votes on how to classify
an observation and the predicted probability of the event is
based on the fraction of trees that predicted that the event

will occur. We implemented the BCTs using the randomForest
package (Liaw andWiener 2002) using their default number of
trees, 500.

Random forests (RFs)

RFs (Breiman 2001a) are very similar to bagged trees. They
use one additional step in order to reduce the correlation

between the trees, helping to ensure that the variance of the
model is much less than the variance of an individual tree.When
making a split, rather than considering all possible predictors,
only a randomly chosen subset of the predictors is considered.

BCTs are a specific case of RF, where the number of predictors
considered at each split is equal to the actual number of
predictors. As with the BCTs, we used the randomForest

package (Liaw and Wiener 2002) to implement the RFs. We
used 500 trees and the default number of predictors given
consideration at each split of the tree.

Calibration of tree-based methods

When fitting BCTs and RFs for problems with imbalanced
data, it is recommended to balance the training dataset. We

opted to use the ‘balanced random forest’ algorithm proposed by
Chen et al. (2004). They suggested generating the training
dataset for each tree using a stratified random sample with

replacement of n1 observations from each class, where n1 is the
number of observations from the minority class. Like the
stratified sampling technique used for the statistical modelling

methods, this technique induces a bias in the models.
Platt’s scaling (PS) (Platt 1999) is a method that can be used

to adjust the predictions of a model in order to improve the
model’s calibration. Traditionally, PS is implemented by fitting

an LR model to the predictions of a model. However, the LR
model used for rescaling will be biased if it uses the same dataset
that was used to train the tree-basedmodel (e.g. Niculescu-Mizil

and Caruana 2005). We used four-fold cross-validation to avoid
this bias. The training dataset was split into four folds of data
such that each fold contained data from four randomly selected

years. The BCT and RFmodels were repeatedly fitted to three of
the folds and predictions were made on the fourth fold, eventu-
ally creating a training dataset for calibration equal in size to the
original training dataset. We then fitted two types of logistic-

based models to this data: we used LR in accordance with the
traditional PS methodology and we also considered a logistic
GAM in order to allow for the possibility of a non-linear

relationship on the log odds scale. The BCTs and RFs were
fitted to all 16 years of training data and their predictions on the
testing data were calibrated using these logistic models. Sepa-

rate scaling models were constructed for the BCT and RF
models.

Comparing calibrated FOP models Int. J. Wildland Fire 855



Neural networks (NNs)

NNs are models that were originally developed based on the
brains of animals (McCulloch and Pitts 1943). Data are given to
an input layer of neurons, or nodes, and signals are passed from

the neurons of one layer to the neurons of the next layer, with
weights applied to each connection between the neurons. Inputs
are summed within each neuron, and an activation function

is applied to that sum. For more background on NNs, see
Goodfellow et al. (2016).

Backpropagation (Rumelhart et al. 1985) was the first

successful algorithm proposed for training the weights between
the neurons and is still widely used (e.g. Mason et al. 2018;
Alkronz et al. 2019), but genetic algorithms have also been used
(e.g. Vasconcelos et al. 2001). As NNs have evolved over the

last several decades, they have increasingly deviated from their
biological inspiration. The family of NN models has grown to
include models such as convolutional NNs (e.g. Lawrence et al.

1997; Krizhevsky et al. 2012) and recurrent NNs (e.g. Mikolov
et al. 2010; Sak et al. 2014), and model architectures are much
more extensive (e.g. new activation functions, more hidden

layers) than in early NNs. Techniques such as early stopping
(e.g. Prechelt 1998) and dropout (Srivastava et al. 2014) have
been introduced to prevent overfitting. However, while there is a

sense ofwhich type of NNmay bemost suitable for certain types
of problems (e.g. convolutional NNs for classification of
images), to our knowledge there is no well-defined process for
choosing a model architecture.

Ensemble of NNs

When training an NN, it is recommended to use a balanced
training dataset (e.g. Vega-Garcia et al. 1996; Jain and Nag

1997). As our dataset is extraordinarily imbalanced, balancing
the training dataset requires removing over 99.9% of the non-
fire occurrences. In order to facilitate using more of the non-fire
occurrence observations for training, we opted to create an

ensemble of 100 NNs, where each network was fitted to a
different set of balanced training data and the predictions of the
models were averaged. All of the fire occurrences were used in

each training dataset, but the non-fire occurrences were uni-
formly randomly sampled each time.

As noted in the review of LeCun et al. (2015), deep learning

methods, namely NNs with many hidden layers, have been
successful in many studies. However, several other studies have
found that using only one hidden layer in an NN is sufficient for

their problem (e.g. Dutta and Shekhar 1988; Collins et al. 1988;
Salchenberger et al. 1992; Jain and Nag 1997). Given that our
approach involves fitting many NNs, we chose to use networks
with only one hidden layer to reduce training time relative to

models with several layers. As recommended by Klimasauskas
(1988) and used by Jain and Nag (1997), we used the following
heuristic guideline for choosing the number of neurons in the

hidden layer:

h ¼ no: of observations in balanced training dataset

10 iþ oð Þ ;

where i, o and h (which is rounded to the nearest whole number)

are the number of neurons in the input, output and hidden layers
respectively.

We used the keras package (Allaire and Chollet 2020) to
create an ensemble of 100 multilayer perceptrons. Each percep-
tron was an NN that consisted of three layers: the input layer,

which performed batch normalisation (Ioffe and Szegedy 2015),
the hidden layer, which used the rectified linear unit (ReLU)
activation function (Nair andHinton 2010), and the output layer,

which used the sigmoid activation function. Models were
created using binary cross entropy loss with the Adam optimiser
(Kingma and Ba 2015) and trained using 300 epochs. Like with

BCTs and RFs, we were not concerned with each individual NN
overfitting its training dataset because the individual predictions
were averaged, so we did not use early stopping or dropout.

Calibration of NN-based methods

Aswith the othermodellingmethods, the ensemble of NNs is
impacted by the bias induced by undersampling. We did not use

PS to calibrate the ensemble of NNs because the time needed to
train the ensemble was much larger than all of the other
modelling methods and using PS in the same way it was

implemented for the BCTs and RFs would have required fitting
this ensemble several times. Instead, we used the following
equation (Dal Pozzolo et al. 2015), which relates the distribution

of the data before sampling to the distribution of the data after
sampling:

pk ¼ pgk
pgk � gk þ 1

;

where pk is the modelled probability of a fire for the original

distribution, gk is the modelled probability of a fire for the
sampled distribution, and p is the proportion of non-fire obser-
vations sampled. The transformation applied through this
equation is analogous to the offset applied to the data modelling

methods. As discussed by Preisler et al. (2004), this
equation and the offset are equivalent for LR and logistic GAMs.

Model building and variable selection

For the statistical models (LR and logistic GAM), variable
selection was performed using domain knowledge, exploratory

data analysis and standard statistical model building procedures.
Since our focus was on human-caused FOP, we used the FFMC
as our measure for fuel moisture because fine surface fuel

moisture is an important factor for FOP. FFMC is used by
Canadian wildland fire management agencies as a measure of
the receptivity of surface fuels to ignition (Wotton 2009) and has
been found to be a significant predictor for human-caused FOP

in other regions in Canada (e.g. Cunningham and Martell 1973;
Woolford et al. 2011; Magnussen and Taylor 2012; McFayden
et al. 2020). Weather variables that are used to calculate fuel

moisture, namely relative humidity, temperature and precipi-
tation, were excluded to avoid possible multicollinearity effects
with FFMC, which is calculated as a function of those variables

(VanWagner 1987). Other fire-weather variableswere excluded
as well given that FFMC has been well established as the key
fuel moisture-based driver of human-caused fire occurrence.

Additional exploratory data analyses were used to identify
other possible important predictors as well as the shape of their
relationship with the probability of fire occurrence. Likelihood
ratio tests were used to determinewhen the addition of a variable
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led to a significant improvement in the fit of the model. For
comparative purposes, the predictors that were used in the

selected logistic GAM were also used in the LR model. How-
ever, an additive spatial effect was also included in the GAM
using a bivariate smoother. To account for spatial effects in the
LR model, we followed the method suggested by Nadeem et al.

(2020) where a baseline risk was computed and used as a
predictor in the LR model. Here, the baseline risk at each
location was calculated as the historical proportion of fire

occurrences within each grid cell. We chose to use the logit
baseline because the LR model assumes a linear relationship
between the response and the predictors on the log odds scale.

However, some cells did not have a fire in our study period, so
the smallest non-zero baseline was added to each baseline
(including non-zero baselines) before performing the logit-

transformation in order to avoid obtaining undefined values
when calculating the logit baseline.

For themachine learning approaches, we opted to fit multiple
models for each technique. We fitted one model that used all of

the predictors and another with the predictors used in the
selected statistical models, essentially using the statistical mod-
els as variable selection ‘experts’ as was done in Vega-Garcia

et al. (1996). For each of these models, we created one model
with the (untransformed) baseline predictor and one without, in
case modelling the spatial patterns in this way offers some

advantage. Thus, amodel was created for eachmachine learning
approach using four different sets of predictors. The selected
model for each technique was chosen using the methods out-
lined in the next section.

Evaluating and comparing model performance

As suggested by Phelps andWoolford (2021), we used area under
the precision-recall curve (AUC-PR), negative logarithmic score

(NLS) and temporal and spatial visualisations to evaluate and
compare the models. AUC-PR was computed using the integra-
tion approach (Boyd et al. 2013; Keilwagen et al. 2014) from the

PRROCpackage (Grau et al.2015),while the temporal plotswith
corresponding root-mean-squared error (RMSE) values were
computed using aggregated daily totals across the entire study

region. Phelps and Woolford also suggest the use of customised
metrics from the Beta family of scoring rules (Merkle and
Steyvers 2013). The two parameters of this family, a and b, can
be set such that the fraction a/(aþ b) reflects a fire management

agency’s relative cost of false positives to false negatives. Setting
a ¼ 1, we used three different values of b (9, 99 and 999) to

produce customised metrics that place more and more impor-
tance on identifying fire occurrences. Smaller values of the Beta
family score are preferred when comparing candidate models
using a given parameterisation of that scoring rule. For the

methods used to assess calibration, we used paired t-tests to
determine if models’ performances were statistically signifi-
cantly different from one another.

Results

Summary of selected models

The selected statistical models used FFMC, length of road

within the cell, day of year, percentage of cell covered in water
and percentage of cell covered by aspen trees, as well as the
percentages of each cell that are in the WUI, the WUI-Ind and

theWUI-Inf areas as defined by Johnston and Flannigan (2018).
In addition, both models included a spatial component as
described previously: a bivariate smoother of longitude and

latitude was used for the logistic GAM and a logit baseline
calculated for each grid cell was used as a predictor for the LR
model. The best BCT model used all predictors except the

baseline, while the best RF and ensemble of NNs used the
baseline and the predictors used in the logistic GAM. The BCT
and RF models were each calibrated using PS with a logistic
GAM, as this was found to be more effective than rescaling with

LR. It should be noted that the model selection process was
subjective and there were other reasonable choices for the
selected model from each technique.

Comparing the predictive performance of the selected
models using metrics

Table 2 shows several measures for the selected models from
each modelling technique. Results for other candidate models
are shown in Appendix 1. For comparison, the null model has

also been included in Table 2. The null model is an LR model
that only has an intercept term. For all observations, the null
model predicts a probability of wildland fire equal to the per-

centage of observations in the training dataset where a wildland
fire occurred.

We first consider the models’ ability to rank observations by
assessing their AUC-PR. Although the scores were small for all

Table 2. Values of performance metrics on the testing dataset for the null model and selectedmodels using each technique: logistic regression (LR),

logistic generalised additive models (GAMs), bagged classification trees (BCTs), random forests (RFs) and an ensemble of neural networks (NNs)

The metrics are area under the precision-recall curve (AUC-PR), negative logarithmic score (NLS) and customised metrics from the Beta family of scoring

rules. Values are rounded to four significant figures. Bold values correspond to the best value of the selected models for each metric

Modelling technique AUC-PR NLS (3 1023) Beta family (31026)

a¼ 1, b¼ 9 a¼ 1, b¼ 99 a¼ 1, b¼ 999

Null Model 6.625� 10�4 5.516 66.04 6.413 0.4858

LR 0.02417 4.492 63.07 4.784 0.2504

Logistic GAM 0.04821 4.210 59.97 4.292 0.2263

BCTs 0.04367 4.230 60.83 4.396 0.2189

RF 0.04070 4.288 59.80 4.283 0.2385

Ensemble of NNs 0.03069 4.351 62.29 4.551 0.2351
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of the models, it must be noted that the AUC-PR of the null
model was 6.625� 10�4 and that the more sophisticated models
had AUC-PR scores that were orders of magnitude larger. The

logistic GAM performed best, with the tree-based models
ranking second and third, followed by the ensemble of NNs
and finally LR. The logistic GAM’s AUC-PR was more than

10% greater than the AUC-PR for any other selected model, but
the precision-recall curves for the logistic GAM and the tree-
based approaches (shown in Fig. 4) suggest that such a large

difference may be misleading. For such heavily imbalanced
data, a model’s AUC-PR is very dependent on the outcomes of
the observations deemed most likely to be a fire occurrence; see
Phelps and Woolford (2021) for more details. The two largest

predictions of the logistic GAM were both fire occurrences,
contributing to the spike seen in its precision-recall curve. By
simulating fire seasons under the assumption that the probability

of a fire occurrence was exactly as predicted by the logistic
GAM, we determined that even if the logistic GAM perfectly
modelled the probability of fire occurrence, anAUC-PR as large

as the one observed is unlikely. Prior to the spike in the logistic
GAM’s precision-recall curve, it appears that the tree-based
models both had a better AUC-PR than the logistic GAM. For

these models, such a spike is even less likely because their
predicted probabilities were not unique owing to the structure of
the models; the number of distinct probabilities for these models
was 501 (the number of trees plus one). Thus, for such a spike to

occur, all of the observations in the highest probability group
must be fire observations.

In terms of calibration, it again appears that the logistic GAM

was the best-performingmodel overall. In addition to having the
best NLS, it also had the second smallest score for all three
customised metrics, just falling behind the best tree-based

models (see Table 2). However, using paired t-tests with a
significance level of 0.05, no model’s performance was signifi-
cantly different from all the other selected models in terms of
any of the calibration metrics.

Comparing the temporal and spatial predictive performance
of the selected models

The temporal plots in Fig. 5 compare time series of the predicted
and observed total of daily fires for the 2013 fire season for the
LR, logistic GAM,BCTs, RF and ensemble of NNs. Plots for the

other years in the testing dataset are shown in Appendix 2.
Clearly, the LR and NN models did not capture the daily fluc-
tuation in fire occurrences as successfully as the other models.

Both models consistently predicted too many fires in the early
spring. This phenomenon is especially noticeable for the LR
model, likely due to the linear restriction on its seasonality
component. The logistic GAM and the tree-based methods

appear to have performed similarly. The most notable differ-
ences occurred in 2013, when theGAMhad amuch sharper peak
than the other models, in 2014, when the GAM predicted more

fire occurrences in late April to the start of May than the other
models, and in 2016, when the GAM predicted more fire
occurrences in April than the other models.

The spatial maps in Fig. 6 show the predicted probabilities of
a human-caused wildland fire for 3 days from the testing data
using the same models as in Fig. 5. The LR model created
prediction maps that were fairly uniform relative to the other

models, limiting its usefulness in practice. Themap from theNN

model is not as uniform as the map from the LRmodel, but aside
from highlighting a few sectors, it also seems to offer limited
spatial discrimination relative to the other more complicated
models. In general, the logistic GAM and tree-based methods

generated fairly similar prediction maps, but with differing
magnitudes of output. The 3 days shown have been chosen to
illustrate some of the differences between the models. One

noticeable difference is that the tree-based models were gener-
ally more aggressive than the logistic GAMwhen predicting fire
occurrences in cells in the central portion of the study region.

However, the logistic GAM made more extreme predictions
than the tree-based models, as shown in Fig. 6b. An interesting
observation (illustrated in Fig. 6b) is that the BCT model
sometimes estimated very little chance of a fire in the south-

west part of the study region while both the logistic GAM and
RF predicted relatively high probabilities.

Discussion

Recent work has shown that the machine learning models used

for FOP in past studies systematically overpredict the proba-
bility of wildland fires, and thus are unsuitable for operational
use (Phelps and Woolford 2021). We presented methods for

fitting properly calibrated FOPmodels using both statistical and
machine learning approaches, and then compared a set of well-
calibrated models for human-caused FOP in Lac La Biche,
Alberta. All such models predict true probabilities resulting

from their calibration. There are several advantages to devel-
oping FOP models that predict true probabilities. As discussed
and illustrated inWoolford et al. (2021), such predictions can be

summed to predict the expected number of fires in a given region
(such as a region or sector used by fire management) on a given
day; they can be used to create spatially explicit colour-coded

fire occurrence maps that are interpretable; and they can be used
to produce prediction intervals that reflect the uncertainty in
such predictions. Spatially explicit FOP output can also be
incorporated into risk-based frameworks to aid aerial detection

routeing (e.g. McFayden et al. 2020).
Analysis of the performance metrics and visualisations

clearly indicate that the LR model was not competitive with

the best of the more sophisticated models, including the more
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state-of-the-art logistic GAM. This is not surprising given its
restriction to linear relationships on the log odds scale. The best
ensemble of NNs performed better than the LR model, but one
of the ensembles performed worse than the LR model for four

of the five metrics we considered. These results are similar to
the findings of Vega-Garcia et al. (1996), who found only a
slight improvement from using an NN instead of LR. The best-
performing NNmodel was inferior to the three selected models
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from the other approaches, which offered similar performance
to one another. Using two-sided paired t-tests with a signifi-
cance level of 0.05, we found that none of the models were able

to significantly outperform all of the other models in terms of
the calibration metrics. Statistical significance is a prerequisite
to practical significance; thus, it is reasonable to suggest that

the difference in predictive performance between the logistic

GAM and the best tree-based models was not practically
significant.

Spatial differences in FOP were noted when comparing

models. The BCTmodel was sometimes observed to predict very
low fire probability in the south-west part of the study region
while both the logistic GAMandRF predicted relatively high fire

probability. This appears to be caused by the predictors used in
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the model rather than the modelling technique; the spatial
prediction maps created by BCTs using the predictors in the
selected RF very closely resemble the maps shown for the RF.

Given the similar performance of the best tree-based meth-
ods and the logistic GAM, perhaps the most striking difference
between the models is in interpretability. The estimated coeffi-

cients of an LRmodel and the estimated partial effects curves of
logistic GAMs can be used to provide a visual explanation of
how the model works as well as reassurance to end users that the

model captures the impact of various predictors in expected
ways. The ‘black boxes’ of BCTs, RFs and NNs provide no such
reassurance to an end user in a fire management organisation.
Fire management agencies are much more likely to make use of

amodel and value its outputs if they have some understanding of
how the model arrived at its output, so the poor interpretability
of the machine learning models may result in underutilisation of

themodel in practice (Costafreda-Aumedes et al. 2017). For this
reason, there may be a practical improvement to fire manage-
ment from using a logistic GAM for FOP instead of a machine

learning model. Since there is very limited evidence in our
results to support the choice of any candidate model instead of
the logistic GAM, we believe that the logistic GAM is the most

well suited for operational use in the Lac La Biche region. We
recognise that it is possible that this opinion could change
depending on the specifications of the end users of the model.
As shown in Table 2, the ranking of themodels can change based

on the values of the end users and such values can be incorpo-
rated through development of a custom metric, such as the
customised metrics from the Beta family of scoring rules we

considered. Although the selected ensemble of NNs did not
seem to perform well compared with the other more complex
models in general, it was better than the RF for the Beta family

metric that placed the highest importance on identifying fire
occurrences. However, based on the metrics that we have
considered and the temporal and spatial visualisations, the
logistic GAM offered the best combination of performance

and interpretability.
Typically, there is a trade-off between model performance

and interpretability. It is much easier to interpret an LR model

than BCTs, RFs or NNs, but our results, as well as the results of
other FOP studies (e.g. Stojanova et al. 2006, 2012) and studies
of the related problem of wildland fire susceptibility modelling

(e.g. Vasconcelos et al. 2001; Bar Massada et al. 2013; Rodri-
gues and de la Riva 2014), have shown that these techniques can
perform better than LR. However, this is the first fine space–

time FOP study that has compared machine learning techniques
with logistic GAMs. Our results suggest that logistic GAMs can
perform just as well as machine learning models for FOP.
Although they are not as easily interpreted as LR, they are much

more interpretable than machine learning models. If logistic
GAMs can consistently perform on par with machine learning
approaches, they should be the preferred model for FOP for fire

management operations.

Conclusion

In this study, we have introduced well-calibrated machine
learningmodels to FOP literature and compared the performance
of these models with two well-calibrated statistical models, an
LRmodel and a logistic GAM. To the best of our knowledge, all

other comparative studies have focused on making comparisons
with LRmodels. Logistic GAMs represent a muchmore flexible
statistical modelling approach that uses data-driven smoothing

methods to estimate what could be highly non-linear relation-
ships, something that cannot adequately be represented by an LR
framework. Our results show that logistic GAMs offer compet-

itive performance. Since logistic GAMs are more interpretable
than machine learning models – which are commonly viewed as
a ‘black box’ approach – the similar performance of the models

suggests that logistic GAMs should be the preferred modelling
technique. We note, however, that our case study used only a
subset of possible machine learning techniques on a single study
region, and thus is not sufficient evidence that logistic GAMs are

consistently competitive withmachine learningmodels for FOP.
It is possible that other machine learning approaches (e.g.
boosting) or changes to the hyperparameters and/or architecture

of the techniques used in this study could produce a model that
outperforms the logisticGAMfor our study region. For example,
the BCTs and RF may have been hindered by having only 500

trees, leading to only 501 unique outputs. In addition, future
studies should be performed that compare logistic GAMs with a
more comprehensive selection of machine learning models

across multiple wildland fire ecosystems in order to assess the
generalisability of our findings.
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Appendix 1. Values of performance metrics on the testing dataset for models using each technique: bagged classification
trees (BCTs) calibrated using Platt’s Scaling (PS) with logistic regression (LR), BCTs calibrated using PS with a logistic
generalised additive model (GAM), a random forest calibrated using PS with LR, a random forest calibrated using PS with a
GAM, and an ensemble of neural networks (NNs)

The metrics are area under the precision-recall curve (AUC-PR), negative logarithmic score (NLS) and customised metrics from the

Beta family of scoring rules. Values are rounded to four significant figures and the selected models shown in Table 2 are in bold.
‘Same as GAM’ used the predictors from the selected logistic GAMmodel, namely the Fine Fuel Moisture Code, road length, day of
year, percentage water, percentage aspen fuel type, percentage wildland–urban interface, percentage wildland–industrial interface

and percentagewildland–infrastructure interface. ‘Baseline’ refers to the baseline risk predictor as described byNadeem et al. (2020).
‘All predictors’ used all potential predictor variables (see Table 1)

Predictors Model AUC-PR NLS (31023) Beta family (31026)

a¼ 1, b¼ 9 a¼ 1, b¼ 99 a¼ 1, b¼ 999

Same as GAM BCTs with PS using LR 0.03232 4.308 62.13 4.455 0.2244

BCTs with PS using GAM 0.03232 4.234 60.49 4.372 0.2255

RF with PS using LR 0.03431 4.291 61.79 4.367 0.2285

RF with PS using GAM 0.03431 4.183 59.91 4.234 0.2250

Ensemble of NNs 0.02993 4.395 62.64 4.666 0.2382

Same as GAM plus baseline BCTs with PS using LR 0.03285 4.397 62.00 4.411 0.2416

BCTs with PS using GAM 0.03284 4.427 60.15 4.271 0.2439

RF with PS using LR 0.04076 4.371 62.15 4.439 0.2379

RF with PS using GAM 0.04070 4.288 59.80 4.283 0.2385

Ensemble of NNs 0.03069 4.351 62.29 4.551 0.2351

All predictors except for baseline BCTs with PS using LR 0.04367 4.280 61.87 4.439 0.2206

BCTs with PS using GAM 0.04367 4.230 60.83 4.396 0.2189

RF with PS using LR 0.03260 4.302 61.91 4.463 0.2275

RF with PS using GAM 0.03259 4.226 60.53 4.374 0.2269

Ensemble of NNs 0.02042 4.485 63.42 4.861 0.2516

All predictors BCTs with PS using LR 0.03981 4.382 61.90 4.419 0.2375

BCTs with PS using GAM 0.03978 4.471 60.38 4.359 0.2389

RF with PS using LR 0.03446 4.339 62.07 4.494 0.2336

RF with PS using GAM 0.03445 4.254 60.53 4.396 0.2309

Ensemble of NNs 0.02206 4.360 62.63 4.576 0.2345
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Appendix 2. Temporal plots comparing the predicted number of fires (bottom)with the actual number of fires (top) for the
2012–2016 fire seasons, excluding 2013. The root-mean-squared error (RMSE) was computed by aggregating the predicted
and actual number of fires in the entire study region for each day in the fire season: (a–d) correspond to the years 2012, 2014,
2015 and 2016
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