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Abstract. This paper analyses the factors behind wildfire propagation in a Mediterranean European country, Portugal,
using a set of variables related to vegetation and climatic, topography and human aspects. Spatial cluster analysis was used

to find homogeneous regions, and two-part regression models were used to model the contribution of the different
elements driving extensive fire propagation. Our findings confirm the presence of spatial variability in the contribution
exerted bymost structural factors driving large wildfire spread. Additionally, the results of this study show that vegetation
types, in particular the presence of shrubs, and a lack of human activities, such as agriculture, represent the main factors

facilitating fire spread in this region, corroborating information from previous work. This research provides relevant input
for implementation in different fields, from large fire awareness and prevention to the development of wildfire policies, as
well as addressing methodological concerns in fire danger and fire risk analyses.
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Introduction

Fire is perceived as an important agent for both ecological

development and deterioration of forest ecosystems around the
world (Verde and Zêzere 2010; Ferreira-Leite et al. 2013b). In
fact, even though fire may have always been present as a land-

scape transformation and renewal factor (Goudie 2006), fire
events can have disastrous human, environmental and economic
consequences, especially when they develop into large wildfires

(Tedim et al. 2013).
Mediterranean Europe is particularly vulnerable to these

destructive phenomena. This region is home to the second-
most diverse community of species worldwide after the tropics,

and even though Mediterranean ecosystems are historically fire
resilient, intense human pressure on the environment has
favoured fire recurrence and increased fire size in many areas

of theMediterranean basin in the second half of the 20th century
(Moreno et al. 2013). Large fires play a significant role in this
context because they are responsible for the majority of the total

burned area while representing only a small share of all fire
events (San-Miguel-Ayanz et al. 2013). Trends of increased fire
incidence and intensity have been observable across European

Mediterranean countries, although at different rates. In Portugal,
there has been evidence of higher fire incidence than in other
Mediterranean countries (Rego and Silva 2014), a steady
increase in the frequency of large wildfires and an increase in

the extent of burned area during the second half of the 20th
century (Ferreira-Leite et al. 2013a). Climatic characteristics,

land abandonment and other socioeconomic transformations
have left the Portuguese inland territory susceptible to the
occurrence of large wildfires (Oliveira et al. 2012), and climate

change is expected to significantly increase fire danger (Rego
and Silva 2014).

According to Álvarez-Dı́az et al. (2015), the four decisive

conditions for wildfire occurrence and spread are favourable
meteorological conditions, the presence of fuel, its spatial
continuity and a source of ignition. All significant driving
factors of wildfires are discussed from these perspectives in

the present study. This work follows an adapted categorisation
from Mhawej et al. (2015) and Ganteaume et al. (2013),
in which the driving factors of wildfires are divided into

(i) vegetation; (ii) climatic; (iii) topographic; and (iv) human.
Vegetation conditions represent the decisive component of

any fire. Fuel is themain requirement for fire ignition and spread

(Cao et al. 2013; Holsinger et al. 2016), and different vegetation
patterns promote the fire susceptibility of landscapes. Even
though many fires are human-caused, specifically in southern

Europe, the main features of local vegetation remain a determi-
nant factor driving wildfire risk, as they control the success of
the ignition event and – most importantly – fire behaviour
(Calviño-Cancela et al. 2016).
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Evidence from several studies, particularly inMediterranean
regions, has established the importance of climatic factors in the
analysis of wildfire patterns. Climate is well noted for its impact

in shaping fire regimes in those areas (Ganteaume et al. 2013).
Moreover, the impact weather exerts during fire events is
deemed very relevant (Hernandez et al. 2015). Among these

features, we count temperature, precipitation and wind. It is also
important to note that climatic aspects are subject to significant
spatial and temporal variation (Keeley and Syphard 2016).

Topography has been found to be associated with wildfire
risk by many authors, with Ganteaume et al. (2013) considering
it one of the most elementary environmental factors driving
wildfire occurrence in Mediterranean Europe. Although the

significance and direction of this association have varied among
studies, several authors have mentioned the effect of different
topographic features on burned area and ignition density, as

shown byNunes et al. (2016). Among these features, we include
slope, aspect and elevation.

Finally, human factors are widely recognised among the

most important drivers of wildfires. These human factors
include population density and dynamics, socioeconomic char-
acteristics, changes in land cover, infrastructure and human

activities, such as agriculture and keeping livestock (Balsa
Barreiro and Hermosilla 2013; Nunes et al. 2013). It should be
noted that in contrast to non-human factors, human factors are
predominantly non-stationary in time and space (Rodrigues

et al. 2016; Keeley and Syphard 2018).
The relative influence of the factors driving large wildfire

spread in Portugal needs to be further studied for amore in-depth

understanding of fire dynamics. As Tedim et al. (2013),
Calviño-Cancela et al. (2017) and San-Miguel-Ayanz et al.

(2013) note, improved knowledge regarding the various inter-

actions among the main factors driving wildfire risk and fire
behaviour and their arrangement and patterns should translate
into an improvement in risk management strategies, such as
more efficient preventionmeasures, the development of existing

regulations and the creation of campaigns aimed at increasing
the awareness of different stakeholders in connection with
specific activities and settings. Additionally, a better under-

standing of large wildfire occurrence is essential for prevention
efforts and firefighting planning, as well as for legislative
frameworks (Moreira et al. 2010).

The results of empirical studies focusing on the drivers of
wildland fire propagation are still considered valuable input for
model parameterisation from the perspective of risk analysis

(Miller and Ager 2013), and there is a high degree of uncertainty
involved in the study of wildfires (Rodrigues et al. 2016).
Furthermore, research studying large wildfires in Portugal has
not fully investigated their underlying causes, specifically con-

cerning human-related elements (see e.g. Costa et al. 2011;
Fernandes et al. 2016; Turco et al. 2019), even though large fires
are responsible for most wildfire damage (Ganteaume and

Jappiot 2013).
The present research aims to explore the main determinants

of fire spread in central Portugal between 2005 and 2015,

specifically evaluating their spatial patterns and dynamics as
well as their individual contributions to fire propagation. The
focus of this study is on medium to large events in terms of
burned area, and all occurrences with a burned area larger than

100 ha were selected for this purpose (Ganteaume and Jappiot
2013). This research should result in beneficial developments in
awareness, prevention and wildfire policies and advances in the

effective mitigation of large wildfires (Grala et al. 2017),
specifically in the Portuguese context.

Materials and methods

Study area

The study area of this research is the central region of Portugal

(see Fig. 1), which, in 2011, comprised,1.6million inhabitants.
This area is characterised by a Mediterranean climate (Köppen-
Geiger classification Csa and Csb) (Kottek et al. 2006), much
like the rest of the Portuguese territory, although there is a

noticeable contrast in annual precipitation totals between the
wetter northern coastal areas and the drier southern inland areas.
According to the national land cover and land use cartography,

in 2010, ,65% of the study region was forest area. The main
species comprising these forests were pine trees (38.5%), fol-
lowed by eucalyptus trees (24.5%). Whereas pine tree forests

were relatively abundant throughout the study area, particularly
in the centre, the north-eastern part of the study region had
virtually no eucalyptus. However, shrublands were very com-

mon in the north-eastern area (14% overall), and forests with
other species (predominantly oak trees and sclerophyllous
vegetation) were extensive and found mainly along the border
(23%overall). Protected areas were also frequent over the inland

extent of this region (in total, 12 protected areas intersect the
territory under analysis). Rangelands, which comprised ,20%
of the entire area, were mostly restricted to the south-eastern

portion of the study region.
As in the rest of the country, the ignition density and burned

area are spatially dissociated in the study area (Moreira et al.

2010), with ignitions occurring primarily in densely populated
areas along the coastline and larger burned areas being mostly
restricted to inland areas, coinciding with higher elevations and
shrub vegetation (Mateus and Fernandes 2014). The fire regime

in the study area is characterised by short fire-return intervals
(Oliveira et al. 2012). There is a marked seasonal pattern in fire
activity, which is concentrated in the summer months (90% of

the entire area burned between 1996 and 2012 occurred from
June to September), and most fires are stand-replacement crown
fires (Mateus and Fernandes 2014).

Data collection and processing

The spatial framework of this research is the European ETRS89-
LAEA 1 � 1 km Inspire grid (European Forum for Geography
and Statistics and Eurostat 2019), and we used evidence from
previous analyses in this field of study (e.g. see Rodrigues 2015;

Vilar et al. 2010). The study area corresponds to 21 570 1-km2

grid cells. Variables have been transposed to the grid framework
following different methodologies (see Figs S1–S6 in the Sup-

plementary material). Data processing and integration were
performed with the help of ArcMap� 10.5.1 geographic infor-
mation system (GIS) software,Microsoft Excel� andMicrosoft

Access�. The target variable, the percentage of burned area
within each cell, was calculated from the original data by the
National Nature Conservation and Forestry Institute (Instituto
da Conservação daNatureza e das Florestas, I.P.; ICNF, IP). The
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burned area corresponded to 383 different fire perimeters,
equivalent to 5343 grid cells or ,25% of the study area (see

Fig. 2). Initially, data pertaining to 37 variables were collected
based on the results of previous works in this field as well as data
availability (see Table S1 in the Supplementary material).

Data analysis

Preliminary steps were conducted to successfully apply quanti-

tative analysis (see Fig. 3). The first step consisted of an initial
examination of the data to ensure its reliability and suitability for

cluster analysis and two-part models. As the data included a large
number of variables, data reduction was employed. To this end,

we used Pearson’s correlation coefficient to measure the (linear)
association between every pair of metric variables. For each pair
with an absolute value greater than 0.5, we kept only the one with
the highest value in predicting fire presence, making use of a

measure of entropy similar to a decision tree of depth one. After
this procedure, we standardised the data (Sharma 1996; Cleff and
Cleff 2014), and two standardised geographical variables denot-

ing cell x and y coordinates were added to the analysis, as is
usually advisable in geographic data analysis.

0 10 km 0 10 km

0 10 km 0 10 km

Urban and built-up land

Agricultural land and rangelands

Forest land

Wetlands and water bodies

Study area
0 50 km

Fig. 1. Study area. This strip of land covers most of the area corresponding to mainland central Portugal and is composed of

65% forest areas.
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The second step, after the initial examination of the data and

their dimensional reduction, consisted of using cluster analysis to

formhomogeneous groups of cellswith respect to the independent

variables kept in the first step. The goal of cluster analysis is to

form groups of cells that are as homogeneous as possible within

clusters and as heterogeneous as possible between clusters.

Following Sharma’s (1996) recommendation, a hierarchical clus-

tering analysis with five different algorithms (single, complete,

average, centroid and Ward’s) was performed. Based on an

analysis of the R2 and dendrograms of the five methods, Ward’s

algorithm was chosen to define the number of clusters and the

initial seeds to the non-hierarchical algorithm, k-means. This

approach has been used before in the literature with evidence of

providing better results than using only one type of method

(Sharma 1996; Cruz-Jesus et al. 2012). The cluster analysis was

performed with SAS Enterprise Guide� statistical software.

According to Kaiser’s criterion, the optimal number of clusters

was five. Ward’s method was used to generate the initial seeds,

which were subsequently optimised by the k-means algorithm.
The third and last step was the application of the two-part

models, which enabled the ultimate goal of this study: to

understand the structural determinants of large wildfires. A
short review of wildfire danger assessment methods confirmed
the suitability of generalised regression techniques, such as

logistic regression, in this field of study. These regression
methods were chosen to explore the contribution of the main

factors of large wildfire spread, as well as to recognise the

variability of each factor’s importance among regions. The
percentage of burned area in each cell follows a highly skewed
distribution with zero inflation, which prevents the use of the
classic multivariate ordinary least-squares (OLS) linear regres-

sionmodel. The applicability of non-linear two-stage estimation
procedures, such as two-part models (2PM), has been success-
fully demonstrated in a variety of fields where observed data

(either count or continuous data) are characterised by a heavy
presence of zeros in the response variable (Farewell et al. 2017),
including in the context of wildland fires. For example, Parisien

et al. (2014) used zero-inflated negative binomial models to
describe burned area count data. In this study, we implement a
2PM. This type of model is composed of two distinct stages, the
first predicting the probability of occurrence (0,1) through a

binary response model, and the second predicting the target
variable conditional on non-zero outcomes using the linear
regression model (Buntin and Zaslavsky 2004). For the first

stage, the probit model was chosen, and this approach uses a
specific case of binary response models following the standard
normal cumulative distribution (Wooldridge 2012).

Specifically, the first part of the model, the probit model, can
be presented as follows:

P y ¼ 1jXð Þ ¼ P y ¼ 1jx1; x2; . . . ; xkð Þ
¼ G b0 þ b1xi1 þ b2xi2 þ . . .þ bkxikð Þ ð1Þ

 
0 20 km

Burned areas
(2005–2015)

Fig. 2. Burned area cells (2005–15). Large fires are concentrated in the north-eastern and south-western portions

of the study area.
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where y is the binary variable, which equals 1 when a wildfire
occurs in grid cell i and 0 otherwise, b0 is a constant, X is the full
set of explanatory variables, b1, b2,y, bk are the coefficients,

and G is a function taking on values strictly between zero and
one: 0 , G(z) , 1, for all real numbers z. The explanatory
variables for the global model and for each of the five clusters
are listed in Supplementary Table S2.

The second part of the model, the linear regression model,
takes the following form:

yi ¼ b0 þ b1xi1 þ b2xi2 þ . . .þ bkxik þ ui; i ¼ 1; 2; . . . ; nð Þ
ð2Þ

where y is the dependent variable (percentage of burned area),
b0 is a constant, xi1, xi2,y, xik are the explanatory variables of

grid cell i, b1, b2, y, bk are the coefficients, and ui is the
error term of grid cell i. The explanatory variables for the
global model and for each of the five clusters are detailed in

the Results section.
For the purpose of this study, the percentage burned area was

first generalised to a binary target variable that could be

understood as fire presence. To evaluate the results from the
probit models, the average partial effects (APE), which repre-
sent the average of the non-linear function measuring the effect
of xk on P(y ¼ 1|X), were estimated, and the probability of

burning associated with the entire range of population values
was plotted for each variable. Subsequently, an OLS regression
was fitted to the subpopulation of cells displaying burning

activity during the decade. All models were fitted with the
forward-stepwise selection procedure and using Stata�. Fig. 3
presents the condensed methodological workflow of this study.

Results

After the previously described process of data reduction, 21
variables were kept for further analysis (see Table 1).

The hierarchical cluster analysis resulted in a five-cluster

solution as the most balanced partition, corresponding to an R2

value of 0.298. The k-means method performed after needed a
total of five iterations for completion and improved the value of
R2 to 0.324. The spatial representation of the clustering solution

can be found in Fig. 4.

Table 2 summarises the clustering solution regarding group
dimension, cluster location and specific fire spread-related
characteristics. A great contrast between groups is visible

overall, although the Southern Urban Coastline and Northern
Urban Coastline seem very close with respect to their main
characteristics, exhibiting a distinct urban profile, with differ-

ences limited to the number of dry months (extended drought
season in the south) and livestock activity and animal density
(more intense in the south). The North-eastern Highlands and
Central Forests also share several resemblances, including an

aging population and a high proportion of empty or secondary-
use housing, although fire incidence patterns differ signifi-
cantly. The North-eastern Highlands region is mainly defined

by biophysical aspects, including high elevations and large

Literature
review

Exploratory
analysis

Cluster
analysis

Two-part
models

Data
collection

and
processing

Data
reduction Clusters

37 variables

21 variables 5 clusters

GRIDGRID

Fig. 3. Methodological workflow.

Table 1. List of variables kept for statistical analysis, considering the

measures of variable correlation and variable worth in predicting fire

presence

Variable Acronym

Aging index AGE_INDEX

Agricultural area in cell (%) AGR_COS

Area of eucalyptus forests in cell (%) EUC_COS

Area of other types of forests in cell (%) OTHER_COS

Area of shrubland in cell (%) SHRUB_COS

Aspect (8) ASPECT

Average number of livestock per farm (no.) LVSTK_NFARM

Average utilised agricultural area per farm (ha) SAUFARM_HA

Distance to ignition locations (km) IGN_DIST

Distance to primary roads (km) PROAD_DIST

Distance to protected sites (km) AP2015_DIST

Elevation (m) ELEVATION

Farm density (no./km2) FARMDEN_KM

Rangelands in cell (%) GRZ_COS

Livestock units per utilised agricultural area (no./ha) LUNITS_NSAU

Number of dry months (Gaussen index) DRYMONTH

Population density (no./km2) POP_GRID

Population employed in agriculture, livestock, fishing,

forestry and hunting (%)

PRIM_PERC

Potentiality index POTENT_INDEX

Seasonal, secondary use and empty housing (%) SSEHOUS_PERC

Slope (8) SLOPE
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Southern Urban Coastline
CLUSTER

Northern Urban Coastline
Beira Baixa and Border Areas
North-eastern Highlands
Central Forests

0 40 km

N

Fig. 4. Spatial representation of the clustering solution (five clusters) based on the 21 variables selected to explain wildfire

propagation.

Table 2. Description of the clustering solution regarding the number of cells and the 21 variables selected to explain wildfire propagation

Features Southern Urban Coastline Northern Urban Coastline Beira Baixa and Border

Areas

North-eastern Highlands Central Forests

No. cells 3899 5546 2726 4853 4546

Population Average to high popula-

tion density, young pop-

ulation with a medium

potentiality index

Medium to high popula-

tion density, young pop-

ulation with an average to

high potentiality index

Average to low population

density, very old popula-

tion with a medium

potentiality index

Medium to low population

density, relatively old

population with a very

low potentiality index

Average to low population

density, moderately old

population with medium

to high potentiality index

Roads and

housing

Average to high density of

primary roads and high

ongoing housing

occupation

Medium to high road den-

sity and high ongoing

housing occupation

Very low density of pri-

mary roads and high

amount of not perma-

nently occupied housing

Average road density and

high amount of empty

housing

Average density of pri-

mary road and consider-

able to high amount of not

permanently occupied

housing

Agriculture

and

livestock

Very few people employed

in primary sector activi-

ties, agricultural activity

is still present, and ran-

gelands are less domi-

nant, average to high

density of small to

medium farms, high

livestock activity and

very high animal density

per utilised agricultural

area

Average to low proportion

of population employed

in the primary sector,

average extent of agri-

cultural areas but smaller

rangelands, very high

density of small to

medium farms, moderate

livestock activity and

animal density

High number of people

employed in primary

sector activities, large

agricultural areas, espe-

cially for grazing, low

density of high dimension

farms, average to low

livestock activity and low

animal density

Considerable number of

people employed in pri-

mary sector activities and

medium to low extents of

agriculture and range-

lands, moderate to low

density of regular-sized

farms, medium to low

livestock activity and low

animal density

Average number of people

employed in primary

sector activities and very

small extents of agricul-

ture and rangelands,

medium to low density of

moderate to small farms,

average to low livestock

activity and animal

density

Biophysical

aspects

Flat and low-altitude land-

scape, moderate presence

of eucalyptus and forests

of other types, average to

small shrub extents,

extended drought season

Terrain is relatively flat

and at low elevation,

medium to high presence

of eucalyptus trees, aver-

age to low extents of

shrublands and forests of

other species, short

drought season

Flat landscape at medium–

low altitude, very few

eucalyptus trees and

shrubs, large forests of

other types, extended

drought season

Rugged surface at high

elevation, very few euca-

lyptus trees, average to

high presence of other

types of forest and very

large shrublands, short

drought season

Rugged surface at medium

elevation, high eucalyp-

tus presence, medium to

low extents of other spe-

cies, moderate shrub

presence, extended

drought season

Ignition

density

Medium-high Medium-high Very low High Medium
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shrub extents. The Central Forests region has very few agricul-
tural areas and rangelands and is instead dominated by eucalyp-

tus forests.
Probit models, which in this case can be understood as

modelling fire presence, were then developed for the entire
study area and each region according to the clustering solution.

The results of this analysis are presented, including the esti-
mated models’ quality assessment measures, in Table 3, as well
as plots of burning probability for the entire range of population

values (Figs 5–7). TheAPE and the statistical significance of the
estimates can be found in Table S2.

From the goodness-of-fit measures (Table 3), it is clear the

fire presence models performed adequately, especially when
considering the percentage of correct classifications and the area
under the receiver operating characteristic (ROC) curve. Nev-
ertheless, three models displayed non-significant Pearson x2

values, and the percentage of accurate positive classifications
for Beira Baixa andBorder Areas (both the smallest and the least
affected by fire) was very small.

The model specification left out the number of farms per
kilometre squared (FARMDEN_KM) and the percentage of range-

lands (GRZ_COS), suggesting that these two factors were not
determinants of the propagation of large wildfires across the study
area. Three other variables were deemed significant both in the
global model and in all five regions: the percentage of the resident

population employed in primary sector activities (PRIM_PERC);
the percentage of land covered by eucalyptus forests (EUC_COS);
and the distance to ignition locations (IGN_DIST).

The results of themodels estimating the percentage of burned
area (area-burned models) provide further insights about the
impact of each driving factor on fire propagation in the case of

large wildfire events, complementing the findings from the
binary response models. Table 4 presents the quality assessment
measures of the sixmodels, as well as the number of cells in each
cluster (y¼ 1). The models’ coefficients and associated statisti-

cal significance are summarised in Table 5. The residuals from
all models were found to be approximately normally distributed,
which confirmed the suitability of this technique.

Table 3. Quality assessment measures for the fire presence models (probit models): global model and for each of the five clusters

Notes: n equals 21 750 in the globalmodel (number of grid cells) and the dimension of the clusters for each of the other fivemodels. Significance of the Pearson

x2 statistics: ***, P, 0.01; **, P, 0.05; *, P, 0.1

Model assessment Global Southern Urban

Coastline

Northern Urban

Coastline

Beira Baixa and

Border Areas

North-eastern

Highlands

Central Forests

Pearson x2 272 234*** 4525*** 4862 2594 18 346*** 3733

Sensitivity 42.58% 47.76% 39.33% 2.08% 64.14% 50.86%

Correct classifications 80.06% 82.92% 83.01% 92.81% 72.88% 81.74%

Area under the ROC curve 84.44% 85.39% 86.33% 84.07% 81.51% 86.40%
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Fig. 5. Burning probability associated with the fire presence models (probit models) plotted for the entire range of

population values: selected vegetation factors.
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It can be seen that the North-eastern Highlands region is by

far the region with the highest proportion of burned area cells
(approximately 41%), while in the Beira Baixa and Border
Areas, only 7% of the territory experienced burning by large

wildfire events during the 2005–15 period.
Specific driving factors have been highlighted for discussion

because of their impact on large fire spread, predictive ability or
inconsistency across clusters. Fig. 5 summarises themain results

of the six fire presence models concerning the considered
vegetation factors, displaying the associated burning probability
for specific values within the variables’ ranges.

Fuel availability represents one of the most relevant contrib-
uting factors to large wildfire spread, as gathered from the
models’ results. The extent of eucalyptus tree cover

(EUC_COS) displayed noticeable positive associations with
burning probability in all regions, except for the North-eastern
Highlands (Fig. 5). The Southern Urban Coastline shows a very
pronounced rise in burning probability in connection with

eucalyptus forests, though the relationship is also prominent in
the North-eastern Highlands. The results from the area-burned
models follow the same behaviour (i.e. a negative association in

the North-eastern Highlands), with the Southern Urban Coast-
line and Central Forests presenting higher coefficient values.

Shrublands (SHRUB_COS), on the other hand, were found to

increase burned area probability in all regions. This pattern was
observable in the fire presence and area-burned models, with
only North-eastern Highlands having a weaker association. The

90% burning probability corresponding to 100% shrub cover in
theNorthernUrbanCoastline is of note (Fig. 5). Among theOLS
coefficient estimates, this same region stands out with a higher
coefficient (Table 5), meaning that the percentage of shrub

cover increases the percentage burned area in a cell that does
burn in roughly half its proportion (0.546).

Fig. 6 summarises the main results of the six fire presence

models concerning the topographic factors considered.

The terrain slope (SLOPE) seems to display a positive

relationship with burning likelihood, which is particularly
noticeable for the SouthernUrbanCoastline andNorthernUrban
Coastline (Fig. 6). The probabilities associatedwith the different

slope values range,40 percentage points in these regions, with
themaximum gradient corresponding tomore than 60% burning
probability in the SouthernUrban Coastline. The estimatedOLS
coefficients also exhibit positive associations for this variable,

with the highest coefficient in the Beira Baixa andBorder Areas,
although the value was barely significant (Table 5).

The variable plot for elevation (ELEVATION) shows a very

steep rise in burning likelihood for the SouthernUrbanCoastline
with an increase in altitude (Fig. 6), while the other regions
considered exhibit the opposite trend. The results of the area-

burned models show similarly mixed results, if not exactly for
the same clusters (Table 5). The Southern Urban Coastline
presents a moderate positive association with burned area (an
increase of,2.3 percentage points for each 100m rise), whereas

for the North-eastern Highlands and Central Forests, the rela-
tionship is negative.

Fig. 7 summarises the main results of the six fire presence

models concerning the human factors considered.
The results from the fire presence models suggest that

population working in the primary sector (PRIM_PERC)

impacts fire spread as a deterrent, regardless of geographical
location, with all clusters displaying a negative relationship
between this variable and the likelihood of burned area. The

maximum burning probability (higher than 40%) is listed at 0%
primary sector working force for the North-eastern Highlands
(Fig. 7).

The results from the area-burned models also support this

evidence, with the Southern Urban Coastline, Beira Baixa and
Border Areas and Central Forests having a negative relationship
between the PRIM_PERC and the percentage of burned area per

cell (Table 5). This relationship can be considered stronger in the
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Fig. 6. Burning probability associated with the fire presence models (probit models) plotted for the entire range of

population values: selected topographic factors.
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case of the Southern Urban Coastline, where an increase of 1%
of people employed in primary sector activities means a
decrease in burned area of ,1.29 percentage points.

The influence of agricultural areas (AGR_COS) on burning
probability is similar to that displayed by PRIM_PERC and can

be considered more pronounced in the case of the North-eastern
Highlands (Fig. 7). This region exhibits the highest burning
probability (,50%) at 0% agricultural land cover, while the

negative behaviour of all other regions considered is weak.
When considering the percentage of burned area per cell, the

effect of agricultural land cover is very similar, with all models

displaying negative associations between both variables
(Table 5). The weight of this variable is again most relevant in
the case of the North-eastern Highlands, where agricultural

areas represent a decrease of ,65 percentage points in cell
burned area.

The effect of livestock production on burning probability is
mixed. A strong positive association is observable for the

average number of animals per farm (LVSTK_NFARM) in
the Beira Baixa and Border Areas and North-eastern Highlands,
with 500 animals corresponding to a burning probability of over

50% in both regions (Fig. 7). Animal density (LUNITS_NSAU),
on the other hand, exhibits a negative relationship with burning
probability for the Southern Urban Coastline, Central Forests

and, particularly, North-eastern Highlands. In the latter case,
burning probability declines from ,45% at no livestock units
per hectare to virtually 0% when animal density is highest. The

outcomes of the area-burned models differ, with the Northern
Urban Coastline and North-eastern Highlands displaying a
negative association, and the global model and Southern Urban
Coastline presenting the opposite trend.

All models presented a clear positive association between the
distance to protected sites (AP2015_DIST) and the probability
of burning, meaning that areas further from these locations are

expected to burn in wildfire events larger than 100 ha. This
statement is particularly true for the North-eastern Highlands,
where the range of associated probabilities is larger (Fig. 7). The

majority of the estimated OLS coefficients support these results,
with the North-eastern Highlands displaying a very high posi-
tive coefficient (Table 5). The Northern Urban Coastline, on the
other hand, exhibits a negative connection to percentage burned

area, which suggests that the impact of this variable fluctuates
across space.

Demographic growth potential (POTENT_INDEX) seems to

be negatively associated with burning probability throughout
the study area, with the Beira Baixa and Border Areas and
North-eastern Highlands displaying the most pronounced drops

in burning probability with an increase in the index (Fig. 7).
These same results are also observable in the area-burned
models, where estimated coefficients support these negative

relationships and where the North-eastern Highlands region
stands out with a decrease in burned area percentage in approxi-
mately the same proportion as the drop in the index (Table 5).
The population density (POP_GRID) is also associated with

burned area in the same direction, with the North-eastern
Highlands showing a decrease of ,4 percentage points in the
percentage burned area with an increase of 100 inhabitants.

The distance to ignition points shows significant negative
associations with a large wildfire propagation likelihood every-
where in the study area (Fig. 7). This effect on probability

follows the same behaviour in all regions, with a sharp decline in
burning probability with an increase in distance to ignition
locations. This variable is also strongly associated with the
extent of burned area, given the high coefficients displayed by
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the urban coastline clusters in the second part of the models

(Table 5). For the northern region, a cell affected by a fire
over 100 ha and located 15 km from an ignition location would
have a reduction in its expected burned area percentage of

,42 percentage points.

Discussion

The results of this study have shown that central Portugal is
composed of five different clusters with respect to the distri-

bution of the main structural factors driving the propagation of
large fires. This study also found that there is spatial variability
in the contribution exerted by most structural factors to burning

probability, with different results across clusters; additionally,
the influence of a given variable on cell burning is not neces-
sarily similar to the influence of the same variable on burning

extent, which in turn may also vary depending on location.

Additionally, some of the most striking drivers of fire presence

and burned area were identified as the type of vegetation, terrain

slope and human presence, specifically activities connected to

agriculture and livestock.

The overall clustering partition is coherent with previous
knowledge on the characteristics of central Portugal, namely,
the urban coastline–rural inland dichotomy. Larger burned areas

in Portugal are concentrated in the regions covered by theNorth-
eastern Highlands and Central Forests clusters (Tedim et al.

2013; Benali et al. 2016). Nunes et al. (2013) discussed the

essential role of socioeconomic transformations, such as the
rural exodus, and favourable climatic conditions (higher
precipitation) for the proliferation of available fuel in unculti-

vated areas in these regions.
The characteristics of the coastal areas contrast with these

patterns, particularly in the north-western pocket of the study

Table 4. Dimension and quality assessment measures for the area-burned models (OLS models): global model and for each of the five clusters

Significance of the F statistics: ***, P, 0.01; **, P, 0.05; *, P, 0.1

Model assessment Global Southern Urban

Coastline

Northern Urban

Coastline

Beira Baixa and

Border Areas

North-eastern

Highlands

Central Forests

Number of cells (n) 5343 917 1139 192 1994 1101

F statistic 89.34*** 36.31*** 44.10*** 6.06*** 28.50*** 31.47***

Adjusted R2 0.188 0.316 0.294 0.096 0.181 0.200

Table 5. Coefficients of the area-burned models (OLS models) and associated statistical significance: global model and for each of the five clusters

Significance of the coefficients: ***, P, 0.01; **, P, 0.05; *, P, 0.1. Blank cells indicate the variables were excluded by the forward-stepwise selection

procedure

Variables Global Southern Urban

Coastline

Northern Urban

Coastline

Beira Baixa and

Border Areas

North-eastern

Highlands

Central Forests

CONSTANT (b̂0) 103*** 29*** 71*** 40*** 153*** 106***

PRIM_PERC �1.29375*** 0.71687*** �0.60788** �0.47366**

FARMDEN_KM �1.03295** �1.59624**

SAUFARM_HA �0.23557**

LVSTK_NFARM 0.00107*** 0.00069**

LUNITS_NSAU 0.39146* 0.76439*** �1.69891** �7.00184***

SSEHOUS_PERC 0.13319*** 0.56645***

POTENT_INDEX �0.67417*** �0.39672* �0.97300*** �0.48580**

AGE_INDEX �0.00324**

POP_GRID �0.01909*** �0.01133*** �0.03855***

AGR_COS �0.44250*** �0.35647*** �0.43232*** �0.23051 * �0.64592***

EUC_COS 0.22741*** 0.48727*** 0.26358 *** �0.34679*** 0.44333***

GRZ_COS 0.55225*** 0.41351 *** 0.55249***

OUTR_COS 0.19743*** �0.36986***

SHRUB_COS 0.24486*** 0.50703*** 0.54626*** 0.08008*** 0.49115***

AP2015_DIST 0.10367** �0.35040*** 1.10158*** 0.28249***

PROAD_DIST 1.14231* 1.18853***

DRYMONTH �2.57044** �8.75216**

SLOPE 0.61038*** 1.52079*** 2.24835* 0.57521*** 1.33822***

ASPECT �0.02087* �0.07253*** �0.03574**

ELEVATION 0.02316** �0.01151*** �0.03843***

IGN_DIST �1.16798*** �2.40021*** �2.83019*** �1.38465***
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area (Northern Urban Coastline). Although ignitions are con-
centrated along the coast and around urban areas, higher
population density, fragmented settlements, intense agricultural

activities, higher accessibility and fire suppression efforts pre-
vent the occurrence of large wildfire events (Barros and Pereira
2014).

Forests are considered more fire-prone than farms, with
eucalyptus plantations displaying the same fire hazard as pine
stands (Moreira et al. 2011), a pattern observed across clusters in

our study. Nevertheless, effects connected to the economic
value and active management of paper and pulp production in
eucalyptus forests maymitigate the influence of fuel availability
and other favourable burning conditions (Barros and Pereira

2014). Additionally, it is interesting to note that according to
both of these authors, shrublands are more susceptible to fire
than forests, which may explain why the effect of eucalyptus

stands on burning probability was negative in the shrub-
dominated region of the North-eastern Highlands. Shrublands
are mentioned as one of the most significant wildland cover

varieties in the mountainous areas of northern and central
Portugal (North-eastern Highlands and Central Forests), specif-
ically in connection to their high flammability and preferential

burning (Fernandes et al. 2010). These vegetation features are
coupled with a rugged landscape, higher fuel connectivity and
lower population density, favouring fire spread (Mateus and
Fernandes 2014).

Regarding climate factors, and contrary to previous knowl-
edge on this subject, which states that a longer dry season
increases the chances of fire spread (Ganteaume and Guerra

2018), only in the Northern Urban Coastline should a higher
number of dry months increase burning probability, suggesting
that the influence of drought on large burned area should be

assessed using different data. In fact, according to Parisien et al.
(2014), models making use of temporal averages in climate
variables fail to capture time-related variability and tend to
highlight the overall importance of land cover factors.

Slope is known to influence fire spread both directly and
indirectly because of fire dynamics (flames closer to ground
fuel) and fuel moisture and density patterns (Holsinger et al.

2016). The findings of the present study are consistent with this
information.

However, the pronounced relationship found between an

increase in elevation and an increase in large fire spread
probability, such as that in the Southern Urban Coastline, can
be explained by the concentration of urban areas at low altitudes.

Evidence from Australia has found that fires tend to become
larger at higher altitudes, this fact being connected to limited fire
suppression activities at such elevations (Price et al. 2016). The
same pattern has also been confirmed in the European Mediter-

ranean context (Sande Silva et al. 2010). The results obtained
from the models seem to indicate that elevation promotes large
fire spread in densely populated regions (such as the Southern

Urban Coastline), while in inland rural regions, large wildfire
events occur at lower altitudes, where there is more available
fuel. These findings are not entirely consistent with previous

knowledge on this subject, meaning further investigation into
the effects of this topographic factor is needed.

Many arguments support the findings from this study, which
generally agree that agricultural activities work as a deterrent

factor for large burned areas. Wildfires occurring in agricultural
land cover are not expected to develop into high-intensity
events, mainly owing to a small fuel load of predominantly

dry fine fuels (Mitsopoulos et al. 2015). Several authors link the
process of agriculture, pasture and forestry abandonment that
occurred in European Mediterranean regions during the second

half of the 20th century to an increase in the size and intensity of
wildfires as a result of an accumulation of flammable materials
(Moreira et al. 2011; Viedma et al. 2015; Calviño-Cancela et al.

2016).
Another reason explaining the low probability of fire spread-

ing into agricultural spaces, or a higher burning probability in
wildland areas, has to do with the interaction between agricul-

ture and topography. Farms are usually located in flatlands, and
slope is known to strongly affect fire spread (Calviño-Cancela
et al. 2017). Agricultural activities are also associated with the

presence of humans in rural areas, which is associated with
earlier fire detection and more efficient firefighting (Moreira
et al. 2011), as farm management requires that holders be

vigilant and mindful of their property (Calviño-Cancela et al.

2016). Nunes et al. (2016) found the same overall patterns as the
present work regarding the relationship between agricultural

activities and reduced burned area in a study conducted at a
municipal level in Portugal.

Livestock activities and grazing have been found byMoreira
et al. (2011) to contribute to reduced fire hazard because these

activities naturally control fuel availability and density. This
fact may help justify the negative effect displayed by animal
density in some clusters. In this context, it is essential to consider

animal type for the influence exerted by different species, as
previously mentioned by Oliveira et al. (2014). This said,
evidence from the literature highlights the different impacts that

pastures and livestock have on large wildfire occurrence.
Oliveira et al. (2017) found that Portuguese parishes affected

by larger burned areas still had a considerable presence of
livestock and grazing. In a way, higher burned area percentages

in rangelands might be explained by fuel availability. Addition-
ally, many authors have highlighted the role of fire in clearing
land for grazing purposes in Mediterranean areas and specifi-

cally in Portugal (Ferreira-Leite et al. 2013a; Ganteaume and
Jappiot 2013; Álvarez-Dı́az et al. 2015; Vilar et al. 2016).

Protected areas are generally assumed to influence fire

occurrence, either as a deterrent factor connected to landscape
protection (Rodrigues et al. 2014, 2016) or as a factor related to
an increase in ignitions resulting from conflicts about the

establishment of these protected sites (Fuentes-Santos et al.

2013; Calviño-Cancela et al. 2017). The results from our study
are consistent with the views of Srivastava et al. (2014) on this
topic, which associate protected areas with increased success in

efficient wildfire suppression.
The outcomes of this study suggest that large wildfires tend

to spread into demographically depressed regions, with other

authors supporting this claim. Communities affected by larger
burned areas in Portugal are known to suffer from depopulation,
as young and educated people migrate from inland and moun-

tainous areas to coastal regions, which in turn renders these
locations increasingly vulnerable to fire (Oliveira et al. 2017).
The influence of population growth potential, which is generally
connected to human presence and density of human activities,
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has been found to reduce the probability of larger burned areas in
Spain, although it increases the probability of fire ignition
(Martı́nez-Fernández et al. 2013; Rodrigues and De la Riva

2014).
Similarly to the findings of this study, ignition locations have

been found to impact fire spread in Portugal, although it has also

been suggested that it mostly depends on complex interactions
with biophysical elements and that it varies considerably across
regions (Benali et al. 2016).

Conclusions

Overall, this study shows that, between 2005 and 2015, central

Portugal displayed a prevalence of large fire events in inland
central areas, with larger burned areas rarely occurring near the
coastline. It confirms the existence of spatial variability in the

impact ofmost structural factors driving the propagation of large
fires in this area while also emphasising that the contributions of
these factors may vary depending on whether we are modelling

the probability of cell burning or the percentage of burned area.
Moreover, vegetation type, slope and human activities such as
agriculture and keeping livestock are found to impact large fire

propagation the most across clusters. It is vital that upcoming
studies in the field of large wildfires, specifically in the Portu-
guese context, account for these crucial features.

Based on the main conclusions of this work and some of the

methodological issues faced, two research topics can be pro-
posed for future development. One is to compare the results of
this study with those stemming from the use of data mining

techniques, especially regarding the development of predictive
models. This methodology may be more suitable given the high
data volume (both variables and observations). Another possi-

bility is to select a condensed set of variables for a more detailed
assessment of the effect of different elements in large wildfire
spread, namely, those factors whose results seem to contradict
previous knowledge in this field.
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Köppen–Geiger climate classification updated. Meteorologische Zeits-

chrift (Berlin) 15, 259–263. doi:10.1127/0941-2948/2006/0130

Martı́nez-Fernández J, Chuvieco E, Koutsias N (2013) Modelling long-

term fire occurrence factors in Spain by accounting for local variations

with geographically weighted regression. Natural Hazards and Earth

System Sciences 13, 311–327. doi:10.5194/NHESS-13-311-2013

Mateus P, Fernandes PM (2014) Forest fires in Portugal: dynamics, causes

and policies. ‘Forest context and policies in Portugal. Present and future

challenges’. (Ed FReboredo) pp. 117–154. (Springer). doi:10.1007/978-

3-319-08455-8.

Mhawej M, Faour G, Adjizian-Gerard J (2015) Wildfire likelihood’s

elements: a literature review. Challenges 6, 282–293. doi:10.3390/

CHALLE6020282

Miller C, Ager AA (2013) A review of recent advances in risk analysis for

wildfire management. International Journal of Wildland Fire 22, 1–14.

doi:10.1071/WF11114

Mitsopoulos I, Mallinis G, Arianoutsou M (2015) Wildfire risk assessment

in a typical Mediterranean wildland–urban interface of Greece. Envi-

ronmental Management 55, 900–915. doi:10.1007/S00267-014-0432-6

Moreira F, Catry FX, Rego F, Bacao F (2010) Size-dependent pattern of

wildfire ignitions in Portugal: when do ignitions turn into big fires?

Landscape Ecology 25, 1405–1417. doi:10.1007/S10980-010-9491-0

Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E,

Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E

(2011) Landscape – wildfire interactions in southern Europe: implica-

tions for landscape management. Journal of Environmental Manage-

ment 92, 2389–2402. doi:10.1016/J.JENVMAN.2011.06.028

Moreno JM, Vallejo VR, Chuvieco E (2013) Current fire regimes, impacts

and the likely changes – VI: Euro Mediterranean. In ‘Vegetation fires

and global change. Challenges for concerted international action. A

White Paper directed to the United Nations and International Organiza-

tions’. (Ed JG Goldammer) pp. 115–131. (Kessel Publishing House:

Remagen-Oberwinter)
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Vilar L, Gómez I, Martı́nez-Vega J, Echavarrı́a P, Riaño D, Martı́n MP

(2016) Multitemporal modelling of socio-economic wildfire drivers in

central Spain between the 1980s and the 2000s: comparing generalized

linear models to machine learning algorithms. PLoS One 11, e0161344.

doi:10.1371/JOURNAL.PONE.0161344

Wooldridge JM (2012) ‘Introductory econometrics: a modern approach.’

(South-Western, Cengage Learning)

www.publish.csiro.au/journals/ijwf

254 Int. J. Wildland Fire D. Sousa et al.

http://dx.doi.org/10.1080/10807031003670469
http://dx.doi.org/10.1371/JOURNAL.PONE.0161344

