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Abstract. The simultaneous occurrence of wildfire can hinder firefighting effectiveness via multiple mechanisms that
might explain historical resource demand trends.We validate this hypothesis by using data from theMonitoring Trends in
Burn Severity (MTBS) project to determine if simultaneous wildfire occurrence is correlated with preparedness levels and

examine potential changes in simultaneous wildfire activity over the 1984–2015 record. We explore patterns that are
helpful for predicting simultaneous wildfire, such as seasonal variability in simultaneity, cross-regional correlations and
models of simultaneous wildfire occurrence based on dryness and lightning indicators. We show that simultaneous
wildfire is at least as correlated with preparedness levels as other burned area measures and identify changes in

simultaneous wildfire occurrence within the western and southern United States. Seasonal variation and spatial
autocorrelation in simultaneous wildfire occurrence provide evidence of coupling of wildfire activity in portions of the
western United States. Best-approximating models of simultaneity suggest that high levels of simultaneous wildfire often

coincided with low fuel moisture and high levels of lightning occurrence. Model uncertainty was high in some contexts
but, with only a few exceptions, there was strong evidence that the best model should include both a dryness and lightning
indicator.
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Introduction

The presence of multiple co-occurring fire incidents can reduce
firefighting efficiency via multiple mechanisms. For example,

this scenario requires dispatchers to distribute staff and equip-
ment across multiple incidents. Effectively distributing resour-
ces may require little effort when the number of incidents is low,

but it likely becomes increasingly challenging when the number
of competing demands are high (Smith and Gonzalez-Caban
1987). In particularly extreme scenarios, demand for fire-

fighting resources can exceed availability, a scenario that
requires a sudden increase in resources or the acceptance of
unmet demand.

Both the size and number of wildfires will be related to
firefighting resource need, but the latter seemingly has several
relative benefits as a proxy for suppression effort. Although
larger wildfires tend to be more expensive to fight than smaller

ones (Calkin et al. 2005), per-hectare suppression costs often
decrease with fire size because suppression activities are typi-
cally located along the perimeters ofwildfires and the perimeter-

to-area ratio typically decreases with increasing wildfire size
(Smith and Gonzalez-Caban 1987). Therefore, fire perimeter
estimates better predict suppression costs than fire number or

area (Smith and Gonzalez-Caban 1987) and are used by fire-
fighters to measure suppression effort (Hirsch and Martell

1996). However, as the fractal nature of wildfire burned area
makes perimeter measurements challenging (McAlpine and
Wotton 1993), simultaneity can serve as an easy-to-calculate

substitute. Assuming that fire perimeter length is a determining
factor of firefighting effort, a simple geometric analysis demon-
strates that – all other factors being held constant – a collection

of simultaneous wildfires will require more effort to extinguish
than a single comparably sized one (Smith and Gonzalez-Caban
1987). Travel time spent between simultaneous incidents and

the associated firefighter fatigue further reduce firefighter
effectiveness (Bednar et al. 1990).

Multiple plausible mechanisms link simultaneous wildfire

and resource demand, yet burned area ismore commonly used to
measure fire trends (Doerr and Santı́n 2016). Among the earliest
studies to investigate simultaneity, Bednar et al. (1990) analysed
administrative wildfire growth data in the north-western United

States and concluded that simultaneous fire tended to increase
suppression times. Since then, most studies about simultaneous
wildfire occurrence were regarding locations outside the United

States. The relationship between meteorological conditions,
simultaneity and total burn area has been considered in the
Mediterranean (San-Miguel-Ayanz et al. 2013), Sweden

(Drobyshev et al. 2012), South America (Román-Cuesta et al.
2014; González et al. 2018), Australia (O’Donnell et al. 2011)
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and Canada (Magnussen and Taylor 2012). In the United States,
Abatzoglou and Kolden (2013) looked at annual burned area to
identify synchronous behaviour at broad spatial scales in the

western United States. Moreover, Liu and Wimberly (2015)
described levels of spatial autocorrelation in fire occurrence in
the western United States, and found it to be one of the most

highly spatially autocorrelated wildfire characteristic of those
they considered. However, little other work has considered the
relationship between simultaneous fire occurrence, firefighting

and the environment.
Uncertainty associated with this research gap is particularly

troubling because wildfire behaviours, and therefore impacts on
humans, are changing in ways that are hard to predict. Although

detectable increases in wildfire frequency, size and large-fire
frequency have been observed in parts of the western United
states, particularly in the Southwest (Dennison et al. 2014),

burned area has declined globally on average (Andela et al.

2017) and decreases in wildfire activity have been observed in
portions of the United States (Syphard et al. 2007). Projections

of wildfire activity show similar variability, with non-uniform
changes across regions in fire size and frequency (Krawchuk
et al. 2009; Podschwit et al. 2018a). Furthermore, simultaneity

may not even follow the same trends observed in fire size and
frequency, and in general extrapolating these trends to other
wildfire characteristics can lead to misleading conclusions. In
the United States, for instance, total area burned bywildfires has

increased but the number of fires has decreased (Doerr and
Santı́n 2016), and explanatory variables that reliably predict fire
number may not reliably predict size (Syphard et al. 2007).

Still, simultaneous wildfire occurrence is likely influenced
by factors that control landscape flammability and ignition
frequency, including climate and weather variables (Bowman

et al. 2011). Landscape flammability can be explained via
multiple dryness indicators that correlate with fuel and soil
moisture (Flannigan et al. 2009), but the relative importance and
impact of dryness indicators onwildfire still varies spatially. For

instance, the suite of meteorological covariates predicting very-
large fire can vary by region and across wildfire characteristics
(Stavros et al. 2014; Barbero et al. 2015; Podschwit et al.

2018a). Additionally, conceptual models of wildfire activity
suggest a spatially variable effect of increased dryness on
wildfire. In fuel-limited ecosystems, increased dryness reduces

already low fuel availability and connectivity, whereas in
climate-limited ecosystems, it cures already abundant flamma-
ble biomass (Meyn et al. 2007).Within-ecosystem variability in

the effects of increased dryness is also sometimes detectable
(Westerling et al. 2003), and other factors can have a predomi-
nant role in mediating wildfire activity in certain locations
(Syphard et al. 2017). Similarly to landscape flammability,

ignition frequency is also influenced by climate and weather.
Lightning is an important wildfire ignition source in portions

of the United States (Dı́az-Avalos et al. 2001; Balch et al. 2017;

Nagy et al. 2018). Although variation in lightning activity is in
part related to temperature (Flannigan et al. 2009), measures of
lightning activity provide relevant information about wildfire

risk that are somewhat independent of that provided by the
dryness indicators. Although ignition probabilities and the
expected number of wildfire starts might be correlated with
the number of lightning strikes, it is likely higher still when fuels

are conducive to ignition, such as under drought conditions.
Although beyond the scope of the present analysis, it should be
noted that a suite of non-meteorological factors can also influ-

ence landscape flammability and ignition frequency, such as
anthropogenic influences (Syphard et al. 2007, 2017), vegeta-
tion characteristics (Bradley et al. 2016), atmospheric processes

(Dominguez Martin and Garcia Diez 2010) and firefighting
effects (Brotons et al. 2013).

In the United States, firefighting decisions impacted by

simultaneous wildfire occurrence – those about firefighting
resource distribution, prepositioning and suppression strate-
gies – are made using a three-tiered hierarchy. When a wildfire
is first reported, local resources develop a strategy for managing

the incident. If the fire grows to exceed the capacity of local
firefighting resources, they may request additional resources
through the relevant Geographic Area Coordination Center

(GACC), which coordinates firefighting resources regionally.
Similarly, if the wildfire grows beyond what GACC-level
resources can manage, additional firefighting resources can be

requested at the national level. The central coordination of
firefighting resources occurs at the National Interagency Fire
Center based in Boise, Idaho.

Fire managers have increasingly been encouraged to permit
some ignitions to burn to achieve land-management objectives,
reduce costs and increase firefighting capacity. Despite this
flexibility in management approaches, initial attack levels have

not strongly changed (North et al. 2015), which suggests that
any changes in United States wildfire activity observed in the
historical record are unlikely to have resulted from recent shifts

in overall firefighting strategies. Status quo firefighting policy
in the United States has been expensive (Calkin et al. 2005) and
has negatively impacted other management objectives. Since

1999, there has been a nearly annual diversion of US Forest
Service (USFS) funds originally budgeted for non-firefighting
activities into fire suppression activities (Gorte 2011; Hoover
et al. 2015; Steelman 2016; Hoover 2017), although this has

since been addressed via 2018 changes in federal policy (Balch
et al. 2018). In addition to increased costs, deployments of
firefighting resources have increased in the United States. For

example, private engines (Lyon et al. 2017) and air tankers
(Thompson et al. 2013) have been dispatchedmore frequently in
recent years than they have historically. Requests for large air

tankers are increasingly returned as ‘unable to fill’, suggesting
increasing levels of resource scarcity during periods of high
wildfire activity (Belval et al. 2020).

Simultaneous wildfire occurrence appears to be a conceptu-
ally plausible predictor of resource demand trends, but this
hypothesis has been subject to little validation. Moreover,
simultaneous fire may also be influenced by the same covariates

of burned area, but that is an assumption that warrants further
investigation. In the present paper, we examine the relationship
between simultaneous wildfire occurrence and resource demand

and identify potentially useful relationships for predicting
simultaneous wildfire events in the future. We use a long-term
and consistent dataset from the Monitoring Trends in Burn

Severity project to describe the statistical characteristics of
historic (1984–2015) simultaneous wildfire activity. We also
use meteorological data from the gridMET datasets and light-
ning occurrence data from the National Center for

1058 Int. J. Wildland Fire H. Podschwit and A. Cullen



Environmental Information to build models of historic simulta-
neous wildfire occurrence.

In this paper, we address five questions related to the predic-

tion of simultaneity: (1) how strong are correlations between
simultaneity levels and resource demand proxies? (2)What times
of year does simultaneity peak in the United States? (3) Have

there been any detectable changes in peak simultaneity levels
over the 1984–2015 historical record? (4) Are there detectable
cross-regional autocorrelations in simultaneity? (5) What combi-

nation of dryness and lightning indicators produces the best-
approximating model of observed simultaneity levels?

Methods

Data

We use four datasets to establish relationships between simul-
taneity, firefighting and the environment. Simultaneous wildfire
occurrence is measured using data from the Monitoring Trends

and Burn Severity (MTBS) project (https://mtbs.gov/; verified
29 August 2018). MTBS data use Landsat satellite data, along
with historical fire records from state and federal agencies, to

produce a quality-controlled and long-term dataset of burn
severity maps. Large wildfires (i.e. .405 ha in the West and
.202 ha in the East) are selected for analysis by MTBS by

consulting fire occurrence data from federal and state fire
occurrence databases. Pre-fire and post-fire satellite imagery are
collected for the selected fires. The imagery is compared to
estimate vegetation changes and classify pixels into burn

severity categories (Eidenshink et al. 2007).We use information
associated with individual fires such as the discovery date,
location and size estimates for fires during the years 1984–2015.

The original data were filtered to produce a reference class of
incidents likely to be staffed by firefighting resources, which are
unplanned and likely large fires. For that reason, fires labelled as

prescribed fire or labelled as unknown and small fires (i.e.
,405 ha) were removed from the final data.

Preparedness level data are used to measure firefighting

resource demand and come from the National Interagency Fire
Center (https://www.nifc.gov/nicc/sitreprt.pdf; verified 31
October 2017). A preparedness level index is a discrete quantity
that takes on a value between 1 and 5 to describe the perceived

levels of resource demand at the national and GACC scales. A
preparedness level of 1 suggests little wildfire activity and low
resource strain, and a preparedness level of 5 suggests high

wildfire activity and high resource strain. Preparedness levels
are irregularly reported throughout the year, with near-daily
updates during periods of high wildfire activity and intermittent

updates during periods of low wildfire activity.
Meteorological and lightning data are used to derive covari-

ates used to predict simultaneous wildfire. A total of nine daily
meteorological variables are downloaded from the gridMET

program at the University of Idaho (http://www.climatologylab.
org/gridmet.html; verified 28 March 2020) to create dryness
indicators: burning index, energy release component, specific

humidity, vapour pressure deficit, potential evapotranspiration,
100-h fuel moisture, 1000-h fuel moisture, minimum tempera-
ture and maximum temperature. The gridMET product is a

synthesis of remote weather station data and other covariates to
interpolate predictions onto a standard grid (Abatzoglou 2013).

In addition to dryness indicators, lightning indicators are also
used as covariates for simultaneous wildfire occurrence and
come from daily gridded summaries from the National Center

for Environmental Information (ftp://eclipse.ncdc.noaa.gov/
pub/Data_In_Development/lightning/grids; verified 28 March
2020). The meteorological data were available for the years

1979–2018 and the lightning data were available for the years
1986–2012.

Data processing

All datasets were aggregated temporally intomonthly time steps
and aggregated spatially into GACC regions (https://fsapps.
nwcg.gov/psp/npsg/forecast/home/downloads; verified 4 Sep-

tember 2020). We define simultaneity using monthly wildfire
counts calculated for each GACC with a large (20 250 ha),
medium (4050 ha) and small (405 ha) lower size threshold

(Fig. 1). These quantities will be referred to as extremely large
fires (ELFs), very large fires (VLFs) and all large fires (ALFs),
which include both ELFs andVLFs. In some cases, it is desirable
to remove seasonal variability from the simultaneity measures,

and the maximum annual simultaneity level – hereafter peak
simultaneity – is reported to remove these trends. Two monthly
burned area measures are also calculated to compare against

simultaneity: the total burn area and maximum wildfire size.
Resource demand is represented using monthly averages of
regional preparedness levels, which were mined from archived

Incident Management Situation Reports (http://www.pre-
dictiveservices.nifc.gov/intelligence/archive.htm; verified 4
September 2020). Eight dryness indicators are derived from

daily meteorological data by taking monthly GACC-level
averages (Table 1). Average temperature is derived using the
half sum of minimum and maximum daily temperature (Weiss
and Hays 2005). All dryness indicators are converted into per-

centiles using the entire 1979 to 2018 observational record. Four
lightning indicators are derived for eachmonth andGACCusing
geospatial daily strike count data (Table 1).

Statistical analysis

Three subsets of the four data sources are needed to answer the
previously outlined research questions. Questions about the

seasonal variation in simultaneity, detectable changes in
simultaneity, and spatial autocorrelation in simultaneity can be
addressed solely using information derived from the MTBS

data. Validating the relationship between simultaneity and
resource demand requires this same information plus pre-
paredness level data. Lastly, questions regarding the identity of

important climate and weather predictors require MTBS data
plus the dryness indicators and lightning indicators information.
Each subset has a unique time domain resulting from differing
data availability across the four data sources (Table 2). Both

preparedness level data and burn area data are available for the
years 2009–15; lightning and dryness indicator data and burn
area data are available for 1986–2012; and burn area data are

available for the years 1984–2015.
The strength of the correlation between simultaneity and

other important factors is assessed using the Kendall correlation

coefficient. The Kendall coefficient is a non-parametric mea-
sure of correlation that is more robust to the presence of outliers
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than the Spearman correlation coefficient (Croux and Dehon
2010). We use the Kendall coefficient to assess the relationship
between simultaneity and preparedness levels, identify trends in

peak simultaneity, and identify spatial autocorrelation in simul-
taneity. t-tests are used to assess differences in peak simultaneity
levels in 1984–99 v. 2000–15.

Predictive models of simultaneity are structured using gen-

eralised linear models with a Poisson response and log-link. For
each region and definition, an initial model set of 45 models,
consisting of all linear combinations of dryness indicators and

lightning indicators, is constructed using the relevant time
series. The best model is selected by identifying the model with

the maximum Akaike weights, which can be interpreted as the
probability that a model is the best-approximating model within
the initial model set (Symonds and Moussalli 2011). The

maximum Akaike weight and the number of models in the
95% confidence set (Symonds and Moussalli 2011) are used to
measure model uncertainty.

Critical Bayes threshold values identified by Kass and

Raftery (1995) were converted to P values using methods
described by Goodman (2001) and Halsey (2019). Using this
standard, a P value less than ,0.0340 is interpreted as statisti-

cally significant, a P value less than 0.0075 is interpreted as
strongly statistically significant, and a P value less than 0.0005
is interpreted as very strongly statistically significant. All

statistical analyses were performed using the R programming
language (R Core Team 2019) and correlations calculated with
the ‘Kendall’ package.

Results

Simultaneity and resource demand

For nearly every region and wildfire characteristic, monthly
mean preparedness levels were positively correlated. However,
the correlations were not always statistically significant. For

instance, in the Eastern region, VLF and ELF simultaneity did
not have a statistically significant relationship with prepared-
ness levels. The wildfire characteristic with the strongest cor-

relation with preparedness levels varied by region and was
statistically significant in all regions. In most regions, the
strongest correlations with preparedness levels were associated
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Fig. 1. Map of the Geographic Area Coordination Center boundaries within the continental United States with fire occurrence

locations (1984–2015) from the Monitoring Trends in Burn Severity dataset overlaid.

Table 1. Derived variables from gridMET and National Centers for

Environmental Information daily lightning strike count data that are

used as predictors for each month and Geographic Area Coordination

Center region

Variable class Variable name (abbreviation)

Dryness indicator Temperature percentile (temp)

Specific humidity percentile (sph)

Vapour pressure deficit percentile (vpd)

Potential evapotranspiration percentile (pet)

Energy Release Component percentile (erc)

Burning Index percentile (bi)

100-h fuel moisture percentile (fm100)

1000-h fuel moisture percentile (fm1000)

Lightning indicator Number of strikes in thousands (strikes)

Number of pixels with strike in thousands (pix)

Number of days with strike (days)

Number of voxels with strike in thousands (vox)
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with simultaneity measures rather than burned area measures.
Of the three simultaneity definitions, ALF simultaneity was
identified as having the strongest correlation with preparedness
levels in three regions: Eastern Great Basin, Northern Rockies

and Southern. VLF simultaneity was identified as having the
highest correlation with preparedness levels in the Northern
California and Rocky Mountain regions, and ELF simultaneity

had the highest correlation with preparedness levels only in
Southern California. Total fire size had the highest correlation
with preparedness levels in the Northwest, Southwest and

Eastern regions, and maximum burned area the highest corre-
lation in the Alaska and Western Great Basin region. Where the
best burned area measure had higher correlations than the best
simultaneity measure, the differences were relatively small

(Fig. 2). The magnitude of the strongest correlation from each
region ranges from 0.28 in the Eastern region to 0.69 in the
Northwest region.

Peak simultaneity

The timing and levels of simultaneity are variable across regions
and definitions, but the majority of regions tend to peak around

July and August. Under the ALF and VLF definitions, the
Eastern Great Basin, Northern California, Northern Rockies,
Northwest, Rocky Mountain, Southern California and Western

Great Basin regions are expected to have peak simultaneity
either during July or August. Under the ELF definition, the
Eastern Great Basin, Northern California, Northern Rockies,
Northwest, Southern California and Western Great Basin have

peak simultaneity during August. A minority of regions are
likely to experience peak simultaneity during the springmonths.
For instance, for all definitions, peak simultaneity is expected in

March or April for the Eastern and Southern regions. Moreover,
ELF simultaneity in the Southwest tends to peak in April. The
actual month of peak varies around the expectation from year to

year. For instance, although April is the month that simultaneity
most frequently peaks in the Eastern region, simultaneity

peaked during another month 50% of the time. Peak VLF
simultaneity has occurred as early as January in the Alaska,
Rocky Mountain, Southern California and Southern regions,
and as late as November in the Southern region. Peak ALF

simultaneity has occurred in December in the Southern region
(Fig. 3). The all-time maximum peak simultaneity did not
always occur during the modal peak simultaneity month. For

instance, the highest ALF and VLF simultaneity counts in the
Eastern region occurred during an outbreak between October
and November 1991, but the most typical peak simultaneity

month is in April. The expected number of regions experiencing
peak simultaneity at the same time is maximal in July or August.
Under the ALF and VLF simultaneity definition, the number of
regions with peak simultaneity is highest in July; under the ELF

definition, this quantity is highest in August (Fig. 4).

Observed changes in peak simultaneity

Statistically significant changes in peak simultaneity levels

were detected in the Alaska, Northern Rockies, Southwest and
Southern regions. Strongly significant increases in peak ELF
simultaneity were noted in the Southwest regions, but the

average increase was relatively small, with 1.1 additional fires
during peak simultaneity in 2000–15 compared with 1984–99.
Significant increases were observed in Alaska as well, with a

slightly larger average increase of 4.6 additional ELFs during
peak simultaneity in 2000–15 compared with 1984–99. Peak
ALF simultaneity significantly increased in Northern Rockies
and Southern regions, and peak VLF simultaneity significantly

increased in the Northern Rockies region. Decreases in mean
peak annual simultaneity were observed in some regions, but the
changes were never statistically significant (Fig. 5). The largest

absolute increase in the mean peak annual simultaneity is
observed in the Alaska region, which had average peak ALF
simultaneity of 12.3 in 1984–99 compared with 28.9 in 2000–

15; however, the difference is not statistically significant. The
largest statistically significant increase in the mean peak annual

Table 2. Sample size summaries for each Geographic Area Coordination Center

The frequency with which wildfires exceed all large fire (405 ha), very large fire (4050 ha), and extremely large fire (20 250 ha) simultaneity definitions are

represented over the three relevant time domains. Frequency is reported both as the cumulative number of wildfires that exceeded the specified threshold and

the number of months (in parentheses) in which at least one wildfire exceeded the relevant threshold. AK, Alaska; E, Eastern; EGB, Eastern Great Basin;

NCAL,NorthernCalifornia;NROCK,NorthernRockies;NW,Northwest; ROCK,RockyMountain; SCAL, SouthernCalifornia; S, Southern; SW, Southwest;

WGB, Western Great Basin

Region 1984–2015 1986–2012 2009–15

ALF VLF ELF ALF VLF ELF ALF VLF ELF

AK 1028 (102) 472 (72) 157 (39) 757 (87) 343 (63) 122 (32) 387 (26) 187 (17) 51 (12)

E 463 (130) 38 (20) 5(5) 442 (118) 37 (19) 5 (5) 63 (32) 4 (4) 1 (1)

EGB 1636 (153) 319 (80) 52 (29) 1474 (135) 287 (72) 46 (26) 308 (33) 73 (17) 16 (8)

NCAL 521 (131) 131 (46) 23 (17) 442 (107) 101 (35) 18 (13) 104 (26) 40 (13) 8 (6)

NROCK 918 (140) 176 (49) 37 (23) 775 (121) 152 (40) 34 (20) 266 (35) 49 (14) 7 (6)

NW 1138 (128) 287 (74) 61 (30) 881 (107) 205 (59) 41 (23) 327 (31) 95 (18) 27 (9)

ROCK 799 (195) 131 (63) 14 (9) 734 (169) 121 (58) 14 (9) 196 (51) 39 (18) 6 (3)

SCAL 876 (200) 148 (78) 28 (16) 753 (168) 127 (64) 22 (12) 127 (41) 25 (15) 5 (4)

S 1766 (290) 170 (79) 29 (22) 1584 (248) 155 (67) 26 (19) 612 (70) 69 (23) 12 (7)

SW 1530 (241) 253 (82) 37 (23) 1418 (213) 238 (74) 35 (21) 497 (59) 101 (27) 19 (8)

WGB 802 (124) 216 (59) 38 (17) 687 (108) 176 (48) 36 (15) 120 (26) 35 (14) 2 (1)
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simultaneity is observed in the Northern Rockies, which had a

peak annual simultaneity of 9.3 in 1984–99 compared with 22.4
in 2000–15.

In addition to the increases in simultaneity between the

halves of the historical record presented above, statistically
significant temporal trends in peak simultaneity were detected
in Alaska, Northern Rockies, Southern California, Southern and
Southwest regions. Under the ELF simultaneity definition,

strongly statistically significant positive correlations were
detected in the Southwest region. Statistically significant posi-
tive correlations in ELF simultaneity also occurred in the Alaska

region. Under the ALF definition, significant increases were
observed in the Southern region and significant decreases in the
Southern California region. Under the VLF definition, signifi-

cant increases were detected in the Northern Rockies, Southern
and Southwest regions.

Cross-regional simultaneity correlation

Under the ALF simultaneity definition, detectable regional
autocorrelations are observed for nearly every pair of regions.
One exception to this is the Eastern and Southern regions, which
although very strongly and positively autocorrelated with one
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another are fairly uncorrelated with other regions. In the Eastern

region, ALF simultaneity is strongly and negatively auto-
correlated with ALF simultaneity in the Eastern Great Basin,
Northern California and the Northwest, and strongly and posi-

tively autocorrelated with ALF simultaneity in the Southwest
region. In the Southern region, ALF simultaneity is very
strongly and positively autocorrelated with ALF simultaneity in

Rocky Mountain and Southwest regions. Detectable auto-
correlations occur less frequently under the VLF and ELF
simultaneity definitions, particularly in the Southwest.

Although being detectably autocorrelated with nearly every
other region under the ALF definition, autocorrelations in VLF
simultaneity between the Southwest and other GACCs are
detectable for Alaska, Eastern Great Basin, Rocky Mountain

and Southern regions only. Even fewer autocorrelations are
detectable under the ELF definition and the Southwest is only

autocorrelated with Alaska. Regardless of the simultaneity

definition, strong and positive autocorrelations are detectable
between the Eastern Great Basin, Western Great Basin, North-
ern California, Southern California Northwest and Northern

Rockies regions (Fig. 6).

Precursors of simultaneity

The best approximating model of simultaneity nearly always
uses both dryness and lightning indicators, although there is
regional variability in what specific covariates are selected to

represent those variable types. For instance, ALF simultaneity
uses multiple kinds of dryness indicators depending on the
region. Four of the regions use burning index, three use vapour
pressure deficit, and the energy release component, 100-h fuel

moisture and 1000-h fuel moisture were each used by one
region. Similar uncertainty was seen under the ELF and VLF
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Fig. 5. Change in annual maximum simultaneity over time between 1984–99 and 2000–15 (a, c, e) and Kendall correlation

over 1984–2015 record (b, d, f). Each row corresponds to a particular type of simultaneity, which is defined using monthly

wildfire counts of incidents exceeding size thresholds: small (405þ ha), medium (4050þ ha), and large (20250þ ha). P values

smaller than 0.03 are interpreted as significant (*), P values smaller than 0.0075 are interpreted as strongly significant (**), and

P values smaller than 0.0005 are interpreted as very strongly significant (***).
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simultaneity definitions. Under ELF simultaneity, the burning

index is used in four of the regions to represent landscape
flammability, vapour pressure deficit is used in three regions,
and energy release component in two regions. Under VLF

simultaneity, burning index is used in four regions, vapour
pressure deficit, 1000-h fuel moisture and energy release com-
ponent used in two regions. The lightning indicators, like the
dryness indicators, showed no obvious spatial patterns of vari-

able use.
In the models that include both types of indicators, increases

in simultaneity are almost always predicted with increasing

dryness and lightning activity. Exceptions to this are observed in
the Eastern, Southern California and EasternGreat Basin region.
In the Eastern region, very strong negative effects of lightning

activity are detected for ALF and VLF simultaneity. In the
Southern California region, a detectable negative effect of the
number of days with lightning is detected for ELF simultaneity.

In the Eastern Great Basin region, a negative effect of lightning

activity on simultaneity is also observed in the best-
approximating model for VLF simultaneity, but the effect is
not statistically significant (Fig. 7). Lightning indicators were

not included in some models. The best-approximating North-
west models are based solely on vapour pressure deficit and do
not include lightning indicators. Additionally, the best-
approximating ELF simultaneity model in the Eastern and

Northern Rockies region and the best-approximating VLF
simultaneity model in Southern California did not use lightning
indicators.

Akaike weights also show variable levels of model uncer-
tainty across regions and simultaneity definitions. Under the
ALF simultaneity definitions, model uncertainty is relatively

low. Five regions report a 95% confidence model set that only
contains one model, and another three regions report a 95%
confidence model set that contains two models under the ALF
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definition. The highest model uncertainty under the ALF simul-
taneity definition is observed in the Northwest and Southern
California region, which both report five models in the 95%

confidence set and an,40% probability of accurately identify-
ing the best-approximating model. Levels of model uncertainty
tended to increase as the size thresholds increased. Under the

VLF simultaneity definition, three regions had a 95% confi-
dence set containing a single model, and under the ELF
simultaneity definition, no region had a 95% confidence set

containing a single model. Even when the probability of
correctly identifying the best-approximating model was rela-
tively low, the Akaike weights typically suggested that the
structure of the best-approximating model included lightning

and dryness indicator components rather than only one or
neither of those components (Fig. 8).

Discussion

In this paper, we use satellite burned area, preparedness level,

gridded dryness indicator and lightning indicator data to better
understand five questions about historical simultaneous wildfire
occurrence in the United States.

1. How strong are correlations between simultaneity levels and
resource demand proxies?

2. What times of year does simultaneity peak in the United
States?

3. Have there been any detectable changes in peak simultaneity
levels over the 1984–2015 historic regional records?

4. Are there detectable cross-regional autocorrelations in
simultaneity?

5. What dryness and lightning indicators produce the best-

approximating model of observed simultaneity levels?

Simultaneity and resource demand

Although suppression costs are often assumed to be largely a
function of burned area (Calkin et al. 2005) and fire intensity has
been implicated as an important factor mediating firefighting

effectiveness (Liu et al. 2010), the results of the present study
suggest that resource demand may also be explained by simul-
taneity. We find that preparedness levels often have a detectable

and positive relationship with simultaneity, implying that
resource demand is expected to be high when simultaneity is
high. The observed correlations between simultaneity and

resource demand are expected conceptually, consistent with
work from others (Bednar et al. 1990; San-Miguel-Ayanz et al.
2013), and in many contexts are also an empirically superior
explanatory variable compared with other burned area proxies

(Fig. 2). Hence, the results of the present paper support the claim
that resource demand is linked to wildfire activity in complex
ways that are better described using simultaneous fire proxies in

some contexts.

Peak simultaneity

Given the apparent relationship between simultaneity and pre-

paredness levels, regional peak simultaneity levels serve as
convenient proxies of the maximum levels of resource demand.
Although firefighting demand is related to a suite of other fac-
tors (Smith and Gonzalez-Caban 1987), and the extended attack

of wildfires can sometimes last for months at a time, the timing
of peak simultaneity does represent a time when the number of
firefighting resource allocation decisions is likely to be large and

the available resources scare. Although July and August were
identified as likely peak simultaneity months (Fig. 4), the timing
of peak simultaneity can vary by region and year, and for every

month, it is possible that some GACC is experiencing peak
simultaneity levels (Fig. 4). When high wildfire activities are
restricted to one GACC, additional firefighting resources can be

requested from National Coordination Centers. When multiple
GACCs have high wildfire activity at the same time, the risk of
resource scarcity at the National Coordination Centers grows.

Future work should explore the role of climate change on

peak simultaneous wildfire occurrence, as projected changes in
the timing of other wildfire characteristics have already been
noted. Regional shifts in the probabilities of very-large-fire

events are expected under climate change that could cause
increases in wildfire activity during months when they were
not as frequent historically (Barbero et al. 2015; Podschwit et al.

2018a). If simultaneity increases during months that were
historically inactive, then a potential effect would be increased
resource scarcity. For instance, peak simultaneity rarely occurs

in July in the Southern region, and if that were to change, then
firefighting resources may be even more stressed than histori-
cally. However, shifts in the timing of simultaneity could also
improve resource demand if the seasonal patterns of simulta-

neous wildfire occurrence were to desynchronise and allow
more effective sharing of firefighting resources.

Observed changes in peak simultaneity

Detectable increases in historic peak simultaneity are observed
in some regions of the United States, with few significant
compensatory decreases in others. There is strong evidence that

peak ELF simultaneity – the number of co-occurring extremely
large wildfires that dispatchers and firefighting managers must
consider – has increased in 2000–15 compared with 1984–99 in

the Alaska and Southwest regions. There is also evidence that
ALF simultaneity has increased in the Northern Rockies and
Southern regions, as well as evidence that VLF simultaneity has
increased in the Northern Rockies. In many of these cases,

positive trends in peak VLF and ELF simultaneity were also
observed for many of these regions, with ALF simultaneity in
Southern California being the one major exception. Changes in

United States resource demand observed over the last two
decades could be in part explained by these increases in
simultaneous wildfire in key regions, as these changes appar-

ently coincided. Still, it is important that the apparent trends are
appropriately contextualised, as the observed increases in
wildfire simultaneity over the 1984–2015 records may also
represent a return to trends that are expected when considering

the long-term record (Doerr and Santı́n 2016). Moreover, sta-
tistical significance should not be conflated with practical sig-
nificance (Daniel 1977), and the changes in simultaneity

reported in the present study may not represent changes that are
relevant to firefighting planning and management. Future work
should further validate the appropriateness of using peak

simultaneity to infer broader trends about resource demand
(Belval et al. 2020), and identify what other factors may be
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relevant to contextualising the effects of simultaneity on
resource demand.

Cross-regional simultaneity correlation

Cross-regional correlation of simultaneity is particularly
common in the western United States. A block of six regions –

Eastern Great Basin, Western Great Basin, Northern Cali-
fornia, Southern California, Northwest and Northern Rockies –
had simultaneity levels that showed consistent positive corre-
lation, regardless of the choice of simultaneity definition. This

result is consistent with findings from Abatzoglou and Kolden
(2013), which found evidence of coarse-scale controls of
burned area in forested and non-forested ecosystems in the

western United States. The results are also consistent with Liu
and Wimberly (2015), who found that fire occurrence was the
most highly spatially autocorrelated wildfire characteristic

they considered. Additionally, under ALF simultaneity, we
also found evidence of negative spatial autocorrelation in the
Eastern regions with other GACCs, suggesting that when ALF
simultaneity is high in the Eastern region, it tends to be low in

other regions in the western United States. The spatial auto-
correlations identified here could be helpful for prediction and
reconstruction of simultaneity in data-poor situations (Littell

et al. 2009) and can inform the space–time allocation of fire-
fighting resources.

Precursors of simultaneity

We have identified relationships between simultaneous wildfire
occurrence and the environment that have well-approximated
observed data. For most regions, we can conclude that a com-

bination of dryness and lightning indicators is a reliable model
of simultaneous wildfire occurrence at the GACC scale. As
these conditions are associated with increased landscape flam-

mability and ignition frequency, these results are not surprising.
The Eastern and Southern California regions were notable
exceptions to this pattern as they have a definite negative rela-

tionship of lightning activitywith simultaneouswildfire (Fig. 7).
One possible explanation for this would be similar to that
implied by Balch et al. (2017) and Nagy et al. (2018), which is
that wildfires are more frequently ignited via anthropogenic

means outside the season when lightning would typically
facilitate ignition. Hence, although the observed effects of
lightning could appear negative, this would actually represent

confounding human factors rather than any causal relationship.
As the effects of lightning activity onwildfire activity operate on
spatial scales finer than those explored in the current analysis

(Dı́az-Avalos et al. 2001; Balch et al. 2017), it is not surprising
that other factors can alter the relationship between lightning
frequency and ignition frequency. Hence, the results here need
to be interpreted from the correct spatial context, and it would

not be appropriate to extrapolate these results to finer spatial
scales. Projected changes in dryness in thewesternUnited States
suggest that increased simultaneity could occur as result of

climatic change to dryness indicators (Liu et al. 2010). How-
ever, substantial uncertainties exist across various projections of
lightning (Finney et al. 2018), which makes qualitative assess-

ments about future simultaneity a further challenge. Other
covariates may also provide superior substitute proxies to

represent the ignition frequency component, particularly in
regions where lightning is a minor ignition source.

Under ELF simultaneity, the Akaike weights were very low

and the 95% confidence large, which suggests a high level of
model uncertainty. The highest probability of correctly identi-
fying the best-approximating ELFmodel was low (0.53) and the

smallest 95% confidence set still had five models. However, the
results for ALF simultaneity hadmuch lower uncertainty, and in
many cases, the probability of correctly identifying the best-

approximating model was close to 1 and the 95% confidence set
contained only one model. Even when model uncertainty was
high regarding the specific choice of covariates, the overall
structure was fairly certain, as in the majority of cases, we could

be highly confident that the best predictions of simultaneity out
of those considered in the initial set of candidates were produced
from a model that included a dryness indicator and a lightning

indicator (Fig. 8).

Additional considerations

Although simultaneity can influence resource demand via
multiple mechanisms and shows detectable correlation with

resource demand proxies, it still is an incomplete descriptor of
resource demand. Other factors also mediate resource demand,
some of which may be difficult to translate into quantitative

models (Canton-Thompson et al. 2008). Although the levels of
resource demand associated with a wildfire should be approxi-
mately correlated with size, variability can be high. Small
wildfires sometimes require high levels of firefighting resour-

ces, and large incidents sometimes relatively little (Smith and
Gonzalez-Caban 1987). Hence, extrapolating relationships
between fire size and resource demand to individual incidents

can sometimes be misleading. The definitions of simultaneity
we used are also incomplete descriptors of resource demand
because firefighting resource-sharing decisions occur at finer

than monthly time scales. Firefighting resources could be
strained by brief but exceptionally high simultaneous wildfire
occurrence that appears normal when analysing simultaneous

wildfire occurrence at monthly time steps. Daily burned area
time series data may help with this, but are relatively rare
compared with final wildfire area estimates (Taylor et al. 2013)
and suffer from data quality issues that make research applica-

tions challenging (Podschwit et al. 2018b).
Given our use of administrative firefighting boundaries to

aggregate wildfires, our definitions of simultaneity here are

vulnerable to the modifiable areal unit problem (Dark and Bram
2007). The results described here could be sensitive to the choice
of geographic boundaries, and alternative candidates could

easily be proposed. However, the GACC boundaries have the
benefit of corresponding to the scale at which resource alloca-
tion decisions are made and allow the comparison of simultane-
ity with resource demand proxies that are most relevant at that

scale. This also could be accomplished at the national scale, but
at the expense of describing regional variation in the simultane-
ity patterns. The modifiable areal unit problem is particularly

relevant in the Great Basin, which in 2015 combined the Eastern
Great Basin and Western Great Basin regions into one adminis-
trative unit. The reported changes, correlations and models will

be affected by these new boundaries, but insufficient data
currently exist to quantify these effects.
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Despite the remaining uncertainties, the measures of simul-
taneous wildfire occurrence described here are a useful proxy
for resource demand. The simultaneity measures have concep-

tual mechanisms for influencing resource scarcity and are
correlated with resource demand proxies.

Conclusions

Changes in firefighting resource demand have been evident in

recent years in the United States. Although burned area is often
attributed as an explanatory factor, simultaneous wildfire occur-
rence may be a superior proxy in some contexts. In this paper, we
demonstrate that (1) simultaneous wildfire occurrence in the

United States is often positively correlated with preparedness
levels, many timesmore so than other wildfire characteristics; (2)
simultaneous wildfire occurrence often peaks in July and August

for many regions; (3) detectable increases and positive trends in
simultaneity have occurred in some regions of the western and
southern United States over the last three decades; (4) simulta-

neity in one region is often autocorrelated with simultaneity in
others, particularly in the western United States; and (5) the best-
approximating models of historic simultaneity reliably come

from a combination of dryness and lightning covariates.
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