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Fig. 4. Linear relationships between surface dead fine fuel moisture content (FFMC) and fuel

stickmoisture for (a) the full data range and (b) data where fine FMC is, 35%. Colours and symbols

on the lines represent different forest fuel categories.

The authors wish to advise the original Figure 4was incorrect, in part (b) the line for dry eucalyptus forest was shown as orange, where

it should be brown. The correct figure is provided below. All data provided in the text and tables in the paper is correct.
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Abstract. Field measurements of surface dead fine fuel moisture content (FFMC) are integral to wildfire management,
but conventional measurement techniques are limited. Automated fuel sticks offer a potential solution, providing a
standardised, continuous and real-time measure of fuel moisture. As such, they are used as an analogue for surface dead

fine fuel but their performance in this context has not been widely evaluated. We assessed the ability of automated fuel
sticks to predict surface dead FFMC across a range of forest types.We combined concurrent moisturemeasurements of the
fuel stick and surface dead fine fuel from 27 sites (570 samples), representing nine broad forest fuel categories.We found a
moderate linear relationship between surface dead FFMC and fuel stick moisture for all data combined (R2 ¼ 0.54), with

fuel stick moisture averaging 3-fold lower than surface dead FFMC. Relationships were typically stronger for individual
forest fuel categories (medianR2¼ 0.70; range¼ 0.55–0.87), suggesting the sticks require fuel-specific calibration for use
as an analogue of surface dead fine fuel. Future research could identify fuel properties that will enable more generalised

calibration functions.
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Introduction

Dead fine fuel moisture content (FFMC) is a primary driver of
wildfire behaviour. Numerous studies demonstrate its influence
on fuel ignitability (Dimitrakopoulos and Papaioannou 2001;

Fernandes et al. 2008), fire spread (Rothermel 1972; Burrows
1999), smoke emissions (Chen et al. 2010), fuel consumption
(Knapp et al. 2005; deGroot et al. 2009) and spotting (McArthur

1967; Cruz et al. 2012). As such, dead FFMC is a key component
of fire danger rating indices worldwide (McArthur 1967;

Bradshaw et al. 1983; Van Wagner 1987). The worst fire days

coincide with very low dead FFMCwhen large quantities of fuel
across landscapes are dry enough to ignite and sustain burning
(e.g. Keeley et al. 2009; Sullivan and Matthews 2013).

Conversely, under more moderate conditions, sheltered parts
of landscapes (gullies and polar-facing slopes) that are able to
maintain higher dead FFMC act as a barrier to the spread of fire

(Holden and Jolly 2011; Caccamo et al. 2012; Nyman et al.

2018).
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The focus of this study is surface dead fine fuel, which we
define as dead leaves, bark, twigs and dead grass less than 6 mm
in diameter on the forest floor (as per Hines et al. 2010; Gould

et al. 2011). Dead fine fuel is important to fire behaviour
because it rapidly dries, ignites relatively easily and is consumed
in the flaming front of the fire (Tolhurst and Cheney 1999;

Keane 2015). The surface fuel layer is where wildfires typically
ignite and where the spread of fire is typically sustained (Gould
et al. 2011). Surface dead FFMC is sometimes considered

separately for the upper litter layer (e.g. uppermost 5–10 mm)
and full litter profile (e.g. Sneeuwjagt and Peet 1985; McCaw
et al. 2012). The moisture content of the upper litter layer is
more responsive to changes in atmospheric conditions

(Slijepcevic et al. 2013) and has a large influence on ignitibility
(Cawson and Duff 2019), rate of spread (VanWagner 1987) and
flame height (Gould et al. 2011). The average moisture content

across the full litter profile is an important determinant of
smouldering combustion, fuel availability and fuel consumption
(Sneeuwjagt and Peet 1985; Van Wagner 1987; de Groot et al.

2009; Gould et al. 2011).
Surface dead FFMC varies both spatially and temporally as a

function of microclimate and fuel properties. Microclimate

(surface temperature, relative humidity, precipitation, wind
and solar radiation) determines evaporative demand and the
moisture vapour differential between the fuel and atmosphere
and therefore the rate of moisture exchange (as reviewed by

Viney 1991;Matthews 2014). Themicroclimate in turn depends
on mesoscale weather, topographic position and forest cover
(Schunk et al. 2013b; Cawson et al. 2017; Nyman et al. 2018).

Fuel properties that influence its ability to uptake and loose
moisture include fuel equilibriummoisture content and response
time (Bradshaw et al. 1983). The equilibrium moisture content

varies between fuel types as a function of fuel properties such as
degree of decay and chemical composition (Van Wagner 1972;
Anderson 1990b; Schunk et al. 2013a). Response time is how
quickly the fuel dries under a set of environmental conditions.

The response time of surface dead FFMC may vary with litter
depth, litter composition, degree of decomposition and packing
ratio (Simard 1968; Anderson 1990a).

Field measures of fuel moisture are needed by fire managers to
assess fire danger (Bradshaw et al. 1983) and identifywindows for
prescribed burning (Tolhurst and Cheney 1999). Yet there are

challenges withmany of the current methods used to measure fuel
moisture in the field. Measurement of fuel moisture by oven-
drying is often considered the gold standard (Matthews 2010).

However, this approach has limited value when continuous or
real-time moisture information is needed or when monitoring
needs to be donewithout personnel in the field.Another traditional
method is the use of fuel analogues (i.e. hazard sticks or hazard

bags) to track changes in moisture in a fixed location, which
generates amoisture time series but requiresmanualmeasurement
(Beck andArmitage 2004; Hardy andHardy 2007). Alternatively,

the Speedy Moisture Meter (Dexter and Williams 1976) or
Wiltronics T-H Fine Fuel Moisture Meter (Chatto and Tolhurst
1997) can be used to obtain instantaneous measurements in any

location but also require manual measurement. Soil moisture
sensors have been trialled to continuously and automatically
measure surface dead FFMC, but with mixed success (Condera
et al. 2012; Wilson et al. 2014; Nyman et al. 2015; Schunk et al.

2016). This approach is under experimentation and cannot
currently be used in operational fire management. Another
increasingly popular approach is the use of automated fuel

moisture sticks (Campbell ScientificCS506/26601),which collect
and transmit moisture data, providing a real-time continuous
measure that can be accessed remotely.

The practical advantages of automated fuel moisture sticks
have led to their use in fire management for routine measure-
ment of fuel moisture (National Wildfire Coordinating Group

2014) and in fuel moisture research (e.g. Resco de Dios et al.
2015; Cawson et al. 2017; Schunk et al. 2017; Burton et al.

2019). Despite growing adoption, there has been limited sys-
tematic analysis of the performance of automated fuel sticks as

an analogue for dead surface fine fuel (exceptions include
Schunk et al. 2014 over a limited geographic range). Variations
in canopy cover and the characteristics of surface dead fine fuel

between forest types are likely to result in different relationships
between surface dead FFMC and fuel stick moisture content,
which need to be accounted for if the fuel sticks are to provide an

accurate representation of surface dead FFMC.
Our aim was to evaluate automated fuel moisture sticks

(Campbell Scientific CS505/10824, CS506/26601) as a method

for estimating surface dead FFMC across a range of forest types
worldwide. Specifically, we asked:

� How accurately do the automated fuel moisture sticks esti-
mate surface dead FFMC?

� Does the relationship between the moisture of the automated
fuel stick and surface dead FFMC vary by forest type?

We use the results of our study to evaluate the efficacy of

automated fuel moisture sticks in wildfire management and to
make recommendations for their future use.

Methods

We compiled a large dataset of concurrent automated fuel stick
moisture observations and gravimetric surface dead FFMC
measurements from 27 sites. These data were originally col-

lected as part of separate fire research projects. The data were
analysed using linear regression to determine relationships
between fuel stick moisture and surface dead FFMC.

Site description

This study used data collected from three broad geographic
regions: western Canada, central Europe and south-eastern

Australia (Fig. 1). Some of the data have been published pre-
viously (Schunk et al. 2014; Bovill et al. 2015; Cawson et al.

2017; Schunk et al. 2017), but other datasets are unpublished or
presented in theses (Gibos 2010). The dataset encompassed

27 sites across wide-ranging forest types typical of the different
geographic regions, including boreal forest, lowland and alpine
coniferous forests, deciduous broadleaf forest and temperate

eucalypt forest. Data from the 27 sites were grouped into nine
forest fuel categories based on geographic location, tree species,
forest structure, type of dead surface fine fuel (needles, leaves or

grass) and its depth (Table 1). The groupings resulted in one
forest fuel category in western Canada (five sites), five forest
fuel categories in central Europe (six sites) and three forest fuel
categories in south-eastern Australia (16 sites).
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Representative photographs of each forest fuel category illus-
trate the differences in surface fuel (Fig. 2). The categories are:

� Lodgepole pine – evergreen forest dominated by Pinus

contorta in Canada with dead surface fuel comprising a

shallow layer of pine needles
� Scots pine (needles) – evergreen lowland forest dominated by

P. sylvestris in central Europe with dead surface fuel com-

prising a shallow layer of pine needles
� Scots pine (grass) – evergreen lowland forest dominated

by P. sylvestris in central Europe with dead surface fuel

comprising dead grass
� Open conifer – evergreen woodland and alpine forest domi-

nated by either P. mugo, P. sylvestris or Picea abies in central
Europe with dead surface fuel comprising dead grass

� European beech – deciduous lowland forest dominated by
Fagus sylvatica in central Europe with dead surface fuel
comprising a shallow layer of leaves

� Sweet chestnut – deciduous forest dominated by Castanea

sativa in central Europe with dead surface fuel comprising a
deep layer of leaves

� Dry eucalypt – evergreen open forest dominated by a variety
of Eucalyptus species in south-eastern Australia with dead
surface fuel comprising a moderately deep layer of leaves

� Wet eucalypt – evergreen tall open forest dominated by a
variety of Eucalyptus species in south-eastern Australia with

dead surface fuel comprising a deep layer of leaves
� Eucalypt woodland – evergreen woodland dominated by a

variety of Eucalyptus species in south-eastern Australia with

dead surface fuel comprising a shallow and patchy layer of
leaves

Fuel moisture sampling

The fuel moisture dataset comprised concurrent measurements
of gravimetric surface dead FFMC and automated fuel stick
moisture.We used Campbell Scientific automated fuel moisture

sensors (CS505/10824 and CS506/26601), which use time
domain reflectometry with a reported operating range of 0% to
70% (Campbell Scientific 1998). It was beyond the scope of the

current study to quantify the precision of the stick sensor,
but previous research shows strong agreement (R2¼ 0.981)
between the electronic measurements and real gravimetric stick
moisture (Schunk et al. 2014). These fuel sticks are designed to

emulate 10-h fuel (diameter 1.3 cm; length 50.8 cm). The sticks
were mounted 30 cm above the forest floor using a mounting kit
(except at eight eucalypt sites where theyweremounted at 50 cm

because of local project requirements). At a subset of sites, three
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fuel sticks were installed but for the purposes of this study only
the mean values from those three fuel sticks are analysed.

To measure surface dead FFMC, surface fuel samples were
collected into sealed containers from multiple locations within
20m of the fuel sticks. The full litter profile was sampled down
to the duff (or mineral soil where there was no duff); dead grass

was sampled in the Scots pine (grass) and open conifer sites as it
was the predominant dead surface fine fuel. Sample sizes varied
between sites, depending on litter depth and study design, but

typically exceeded 10 g in wet weight. Sampling was done at
different times throughout the day and year to quantify a range
of moisture conditions. The number of gravimetric subsamples

taken at each site per sampling event varied from 3 to 15 depend-
ing on the design of the individual project. We only report the
means for each sampling event as often the samples were bulked
before drying. Samples were oven-dried at 1058C for at least

24 h until the sample achieved a constant weight. The moisture
content was calculated as percent of oven dry weight. Gravi-
metric fuel moisture measurements were matched to the fuel

stick measurements that had been recorded at the same time.

Data analysis

We used linear regression to quantify the strength of relation-
ships between fuel stick moisture and surface dead FFMC with
all the data pooled and for each forest fuel category individually.

We excluded concurrent measurements where the fuel stick
moisture was.70% because the recommended operating range
of the fuel stick is 0–70%. We performed an analysis of

covariance (ANCOVA) to test for the effect of forest fuel
category on the regression between fuel stick moisture and

surface dead FFMC. The analysis was first done for the full
range of gravimetric moisture values, which sometimes excee-
ded 200%. Next, the analysis was repeated for a subset of the
data where gravimetric moisture was below 35% to evaluate the

moisture sticks at the lower end of the fuel moisture spectrum
when fires aremore likely to occur. All analyses were performed
using the R statistical programming language, version 3.6.1

(R Core Team 2019).

Results

The linear regression between surface dead FFMC and fuel stick
moisture for the full dataset had a R2 of 0.54 and a root mean
squared error (RMSE) of 46 (Fig. 3; Table 2). In most cases the

surface dead FFMC was much higher than fuel stick moisture –
on average by a factor of 3 (Table 1), except at low moisture
contents when surface dead FFMC was sometimes lower than
fuel stick moisture. The magnitude of the discrepancy between

fuel stick moisture and surface dead FFMC varied depending
on forest fuel category, from a factor of 1.6 (Scots pine needles)
to a factor of 5.7 (European beech). We performed a separate

regression analysis for surface dead FFMC,35%. At this lower
end of the fuel moisture spectrum, the model was weaker
(R2¼ 0.18) than for the full range of data. The RMSE was 7,

which is large given the narrow range of the data. The slope of
the regression was lower and close to 1 for the model fitted to
dead FFMC ,35%.

(a) Lodgepole pine (b) Scots pine (needles) (c) Scots pine (grass)

(d) Open conifer (e) European beech (f ) Sweet chestnut

(g) Dry eucalypt (h) Wet eucalypt (i ) Eucalypt woodland

Fig. 2. Photographs depicting surface fine fuel in the nine forest fuel categories. (a) Lodgepole pine, (b) Scots pine (needles), (c) Scots pine (grass),

(d) open conifer, (e) European beech, (f) sweet chestnut, (g) dry eucalypt, (h) wet eucalypt and (i) eucalypt woodland. Red scale bar¼ 5 cm.
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Linear regressions between fuel stick moisture and surface
dead FFMC for individual forest fuel categories generally had
higher R2 values than the regression for the full dataset (Table 2;

Fig. 4; Fig. A1). The R2 ranged from 0.55 (sweet chestnut and
eucalypt woodland) to 0.87 (Scots pine needles), with a median
of 0.70. Themedian RMSEwas 52, which is slightly higher than

10

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

300

250

200

150

100

50

0

20

(a)

(b)

30 40

Surface dead FFMC = –32.03 + 4.68 × Fuel stick moisture

Surface dead FFMC = 5.10 + 0.86 × Fuel stick moisture

Fuel stick moisture, %

S
ur

fa
ce

 d
ea

d 
F

F
M

C
, %

50

R2 = 0.54; P-value < 0.0001

R2 = 0.18; P-value < 0.0001

60 70

Lodgepole pine
Scots pine (needles)
Scots pine (grass)
Open conifer

European beech
Sweet chestnut

Dry eucalypt
Wet eucalypt
Eucalypt woodland 

Linear regression
1:1 line

Fig. 3. Scatterplots comparing surface dead fine fuel moisture content (FFMC) with fuel stick

moisture for (a) the full data range and (b) data below the fibre saturation point of,35%. Colours and

symbols for the data points represent different forest fuel categories. The solid black line is a linear

regression of all data and the dashed line is the 1 : 1 line. The hollow blue triangle is an outlier in the

sweet chestnut data that is displayed in the scatterplots but removed from the regression modelling.

Table 2. Summary of correlation coefficients and linear models fitted to datasets for individual forest fuel categories. n is the number of samples

used to derive the models for each forest fuel category. Standard error of parameter estimates are given in parentheses. Significance of F-tests

are as indicated: n.s. P . 0.05; *P # 0.05; **P # 0.01; ***P # 0.001; ****P # 0.0001. There is no regression for wet eucalypt when surface dead

FFMC ,35% because the sample size was too small. FFMC, fine fuel moisture content

Linear models for full range of data Linear models for data where surface dead FFMC, 35%

Fuel category n y-intercept Slope R2 F-test RMSE n y-intercept Slope R2 F-test RMSE

All data 570 �32.0 (4.4) 4.7 (0.2) 0.54 **** 46.3 237 5.1 (11.9) 0.9 (0.1) 0.18 **** 7.1

Lodgepole pine 80 �20.6 (5.1) 3.5 (0.3) 0.64 **** 49.9 44 �2.2 (4.5) 1.8 (0.3) 0.43 **** 20.6

Scots pine (needles) 84 �29.0 (3.6) 3.2 (0.1) 0.87 **** 57.4 51 �8.9 (3.0) 1.6 (0.2) 0.59 **** 11.8

Scots pine (grass) 56 �34.2 (7.0) 3.2 (0.3) 0.72 **** 60.2 41 �4.9 (2.6) 1.3 (0.2) 0.62 **** 11.9

Open conifer 41 �49.0 (14.1) 6.9 (0.6) 0.80 **** 60.8 12 �11.7 (8.3) 2.7 (0.7) 0.59 ** 47.9

European beech 104 11.5 (9.3) 5.2 (0.3) 0.70 **** 72.7 7 �24.4 (6.5) 4.2 (0.5) 0.92 **** 77.6

Sweet chestnut 53 �60.5 (18.8) 5.2 (0.7) 0.55 **** 49.7 20 23.6 (7.3) 0.0 (0.3) �0.05 n.s. 18.7

Dry eucalypt 48 �70.4 (8.0) 5.9 (0.5) 0.79 **** 49.5 29 �10.7 (10.4) 1.8 (0.6) 0.19 ** 21.5

Wet eucalypt 37 14.5 (11.9) 3.5 (0.4) 0.65 **** 52.2 2 Insufficient data

Eucalypt woodland 67 �26.3 (8.4) 3.6 (0.4) 0.55 **** 51.5 13 �72.7 (11.4) 6.0 (0.7) 0.78 **** 16.8
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the RMSE for the regression for the full dataset. Regression
models fitted to surface dead FFMC ,35% were generally

weaker, with a median R2 of 0.59 (Table 2; Fig. 4; Fig. A2).
Exceptions were European beech and eucalypt woodland, which
both had stronger models within this range (R2 of 0.92 and 0.78
respectively). The model for sweet chestnut was non-significant

and there was insufficient data to derive a model for wet
eucalypt.

Results from the ANCOVA showed there was a statistically

significant effect of forest fuel category on the relationship
between fuel stick moisture and surface dead FFMC. For the
dataset spanning the full range of moisture values, both the

treatment effect (forest fuel category;F¼ 90.11,P, 0.001) and
the interaction effect (forest fuel category � stick moisture;
F ¼ 12.73, P , 0.001) were statistically significant, meaning

there was a significant difference between both the intercepts
and slopes of the regressions. Slopes ranged from 3.18 to 6.90
and intercepts ranged from �70.43 to 14.49. Similarly, for the
dataset with surface dead FFMC ,35%, both the treatment

effect (forest fuel category; F ¼ 28.13, P , 0.001) and the
interaction effect (forest fuel category � stick moisture;
F ¼ 6.54, P , 0.001) were statistically significant. For these

regressions, slopes ranged from 1.3 to 4.2 and intercepts ranged
from �72.7 to �2.2.

Discussion

Automated fuel sticks provided a reasonable estimate of surface
dead FFMC in most cases, but only after forest fuel-specific
calibration. They are best utilised as a coarse indicator of when
surface dead FFMC reaches a threshold where it is likely to be

ignitable, rather than as a precise estimator of moisture content.
They provide a continuous, automated measure of fuel moisture
that can be transmitted from remote locations, so they reduce

the labour-intensiveness of obtaining field-based moisture
information. Precision may be improved with future work.

Accuracy of automated fuel moistures sticks in estimating
surface dead FFMC

Typically, surface dead FFMC was higher than fuel stick

moisture content, except under dry conditions (moisture content
,20%) in some forest fuel categories with a shallow litter bed.
Resco de Dios et al. (2015) report a similar relationship between
fuel stick moisture and profile dead FFMC in eucalypt wood-

land. This result may seem counterintuitive given the smaller
diameter of the fine fuel particles (,6 mm) relative to the fuel
sticks (1.3 cm). Fine fuels have a higher surface-area-to-volume

ratio than fuel sticks, potentially enabling more rapid moisture
exchange with the atmosphere and therefore more rapid
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dry-down (Fosberg et al. 1970). However, the location of sur-
face fine fuel in a (sometimes deep) litter bed likely reduces the
atmospheric exposure of most individual fuel particles, thus

slowing the response time of the surface fine fuel relative to the
fuel stick that is installed above the surface (Keane 2015).
Additionally, surface fuels that are in contact with moist soil or

duff may be less responsive to changes in atmospheric condi-
tions (Hatton et al. 1988).

Some of the disparity between surface dead FFMC and fuel

stick moisture may be related to sampling issues rather than to
real differences in moisture content. The data used for the
regression analysis (Figs 3, 4) were collected for a range of
different purposes and thus sampling protocols differed between

forest fuel categories and were not necessarily optimal for the
purposes of the current study. One potential issue was the lack of
spatial replication in fuel stick measurements; for most sites

only one fuel stick was used. It is possible that the microclimate
in the fuel stick locations (e.g. solar radiation and precipitation
throughfall) were not representative of average site conditions.

The amount of error introduced from this lack of replication
likely varies by forest type depending on the spatial variability
of the microclimate within that forest type. Similarly, the

disparity between surface dead FFMC and fuel stick moisture
may differ between forest fuel categories because of the varying
number of fine fuel samples taken at each visit to a site (ranging
from 3 to 15) or the total number of days when the fuels were

sampled (ranging from 37 to 104). Within-site variability in
surface dead FFMC was not quantified in this study.

Effects of forest fuel category

The relationship between fuel stick moisture and surface dead

FFMCwas reasonably strong for the full dataset (R2¼ 0.54), but
typically strengthenedwhen the analyseswere performedwithin
forest fuel categories (median R2 ¼ 0.70). Other studies report
regression functions of similar strength; for example, R2¼ 0.74

in wet eucalypt forest (Burton et al. 2019) and R2 ¼ 0.63 in
eucalypt woodland (Resco de Dios et al. 2015). Differences in
the regression functions between forest fuel categories likely

reflect differences in both fuel properties and forest structure.
Fuel properties such as fuel particle type, particle thickness,
packing ratio, state of decomposition and litter bed depth con-

tribute to differences in the diffusivity, response time and sat-
uration water content of the fuel (Simard 1968; Anderson
1990a). Forest structural properties such as canopy cover, tree

height, tree density and understorey density influence the
microclimate (i.e. in-forest temperature, relative humidity and
wind) (Walsh et al. 2017;Nyman et al. 2018) and types of drying
andwetting processes that the fuel stick and fuel bed are exposed

to. Some fuel and forest structural properties may change sea-
sonally, potentially weakening the regression functions (e.g. for
sweet chestnut).

With so many different factors potentially contributing to
differences in the regression functions, it is difficult to identify
individual factors that explain the trends across the full dataset.

For example, past research has shown that dead grass absorbs
more water than needles (Simard 1968), but also has a faster
response time (Anderson 1990a). This might explain the high
slope of the regression function for the open conifer forest fuel

category (grass-dominated) relative to the other fuel categories.
However, the same explanation cannot be used to explain the
results for Scots pine (grass), which had a slope equal to Scots

pine (needles). Amuch larger dataset is needed to quantitatively
determine which fuel and forest structural properties are having
the greatest influence. In the absence of this knowledge, our

results clearly demonstrate that calibrations for forest fuel
categories are needed to improve the strength of the relation-
ships between fuel stick moisture and surface dead FFMC.

Implications for fire management

Automated fuel sticks will be useful to fire managers as a
method for estimating surface dead FFMC provided forest
fuel-specific calibrations are derived. They should be used in

conjunction with other methods because they are not highly
accurate as an analogue for surface dead fine fuels, particularly
at lower moisture contents. In the context of fire management,
they could be used to track fuel moisture over time in a range of

landscape positions without the need for regular site visits,
providing an indication of topographical differences in moisture
and drying rates following precipitation. Many of the moisture

models used by fire managers do not adequately capture the
effects of terrain or variations in canopy cover (Matthews 2014),
so the fuel sticks will be valuable in this regard. The fuel sticks

can be used to indicate when surface dead fine fuel is
approaching a dry state in different parts of the landscape. At the
drier end of themoisture spectrum, they should be supplemented
by manual sampling using devices such as the Wiltronics T-H

Fine Fuel Moisture Meter (Chatto and Tolhurst 1997) and
moisture models that can reliably predict under dry conditions
(Slijepcevic et al. 2015).

Future research needs

There are several areas where research could be prioritised to
further develop our ability to use fuel moisture sticks in wildfire

management. First, there could be more work done to explore
the utility of the fuel sticks to estimate dead FFMC across a
range of fuel strata, including the uppermost litter layer and

suspended dead fuel, which influence different components of
fire behaviour (Gould et al. 2011). Fuel stick moisture may be
more strongly related to the moisture content within these fuel

strata compared with the full litter profile (as shown by Resco de
Dios et al. 2015; Burton et al. 2019). Further research could also
evaluate the fuel moisture sticks against widely used fuel

moisture models. This analysis could be used to identify the
moisture conditions for which the fuel sticks are most appro-
priate to use and when the models are a more reliable source of
information. Finally, research effort could be directed towards

the development of a generalised model linking fuel stick
moisture to surface dead FFMC. Such models could include
factors that contribute to fuel-specific effects (e.g. type of fuel

particle, litter bed depth, decomposition) and forest-specific
effects (e.g. leaf area index), eliminating the need for calibration
functions for each forest fuel category. There may be opportu-

nities to develop machine-learning routines to improve the
accuracy of these generalised models over time. Despite the
large dataset used in this study, it was too small to develop these
more generalised models. Data would be needed from a larger
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number of sites and across a broader range of moisture condi-
tions, particularly very dry conditions.

Conclusions

Our results indicate that typically the fuel stick underestimates
surface dead FFMC, but the relationship can be modelled

with reasonable accuracy for most dead surface fuels using
forest fuel-specific linear calibration functions. The variation
explained by those forest fuel-specific linear regressions ranges

from 55% to 87%. Similarities in the regression functions for
some forest fuel categories may be attributed to similarities in
forest structure or surface fine fuel properties, including litter

bed depth, packing density and degree of decay. Overall, our
results demonstrate that automated fuel sticks can be used as an
analogue for surface dead fine fuels for fuel moisture research,

model development and fire management purposes, such as
monitoring wildfire risk across landscapes and providing
guidance about prescribed burning windows, but only if there
are fuel-specific calibrations and if they are used together with

other methods. Further research is needed to refine the cali-
bration functions to improve precision and potentially devise a
generalised model incorporating fuel properties across different

forest types.
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Fig. A1. Scatterplots comparing fuel stick moisture with surface dead fine fuel moisture content (FFMC) for each

forest fuel category for the full data range. (a) Lodgepole pine, (b) Scots pine (needles), (c) Scots pine (grass), (d) open

conifer; (e) European beech, (f ) sweet chestnut, (g) dry eucalypt, (h) wet eucalypt and (i) eucalypt woodland. The solid

black lines are linear regressions and the dashed lines denote the 95% confidence interval for the predicted mean. Data

points used in the regressions are grey dots; the black dot for sweet chestnut is an outlier excluded from the regression

analysis.
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Fig. A2. Scatterplots comparing fuel stick moisture with surface dead fine fuel moisture content (FFMC) for each

forest fuel category when surface dead FFMC data, 35%. (a) Lodgepole pine, (b) Scots pine (needles), (c) Scots pine

(grass), (d ) open conifer; (e) European beech, (f ) sweet chestnut, (g) dry eucalypt, (h) wet eucalypt and (i) eucalypt

woodland. The solid black lines are linear regressions and the dashed lines denote the 95% confidence interval for the

predictedmean. Data points used in the regressions are grey dots. There was no regression for wet eucalypt because the

sample size (n ¼ 2) was too small.
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