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Abstract. Wildfire is an important natural disturbance on forested landscapes influencing both physical and biological

processes. The Lost Creek wildfire was one of the most severe on Alberta’s eastern slopes and provided a unique
opportunity to assess the long-term impacts of wildfire and post-wildfire salvage logging on northern Rocky Mountain
catchments. Macroinvertebrate sampling conducted 8 years after the wildfire indicated distinct macroinvertebrate
assemblages in reference, burned, and burned and salvage-logged catchments. Reference catchments were characterised

by more sensitive taxa (e.g. stoneflies) and had the lowest abundance of macroinvertebrates. Burned catchments had the
greatest abundance of macroinvertebrates and were characterised by greater abundance of chironomids and caddisflies.
Burned and salvage-logged catchments supported high numbers of riffle beetles and crane flies. The unique assemblage

structures between catchments indicate different mechanisms drive the ecological response in wildfire-affected catch-
ments. Resource availability was an important driver of assemblage structure in the more productive burned catchments
and habitat quality was a dominant driver in the burned and salvage-logged catchments. Despite the legacy effects

observed in this study, fire-affected catchments still supported sensitive taxa and functional macroinvertebrate
assemblages.
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Introduction

Wildfire is an important natural disturbance that can strongly
influence both physical and biological environmental processes

(Gresswell 1999; Moody and Martin 2001; Hauer et al. 2007).
Since the 1980s, increases in wildfire frequency, severity,
duration and season length in the western United States have

been correlated with warming atmospheric temperatures
(Schoennagel et al. 2004;Westerling et al. 2006). Between 1970
and 2003, 60% of the observed increases in wildfire activity

occurred in the Rocky Mountains (Westerling et al. 2006).
These ecosystems will be particularly susceptible to climate
change-induced shifts in wildfire behaviour and it is expected
that by the end of the 21st century, the annual area burned in

Canada will increase by 74 to 118% compared with the latter
half of the 20th century (1959–97) (Flannigan et al. 2005). Such

increases in area burned will have strong effects on both ter-
restrial and freshwater ecosystems (Romme et al. 2011). Post-
fire landscape management such as salvage logging can also

influence or compound the effects of fire on aquatic ecosystems
by increasing ground disturbance and adding linear features
(e.g. skid trails, haul roads and stream crossings) (Beschta et al.

1995; Wagenbrenner et al. 2016).
Forested mountain catchments provide critical habitat for

many species, including macroinvertebrates and salmonid fishes

(Hauer et al. 2007; Isaak et al. 2016). These streams typically
have higher water quality than lowland streams (Hauer et al.
2007), and are sensitive to the changes in vegetation and soils
caused by wildfire (Hynes 1975; Hauer et al. 2016). Wildfire

alters rainfall-runoff dynamics, which can change sediment and
nutrient regimes, channel morphology and water temperature

CSIRO PUBLISHING

International Journal of Wildland Fire 2019, 28, 738–749

https://doi.org/10.1071/WF18177

Journal Compilation � IAWF 2019 Open Access CC BY-NC-ND www.publish.csiro.au/journals/ijwf

SPECIAL ISSUESPECIAL ISSUE

https://orcid.org/0000-0002-7838-3342
https://orcid.org/0000-0002-7838-3342
https://orcid.org/0000-0002-7838-3342
https://orcid.org/0000-0002-4920-9556
https://orcid.org/0000-0002-4920-9556
https://orcid.org/0000-0002-4920-9556
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Gresswell 1999). Elevated sediment loading, export of nutrients
(nitrogen, phosphorus and dissolved organic carbon), export of
heavy metals (e.g. mercury and methyl mercury) and stream

temperature are commonly reported after wildfire in mountain
catchments (Hauer and Spencer 1998; Kelly et al. 2006;
Shakesby and Doerr 2006; Writer et al. 2012; Wagner et al.

2014). Increased nutrients stimulate microbial activity and
autochthonous (in-stream) primary productivity (Spencer et al.
2003;Mihuc andMinshall 2005)while the influx of fine sediment

can affect the availability and quality of in-stream habitat and
food resources (Bjornn et al. 1977; Jones et al. 2012). Macro-
invertebrate assemblages invariably respond to the water-quality
changes associated with wildfire (Barbour et al. 1999; Minshall

2003). Assemblage composition often shifts to favour
disturbance-adapted taxa, while more sensitive taxa can decline
in abundance or be excluded entirely (Mihuc et al. 1996;Minshall

et al. 2001a, 2001b; Malison and Baxter 2010b). Changes in
biomass and density are less predictable but are often related to
factors such as primary productivity, water chemistry and the

occurrence of drought or flooding in the months or years follow-
ing wildfire (Verkaik et al. 2015). Rinne (1996) documented
large declines (70–90%) in invertebrate density following high-

flow eventswith heavy sediment loads after a wildfire inArizona.
In contrast, Malison and Baxter (2010b) reported greater inverte-
brate productivity in severely burned reaches following the
Diamond Peak wildfire in Idaho and associated this with

increases in food resources. The extent of wildfire effects on
macroinvertebrate assemblages depends on fire severity, local
catchment characteristics including the hydroclimatic setting,

vegetation type, topography, soils and geology, as well as the
influences of climate change, including warming and changes in
precipitation patterns (Moody and Martin 2001; Shakesby and

Doerr 2006; Rugenski and Minshall 2014).
Macroinvertebrates are an important component of Rocky

Mountain stream ecosystems. They contribute to nutrient
cycling and provide a critical food source for fish and riparian

insectivores (Mihuc et al. 1996; Rinne 1996; Minshall 2003;
Malison and Baxter 2010a). Despite their importance in the
trophic structure of stream ecosystems, very little is known

about the long-term effects of wildfire on macroinvertebrate
assemblages. Previous post-fire invertebrate studies report on
shorter-term (1–5-year) impacts (Rinne 1996; Minshall et al.

1997; Spencer et al. 2003; Malison and Baxter 2010a; Malison
and Baxter 2010b). However, fire can produce longer-term
changes in the physical stream environment and water-quality

conditions regulating stream ecology (Silins et al. 2014; Emelko
et al. 2016). Although several studies in the United States have
reported wildfire impacts on macroinvertebrate assemblages
lasting as long as 5–10 years (Minshall et al. 1989; Roby

1989; Mihuc et al. 1996; Vieira et al. 2004; Malison and Baxter
2010b), both the longevity of fire effects on macroinvertebrates
and factors regulating longer-term patterns of ecosystem recov-

ery are presently not well understood across more northern
mountain environments (Bixby et al. 2015).

The Lost Creek wildfire was one of the more severe fires in

recent decades on the eastern slopes of Alberta’s Rocky Moun-
tains and provided an opportunity to assess the short-, mid- and
long-term effects of wildfire on northern Rocky Mountain
catchments. The Southern Rockies Watershed Project (SRWP)

was established to document the effects of the wildfire and
post-wildfire salvage logging on hydrology, biochemistry and
aquatic ecology (Silins et al. 2016). As reported elsewhere,

11 years of continuous monitoring have demonstrated that
wildfire effects on water quality and biogeochemistry are persis-
tent in the study catchments, with many parameters including

sediment production, nutrient (phosphorus and dissolved organic
carbon) export and primary productivity showing no sign of
return to reference conditions over a decade post wildfire (Silins

et al. 2009; Emelko et al. 2011; Silins et al. 2014; Wagner et al.
2014; Emelko et al. 2016; Silins et al. 2016). Given these
persistent impacts on hydrology and water quality, disturbance-
associated effects on macroinvertebrate abundance and assem-

blage structure between reference and wildfire-affected catch-
ments also were expected. We expected greater abundance in the
more productive wildfire-affected catchments, and greater diver-

sity in the unburned systems. Thus, the objectives of the present
study were to assess the long-term (8 years post fire) impacts of
the Lost Creek wildfire on macroinvertebrates by:

(1) quantifying differences in macroinvertebrate abundance
and assemblage structure in streams draining three types

of catchments: reference (unburned), burned, and burned
and salvage-logged,

(2) determining the environmental parameters (water quality,

streamflow and periphyton productivity) that best explain
variation in macroinvertebrate assemblage structure, and

(3) analysing a selection of ecological traits of more abundant
taxa along a disturbance gradient (reference, burned,

and burned and salvage-logged) to infer mechanisms that
influence the response of macroinvertebrate assemblages
after wildfire.

Methods

Site description

The Lost Creek wildfire burned 211.6 km2 in the forested region
of the Crowsnest and Castle River catchments in southern
Alberta, Canada, from July to September 2003. The high-

severity fire effectively consumed all of the forest cover
(closed canopy, mature or old growth), understorey vegetation
and forest floor organicmaterial. The upper portions of the study

catchments that did not burn (particularly South York and Lynx
Creeks) were treeless alpines zones will little available fuel
(Fig. 1, Table 1). Seven research catchments were established,

including three burned catchments (SouthYork, Lynx andDrum
Creeks) and two reference (unburned) catchments (Star and
North York Creeks) (Fig. 1, Table 1). Two catchments (Lyons
East and Lyons West Creeks) were salvage-logged and instru-

mented in 2005. Clear-cut salvage harvest occurred over the
winters of 2004 and 2005; 2.6 and 2.4 km2 (19.9 and 33.6% of
the catchment area) were harvested in Lyons East and Lyons

West respectively (Fig. 1, Table 1). Forest regeneration was
slow in wildfire-affected catchments; canopy cover did not
recover in the 8 years before sampling and no subsequent fires

occurred in research catchments during the study period.
The hydrologic regime of these catchments is snowmelt-

dominated. The highest flows occur in late May to early June
during the peak of spring snowmelt. Mean annual precipitation
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in the reference, burned, and burned and salvage-logged catch-
ments was 1087 (898–1398), 1146 (950–1431) and 775 mm
(582–971 mm) respectively (2004–2014), most of which fell
as snow or as rain during summer storm events. Mean annual

area-weighted discharge in the reference, burned, and burned
and salvage-logged catchments over the same period was 744
(483–1080), 871 (571–1091) and 592 mm (373–887 mm)

respectively. Forest cover before the fire was similar between
catchments and consisted predominantly of lodgepole pine
(Pinus contorta var. latifolia) at lower elevations (upper

Montane ecozones), Englemann spruce (Picea engelmanii)
and subalpine fir (Abies lasiocarpa) at mid elevations
(subalpine ecozones), and treeless alpine meadow vegetation
and bare rock at higher elevations, characteristic of the upper

alpine ecozones. Although no predisturbance hydrologic, water
quality or aquatic ecological data existed from the study area (as
is typical for most wildfire studies), modest replication (2–3) of
undisturbed (reference) and disturbed (burned, and burned and

salvage-logged) catchments with similar physical and environ-
mental characteristics have been previously used to support
broader inferences on wildfire and salvage-logging impacts

(Spencer et al. 2003; Reid et al. 2010). This assumes that
disturbed catchments would behave similarly to reference
catchments had the disturbance not occurred.

Environmental parameters

All parameters used in this analysis were calculated from data
collected 8 years after the fire, during the ice-free period from

Table 1. Characteristics of Southern Rockies Watershed Project research catchments

Catchment Catchment area (km2) Area burned (km2) Area salvage-logged (km2) Elevation (m) Slope (%) Aspect

Reference (Unburned)

Star 10.59 0 (0%) 0 1479–2627 45 North-east

North York 8.29 0.02 (0.2%) 0 1562–2633 48.8 North-east

Burned

South York 3.59 1.91 (53.2%) 0 1691–2635 42.1 North-east

Lynx 8.21 5.53 (67.4%) 0 1632–2629 43.3 North-east

Drum 7.13 7.12 (99.9%) 0 1432–2156 47.5 North-east

Burned and salvage-logged

Lyons East 13.15 10.72 (81.5%) 2.62 1441–2027 31.8 North

Lyons West 7.07 4.13 (58.4%) 2.38 1449–2059 24.8 North-east

Meterological station

Alberta

Hydrometric station

Stream

Reference Watershed

Burned Watershed

0 1 2 3 4 km0.5

Burned and Salvage-
Logged Watershed

Lost Creek Wildfire
boundary

Area Salvage-Logged

N
Crowsnest River

Fig. 1. Southern Rockies Watershed Project research catchments (west to east: Star Creek, North York Creek, South York Creek, Lynx

Creek, Lyons West Creek, Lyons East Creek and Drum Creek). Lines indicate catchment boundaries; solid: reference, dash: burned, dot-

dash: burned and salvage-logged. Shading indicates forest disturbance; light grey: northern boundary of the Lost CreekWildfire, dark grey:

area salvage-logged.
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April to October 2011 (Table 2). Water samples were collected
every 2 weeks and analysed according to standard methods
(Rice 2012; US Environmental Protection Agency (EPA) 2012)

for ammonium (NH4
þ), nitrate þ nitrite (NO3

� þ NO2
�), sol-

uble reactive phosphorous (SRP), dissolved organic carbon
(DOC), dissolved inorganic carbon (DIC), alkalinity (as

CaCO3), total suspended solids (TSS) and total dissolved solids
(TDS). Total inorganic nitrogen (TIN) was determined by the
sum of ammonium, nitrate and nitrite.

Stream discharge (m3 s�1) was measured every 2 weeks using
a Sontek acoustic Doppler velocity meter (Flow Tracker ADV,
Sontek/YSI). Stage was recorded every 10 min using HOBO
water level loggers suspended in PVC stilling wells (U20–001–

04; Onset Computer Corporation) or with a dry gas bubbler and
pressure transducer (Waterlog Model H-350 Lite and H-355,
Design Analysis Associates Inc.) connected to a measurement

and control data logger (CR1000, Campbell Scientific). Dis-
charge and manual stage measurements were used to develop
rating curves for each stream and calculate mean daily discharge.

Stream temperature was recorded either every 60 min using
HOBO temperature data loggers or every 10 min using HOBO
temperature and water level loggers (H08–001–02 or U20–001–

04; Onset Computer Corporation). Mean daily stream tempera-
ture (AVDT) was calculated and used for this analysis.

Periphyton samples were collected using three replicate
unglazed ceramic tiles (155 cm2) anchored to the streambed in

riffle sections of all seven catchments in late April–early May
after ice-out. Tiles were scrubbed clean in running stream water
before deployment and periphyton was allowed to colonise

naturally. Samples were collected monthly for 5 months (June
to October) by scraping and rinsing periphyton from the tile
surface into acid-washed (10% HCl) Nalgene high-density

polyethylene (HDPE) sample bottles. Ash-free dry mass
(AFDM) was used as a surrogate for primary productivity
(Aloi 1990); samples were frozen before analysis.

Macroinvertebrate sampling

Macroinvertebrate sampling was conducted at the end of the
growing season in October 2011. A Surber sampler (500-mm
mesh, 0.096 m2) was used to collect invertebrates from eight
randomly chosen riffle sections along a 100-m transect upstream
of each hydrometric gauging station. The sampler was placed on

the streambed facing upstream. Large rocks within the sampling
area were rubbed clean and removed, then the bed material was
vigorously disturbed for 2 min. Sampler contents were placed in

a white plastic basin and large debris (e.g. whole leaves, twigs
and rocks) were rinsed and removed. Macroinvertebrates,
associated plant material and detritus were transferred to
Nalgene HDPE sample bottles and preserved in 95% ethanol.

The 500-mmmesh of the Surber sampler permitted the collection
of larger-bodied water mites and later insect instars. Macro-
invertebrates were sorted, enumerated and identified to the

lowest practical taxonomic unit (usually family) using a dis-
secting microscope and the following keys: Clifford (1991) and
Thorp and Covich (2009). Identification of freshwater macro-

invertebrates to the level of family has been shown to be suffi-
cient for multivariate analyses comparing assemblage structure
between disturbed and undisturbed systems (Bowman and
Bailey 1997; Bailey et al. 2001).
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Roundworms (Nematoda) and the water mite family
Feltriidae were excluded from the analysis as the large mesh
size (500 mm) prevented consistent collection of a representative

sample. Specimens that could not be identified to class were also
excluded. Individuals from the stonefly families Capniidae and
Leuctriidae were too young to be distinguished from each other

and were grouped for this analysis as Capniidae þ Leuctridae.
Excluded specimens represented 2.61% of the total specimens
collected.

Parameters describing community composition (taxonomic
richness, diversity and evenness) were calculated using formu-
lae fromMorris et al. (2014). Taxonomic richness (S) is the total
number of taxa observed in each catchment (Eqn 1). Diversity

(D) was calculated using Simpsons Index of Diversity where pi
is the proportion of individuals of taxon i (Eqn 2). Evenness (E)
was calculated using Simpson’s Evenness (Eqn 3):

S ¼ number of unique taxa ð1Þ

D ¼ 1�
X

p21 ð2Þ

E ¼ D=S ð3Þ

Statistical analysis

Statistical analyses were conducted using R (R Core Team
2018). Community ordination and analysis were conducted
using the vegan package (Oksanen et al. 2019). One-way

analysis of variance (ANOVA) was used to test for an effect
of disturbance category on univariate environmental predictors
(streamflow, temperature, water chemistry and primary

productivity). Parameters that did not meet the assumptions of
parametric tests (normal distribution and equal variance) were
either log-transformed or analysed using a non-parametric

Kruskal–Wallis rank sum test. Post-hoc comparisons between
treatments were conducted following one-way ANOVA using
Tukey’s honest significant difference (Tukey’s HSD) test or

following Kruskal–Wallis rank sum test using Fisher’s least
significant difference test. Permutational multivariate analysis
of group dispersions (PERMDISP2) was used to test for multi-
variate homogeneity of group dispersions. Tukey’s HSD test

was used to conduct post-hoc pairwise comparisons of disper-
sion between treatments. A multivariate analysis of variance
(mANOVA) was conducted on the Bray–Curtis dissimilarity

matrix to test for significant differences in taxonomic compo-
sition between catchments and treatments.

Non-metric multidimensional scaling (NMDS) using Bray–

Curtis dissimilaritymatrices was used to visualise the variability
of invertebrate taxa in multidimensional space and evaluate the
similarity of invertebrate assemblages among catchmentswithin

disturbance categories. NMDS ordinations were conducted
using both raw counts and log (x þ 1) transformed data. As
invertebrate abundance was considerably higher in the burned
catchments, ordinations using counts were heavily influenced

by burned catchments. To reduce this effect, ordinations were
also conducted using relative abundances instead of counts to
compute the dissimilarity matrix.

Redundancy analysis (RDA) was used to determine the
strongest environmental correlates of macroinvertebrate

assemblage structure among disturbance categories. Environ-

mental variables used in the RDA are summarised in Table 2.
Detrended correspondence analysis (DCA) indicated RDA was
the appropriate model, as axis lengths were less than 3 standard

deviations (between 1.75 and 2.34) (Borcard et al. 2011).
Variables with high multicollinearity (variance inflation factor
.10) were removed before the selection of the most important

environmental parameters using a forward stepwise selection
procedure (ordiR2step). AHellinger transformationwas applied
to the species counts and environmental parameters were
standardised to mean zero and unit variance before fitting the

RDA model (Legendre and Gallagher 2001).

Results

Environmental parameters

Stream discharge (Q) in 2011 was similar between reference,

burned, and burned and salvage-logged catchments (Qdaily ¼
0.36 � 0.02, 0.30 � 0.02 and 0.35 � 0.03 m3 s�1 respectively;
x2 ¼ 7.8498, P ¼ 0.0197). The annual flow regime (range of

flows) varied more between treatments than did mean discharge
(Fig. 2). Reference catchments were the least variable, with the
least pronounced snowmelt and stormflow peaks and the lowest

peak discharge (2.03 m3 s�1). The burned catchments were
intermediate, with peak discharge of 2.11 m3 s�1. Burned and
salvage-logged catchments were the most variable, with steeper
snowmelt and stormflow limbs and the highest peak discharge

(5.18 m3 s�1). Mean daily stream temperature was significantly
different between treatments (x2 ¼ 38.492, P, 0.001). Stream
temperature was highest and most variable in the burned and

salvage-logged catchments (6.51 � 0.248C compared with
4.64 � 0.11 and 3.58 � 0.118C in the reference and burned
catchments respectively).

Periphyton productivity (AFDM) varied throughout the
growing season in all catchments; mean seasonal AFDM was
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lowest in the reference catchments and greatest in the burned
and burned and salvage-logged catchments (0.09 � 0.03,

0.21 � 0.05 and 0.28 � 0.07 mg cm�2 in the reference, burned,
and burned and salvage-logged catchments respectively;
F1,61 ¼ 7.504, P , 0.01). AFDM was significantly lower in

the reference catchments compared with the burned and burned
and salvage-logged catchments.

Water chemistry values are summarised in Table 2. TIN,

TDS, DIC and alkalinity were greatest in the reference and
lowest in the burned and salvage-logged catchments, showing a
generally monotonic pattern across disturbance categories. In

contrast, SRP, TSS and DOC were greatest in the burned and
salvage-logged catchments, following a pattern of burned and
salvage-logged . burned . reference.

Macroinvertebrate assemblage structure

A total of 21 409 individuals from 29 taxonomic groups were
identified, enumerated and included in this analysis (Table 3).

Insects (Ephemeroptera, Plecoptera, Trichoptera, Diptera and
Coleoptera) made up the majority of the macroinvertebrate
assemblages (94.0, 94.3 and 97.7% in the reference, burned, and

burned and salvage-logged catchments respectively). Flatworms
(Platyhelminthes: Turbellaria), aquatic mites (Acariformes:
Prostigmata: Parasitengonina: Hydrachnidiae) and ostracods
(Crustacea) comprised the remainder of the assemblages.

Macroinvertebrates were most abundant in burned streams,
with a mean density of 5959.6� 577.1 individuals m�2 (Fig. 3).
Abundance was similar between reference and burned and

Table 3. Macroinvertebrate counts and relative abundances (in brackets)

Abbreviations are shown in brackets for taxa included in the non-metric multidimensional scaling (NMDS) ordination (Fig. 5)

Taxon Reference Burned Burned and salvage-logged Total

Arachnida: Trombidiformes Hydryphantidae 17 (0.45%) 3 (0.02%) 3 (0.07%) 23 (0.11%)

Hygrobatidae 5 (0.13%) 2 (0.01%) 0 (0%) 7 (0.03%)

Lebertiidae 5 (0.13%) 20 (0.15%) 15 (0.37%) 40 (0.19%)

Sperchontidae 18 (0.47%) 101 (0.75%) 5 (0.12%) 124 (0.58%)

Torrenticolidae 0 (0%) 0 (0%) 5 (0.12%) 5 (0.02%)

Crustacea Ostracoda 113 (2.97%) 160 (1.18%) 64 (1.57%) 337 (1.57%)

Insecta: Coleoptera Elmidae (ELMI) 29 (0.76%) 543 (4.01%) 1167 (28.63%) 1739 (8.12%)

Insecta: Diptera Ceratopogonidae 3 (0.08%) 37 (0.27%) 6 (0.15%) 46 (0.21%)

Chironomidae (CHIRO) 418 (10.99%) 2253 (16.65%) 346 (8.49%) 3017 (14.09%)

Empididae 4 (0.11%) 59 (0.44%) 3 (0.07%) 66 (0.31%)

Psychodidae (PSYCH) 12 (0.32%) 561 (4.15%) 31 (0.76%) 604 (2.82%)

Tipulidae (TIPUL) 5 (0.13%) 40 (0.30%) 65 (1.59%) 110 (0.51%)

Other Diptera 5 (0.13%) 22 (0.16%) 1 (0.02%) 28 (0.13%)

Insecta: Ephemeroptera Baetidae (BAET) 22 (0.58%) 1239 (9.16%) 73 (1.79%) 1334 (6.23%)

Ephemerellidae 16 (0.42%) 205 (1.52%) 129 (3.16%) 350 (1.63%)

Heptageniidae (HEPTA) 195 (5.13%) 76 (0.56%) 1 (0.02%) 272 (1.27%)

Siphlonuridae (SIPHL) 78 (2.05%) 31 (0.23%) 51 (1.25%) 160 (0.75%)

Other Ephemeroptera 886 (23.3%) 4540 (33.56%) 946 (23.21%) 6372 (29.76%)

Insecta: Plecoptera CapniidaeþLeuctridae (CA_LE) 158 (4.15%) 97 (0.72%) 19 (0.47%) 274 (1.28%)

Chloroperlidae (CHLOR) 367 (9.65%) 416 (3.07%) 453 (11.11%) 1236 (5.77%)

Peltoperlidae (PELTO) 50 (1.31%) 255 (1.88%) 5 (0.12%) 310 (1.45%)

Perlidae 42 (1.1%) 18 (0.13%) 74 (1.82%) 134 (0.63%)

Perlodidae 19 (0.5%) 58 (0.43%) 14 (0.34%) 91 (0.43%)

Other Plecoptera 959 (25.22%) 920 (6.8%) 423 (10.38%) 2302 (10.75%)

Insecta: Trichoptera Brachycentridae (BRAC) 151 (3.97%) 769 (5.68%) 34 (0.83%) 954 (4.46%)

Hydropsychidae 14 (0.37%) 41 (0.3%) 2 (0.05%) 57 (0.27%)

Rhyacophilidae 88 (2.31%) 508 (3.75%) 67 (1.64%) 663 (3.1%)

Other Trichoptera 54 (1.42%) 75 (0.55%) 72 (1.77%) 201 (0.94%)

Platyhelminthes Turbellaria (TURB) 70 (1.84%) 481 (3.56%) 2 (0.05%) 553 (2.58%)

Total 3803 13 530 4076 21 409
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Fig. 3. Macroinvertebrate abundance (number of individuals m�2) in

reference (n ¼ 16), burned (n ¼ 24), and burned and salvage-logged

(n ¼ 16) catchments.
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salvage-logged streams with densities of 2529.5 � 405.5 and
2731.1 � 421.5 individuals collected per sample respectively.

Taxonomic richness (S) was similar across catchments
(S ¼ 25.0 � 3.0, 26 � 0.0 and 23.5 � 0.5 in the reference,
burned, and burned and salvage-logged catchments respectively).

All taxa sampled were represented at least once in each of the
reference, burned, and burned and salvage-logged catchments
with the exception of two aquatic mite families. The family
Hygrobatidae was absent from the burned and salvage-logged

catchments and the family Torrenticolidae was absent from the
reference and burned catchments; both families were relatively
rare across catchments, accounting for 0.03 and 0.02% of the total

individuals sampled respectively. Diversity (D) and evenness (E)
were moderately higher in reference catchments and similar
across the wildfire-affected catchments (D ¼ 0.85 � 0.01,

0.80 � 0.05 and 0.79 � 0.01 and E ¼ 0.28 � 0.06, 0.22 � 0.05
and 0.21� 0.01 in the reference, burned, and burned and salvage-
logged catchments respectively). Counts and relative abundances

of all taxonomic groups are summarised by disturbance category
in Table 3.

Reference catchments were characterised by high relative
abundances of stoneflies (Plecoptera) (41.9% compared with

13.1 and 24.2% in the burned and burned and salvage-logged
catchments respectively). In particular, the relative abundance
of Capniidae þ Leuctridae was high (4.15% compared with

0.72 and 0.47% in the burned and burned and salvage-
logged catchments). Burned catchments showed high relative
abundances of both true flies (Diptera) and mayflies

(Ephemeroptera) (22.0 and 45.1% compared with 11.8 and
31.5%, and 11.1 and 29.44% in the reference and burned and
salvage-logged catchments respectively). In particular, the true

fly families Chironomidae and Psychodidae and the mayfly
family Baetidae were abundant in burned catchments. The

burned and salvage-logged catchments were characterised by
particularly high abundances of riffle beetles (Coleoptera:

Elmidae) (28.63% compared with 0.76 and 4.01% in the refer-
ence and burned catchments respectively) as well as crane flies
(Diptera: Tipulidae) (1.59% compared with 0.13 and 0.30% in

the reference and burned catchments respectively). The burned
and salvage-logged catchments had particularly low numbers of
flatworms; only two individuals were collected, representing
0.05%of themacroinvertebrate assemblage comparedwith 1.84

and 3.56% in the reference and burned catchments respectively.

Multivariate analysis of macroinvertebrate assemblage
structure

Invertebrate assemblages formed distinct groups according
to catchment and disturbance category in NMDS ordinations

(Fig. 4). Multivariate ANOVA of the Bray–Curtis dissimilarity
matrices confirmed significant differences in assemblage
structure between catchments (F ¼ 7.845, P , 0.01) and

treatments (F ¼ 11.403, P, 0.01). The test of homogeneity of
multivariate dispersions (PERMDIPS2) indicated that b diver-
sity was homogeneous between disturbance category (number
of permutations¼ 999, F¼ 2.821, P¼ 0.07) as confirmed with

Tukey’s HSD test (P . 0.12).
Several taxonomic groups were strongly associated

(P, 0.01) with study catchments across disturbance categories

(Fig. 5). Heptageniidae and Capniidae þ Leuctridae were
strongly associated with reference catchments. Burned catch-
ments were positively associated with the families Baetidae,

Psychodidae and Chironomidae whereas Tipulidae and Elmidae
were strongly associated with burned and salvage-logged sites.
Several taxa were also associated with catchments in two

disturbance categories including Peltoperlidae, Brachycentridae
and Turbellaria associated with both reference and burned
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catchments and Chloroperlidae, which was characteristic of
both reference and burned and salvage-logged catchments.

The RDA model explained 34.4% of the variance in inverte-
brate assemblage structure (P, 0.01, Fig. 6). The first twoRDA

axes explained 20.3 and 7.8% of the variation respectively. The
variables selected by the model in decreasing order of strength
were: DOC, stream discharge (Q), periphyton productivity

(AFDM) and TDS. Reference reaches were characterised by
higher discharge and lower periphyton productivity. The burned

catchments were highly variable; Drum Creek had particularly
high TDS, South York Creek was characterised by low dis-
charge and DOC, and Lynx Creek was more similar to the

reference sites, having high discharge and low DOC. Burned
and salvage-logged sites were characterised by high DOC and
elevated periphyton productivity. Environmental predictors are

summarised in Table 2.

Discussion

Persistent wildfire effects on macroinvertebrate assemblages
were observed in both burned and burned and salvage-logged
catchments 8 years after the Lost Creek wildfire (Fig. 4). This

observation is consistent with the slow post-wildfire recovery of
biogeochemical and biological factors (including increased sed-
iment, phosphorus and carbon export and increased periphyton

productivity) observed in these wildfire-affected watersheds
(Bladon et al. 2008; Silins et al. 2009; Emelko et al. 2011; Silins
et al. 2014; Wagner et al. 2014; Emelko et al. 2016; Silins et al.

2016). Previous reports on the duration of wildfire impacts to
water quality and stream biology have focused on shorter time-
scales (2–3 years) than those described here (Moody and Martin
2001; Robson et al. 2018). Results of the present study demon-

strate that the effects of both wildfire and post-fire salvage log-
ging on macroinvertebrate assemblages (the latter effects have
not been previously described) can be long-lasting (Fig. 6) and

these effects are strongly associated with the persistence of fire
effects on the chemical and biological stream environments. In
particular, DOC and periphyton productivity (AFDM) were

closely associated with variation in invertebrate assemblage
structure among disturbance categories and continue to be
influenced bywildfire-related changes to runoff andwater quality
(Emelko et al. 2016; Silins et al. 2016). It is important to
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recognise that multiple stream water quality and physical vari-
ables after wildfire were strongly correlated, thus although
redundancy analysis identified DOC and AFDM as the dominant

fire-associated variables, sediment, phosphorus, carbon and
periphyton productivity are all likely key drivers regulating the
persistence of wildfire effects. The glacial history of these

research catchments contributes to long-lasting wildfire effects
comparedwithmountain ecosystems in thewesternUnited States
(e.g. Yellowstone; Minshall et al.1997) owing to the presence

of highly erodible glacial-fluvial deposits that provide a source of
bioavailable phosphorus (Emelko et al. 2016).

The differences in ecological response (Fig. 5) of the macro-
invertebrate assemblages in the burned and burned and salvage-

logged catchments were unexpected (Table 2). Sediment export,
phosphorus and DOC concentrations (biogeochemical) and
periphyton productivity (biological) consistently follow the pat-

tern burned and salvage-logged . burned . reference. Accord-
ingly, itwould be expected that the response ofmacroinvertebrate
assemblages in burned and burned and salvage-logged catch-

ments would follow the same pattern. Notably, assemblage
structure differed between burned and burned and salvage-
logged watersheds (Figs 4, 5) and macroinvertebrate abundance

was 2� greater in burned catchments whereas abundance in
burned and salvage-logged catchments did not differ significantly
from reference assemblages (Fig. 3). Chironomidae and Baetidae
were predominant in burned catchments whereas Tipulidae and

Elmidae were indicative of burned and salvage-logged systems
(Fig. 5; Table 3). These unique assemblage structures and
macroinvertebrate abundances between disturbance categories

suggest that different mechanisms are driving the ecological
responses in wildfire-affected catchments.

Wildfire can affect macroinvertebrate assemblages through

several biophysical mechanisms; in this study, we consider the
influence of resource limitation and habitat quality. Macroin-
vertebrate responses to wildfire can also be influenced by other
factors including life stage and physiology, which were not

accounted for in this study. The resource-limitation mechanism
occurs when macroinvertebrates respond to changes in the
availability (quantity and quality) of both allochthonous

(terrestrial) and autochthonous (in-stream) food resources
(Minshall et al. 1989; Spencer et al. 2003; Mihuc and Minshall
2005). Food webs in undisturbed forested headwater streams

will be supported primarily by allochthonous sources of energy
as low nutrient concentrations and shading from the riparian
canopy prevent significant in-stream primary productivity

(Vannote et al. 1980). Unburned research catchments consis-
tently fit this pattern, having low primary productivity compared
with nearby disturbed, both burned (Emelko et al. 2016) and
harvested (Hawthorn 2014) catchments. The habitat quality

mechanism is related to physical habitat characteristics, where
increases in runoff, erosion, sediment and nutrient loading alter
both habitat availability and suitability (Hauer and Spencer

1998; Shakesby and Doerr 2006). Considering the reference
and burned disturbance categories, both periphyton productivity
and macroinvertebrate abundance were greater in the burned

catchments, suggesting that resource availability was likely the
primary mechanism regulating macroinvertebrate assemblage
response. However, the burned and salvage-logged catchments
(influenced by two consecutive disturbances) consistently

showed disturbance metrics (suspended sediment, DOC, phos-
phorus and periphyton productivity) higher than catchments
affected by the wildfire only (Table 2). The unique invertebrate

assemblage structure in the burned and salvage-logged catch-
ments, and the pattern of high primary productivity but low
macroinvertebrate abundance suggest that habitat quality had a

greater influence on the ecological response in these systems.
The increased sediment loading and more variable flow regime
in the burned and salvage-logged catchments likely reduced

habitat quality to the point that few taxa were able to take
advantage of the increased productivity. These observations are
consistent with a previous study that reported differential effects
of wildfire on invertebrate assemblages in low- and high-

severity burns (Malison and Baxter 2010b); these differences
were not interpreted in the context of broader ecological limita-
tions proposed here.

The macroinvertebrate assemblage of the reference catch-
ments was consistent with streams with high water quality and a
more stable flow regime. Taxa known to be sensitive to

environmental perturbation including stoneflies (Plecoptera)
and flatheaded mayflies (Ephemeroptera: Heptageniidae)
(Barbour et al. 1999; Voshell 2002) were relatively abundant

in the reference catchments (Fig. 5, Table 3). Stoneflies are
particularly sensitive to sedimentation and excess periphyton
(Zwick 1992; Barbour et al. 1999; Voshell 2002). Diversity and
evenness were moderately higher in reference catchments,

likely owing to greater stability of the flow regime and high-
quality habitat compared with burned and burned and salvage-
logged catchments.

Macroinvertebrate assemblages in the burned catchments
included greater abundance of disturbance-adapted taxa as well
as taxa adapted to capitalise on increased food availability.

Invertebrate families in burned catchments included the true
flies Chironomidae and Psychodidae and the mayfly family
Baetidae (Fig. 5). Many species within Chironomidae and
Baetidae are widely considered to be disturbance-adapted taxa

and increase in abundance post fire as they have short generation
times and can reproduce quickly (Richards and Minshall 1992;
Malison and Baxter 2010b). The family Baetidae contains

several genera specialised for consuming periphyton
(Minshall et al. 2001b); their high abundance suggests that
individuals were able to capitalise on increased periphyton

productivity in the burned catchments. The abundance of a
given taxon will be greatest in the area that provides the most
suitable habitat (Brittain and Eikeland 1988); the wildfire alone

did not compromise habitat quality to the point that invertebrate
taxa were unable to take advantage of the excess periphyton
resources.

In contrast, salvage logging contributed to greater deteriora-

tion in water quality and stream habitat compared with catch-
ments affected by the fire alone, preventing invertebrates from
utilising the additional periphyton productivity. Streamflowwas

very responsive to rainfall and snowmelt events, resulting in
higher peak streamflows than in reference catchments. Sus-
pended sediment and turbidity were consistently higher during

these periods of high flows and considerable amounts of fine
sediment were deposited on and intruded into gravel interstices
in the streambed. The reduced invertebrate abundance observed
in these catchments is consistent with the observations of Wood

746 Int. J. Wildland Fire A. M. Martens et al.



and Armitage (1997) and Bjornn et al. (1977), who showed that
increased fine sediment reduced invertebrate density and abun-
dance. Although sediment is an important natural component of

stream ecosystems, excess fine sediment can fill pore spaces and
reduce oxygen availability in gravel bed streams, compromising
habitat and food resources and altering macroinvertebrate

behaviour including foraging, respiration and drift (Bjornn
et al. 1977; Brittain and Eikeland 1988; Wood and Armitage
1997; Jones et al. 2012). Crane flies (Diptera: Tipulidae) and

riffle beetles (Coleoptera: Elmidae) were strongly associated
with burned and salvage-logged catchments (Fig. 5). Crane flies
have a burrowing lifestyle and arewell adapted to high-sediment
environments (Giller and Malmqvist 1998; Voshell 2002). As

well, riffle beetle larvae can grip substrate during high flows and
protect themselves from sediment abrasion bywithdrawing their
gills (Bjornn et al. 1977; Brown 1987; Voshell 2002; Yee and

Kehl 2015). Fine sediment deposition likely contributed to the
low abundance of caddisflies (Trichoptera) as some taxa require
clean substrate to attach their cases and retreats (Bjornn et al.

1977; Voshell 2002). The low abundance of baetid mayflies in
the burned and salvage-logged catchments is further evidence
of the habitat-limitation mechanism overriding the resource

mechanism. Many genera of Baetidae are disturbance-adapted
scrapers (consume periphyton) and do well in post-fire environ-
ments with high periphyton productivity (Vieira et al. 2004;
Malison and Baxter 2010b). High suspended sediment loads,

however, can be detrimental as many genera are also clingers
(Bjornn et al. 1977); impact from moving sediment dislodges
individuals from rocks, causing injury and reducing abundance

(Naman et al. 2016).

Conclusion

The clear differences inmacroinvertebrate assemblage structure
between reference, burned, and burned and salvage-logged
catchments 8 years after the Lost Creek wildfire indicate that
the effects of wildfire on aquatic communities in this northern

Rocky Mountain ecosystem are persistent. However, despite
clear differences in the relative abundance of taxa between
disturbance categories, taxonomic richness and diversity did not

vary strongly. Only 2 of 29 taxa were missing from one or more
disturbance categories; both these families (Hygrobatidae and
Torrenticolidae) were locally rare across disturbance categories.

It is clear that despite the legacy effects observed in this study,
fire-affected catchments still support sensitive taxa and func-
tional macroinvertebrate assemblages 8 years after severe

wildfire. The cumulative impacts of wildfire and forest harvest
should be considered when making post-wildfire management
decisions related to salvage logging. Macroinvertebrates pro-
vide many important ecosystems services including sediment

mixing, breakdown of organic matter, and nutrient and energy
cycling (Covich et al. 1999) and are an important energy source
for salmonid fishes (Rinne 1996; Malison and Baxter 2010b).

Salvage logging had an additive effect on the severity of the
wildfire disturbance, the burned and salvage-logged catchments
had poorer water quality and higher sediment loads than burned

catchments. If the decision is made to apply management
treatments following wildfire, best practices should be followed
to minimise habitat degradation and sediment inputs, particu-
larly in sensitive catchments (Wagenbrenner et al. 2016).
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