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Abstract. We examined the relationship between climate variables and grassland area burned in Xilingol, China, from
2001 to 2014 using an autoregressive distributed lag (ARDL) model, and describe the application of this econometric
method to studies of climate influences on wildland fire. We show that there is a stationary linear combination of non-
stationary climate time series (cointegration) that can be used to reliably estimate the influence of different climate signals

on area burned. Our model shows a strong relationship between maximum temperature and grassland area burned. Mean
monthly wind speed and monthly hours of sunlight were also strongly associated with area burned, whereas minimum
temperature and precipitation were not. Some climate variables like wind speed had significant immediate effects on area

burned, the strength ofwhich varied over the 2001–14 observation period (in econometrics terms, a ‘short-run’ effect). The
relationship between temperature and area burned exhibited a steady-state or ‘long-run’ relationship. We analysed three
different periods (2001–05, 2006–10 and 2011–14) to illustrate how the effects of climate on area burned vary over time.

These results should be helpful in estimating the potential impact of changing climate on the eastern Eurasian Steppe.

Additional keywords: ARDL model, climate change, climate sensitivity, grassland fire.

Received 2 May 2018, accepted 8 May 2019, published online 1 July 2019

Introduction

Changing climate and land-use practices have had a significant
impact on the productivity, community composition, structure
and function of many terrestrial ecosystems (Mooney et al.

2009; Kipling et al. 2016; Zhang et al. 2016). Changes to
ecosystem structure and function as a result of disturbance are
more difficult to predict than directional climate change. An

understanding of the sensitivity of grasslands – lands dominated
by grasses as opposed to trees or shrubs – to climate-mediated
changes such as fire is especially important because grasslands

are one of the most spatially extensive vegetation types in the
world, accounting for,25%of the global land surface. Changes
to grasslands could have global implications for resource
cycling and carbon sequestration (Yang et al. 2016).

Anthropogenically derived activities are important drivers of

grassland degradation, especially in developing countries (Yang
et al. 2005; Verón et al. 2006; Bliege Bird et al. 2016; Gowlett
2016). Some studies have attributed grassland degradation to

temperature increases and changes in precipitation seasonality
(Ravi et al. 2010; Yeganeh et al. 2014), whereas other studies
report that it may be difficult to differentiate between causal

factors (Wessels et al. 2007; Gang et al. 2014). Less attention
has been focused on fire-mediated change, and few studies have
quantified the relationship between climate variability and fire

extent in grasslands at large spatial scales (Zheng et al. 2006;
Wessels et al. 2008).

Fire regimes of grasslands and forests have been analysed
at multiple temporal and spatial scales (Abatzoglou and
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Williams 2016; Francos et al. 2016; Garbolino et al. 2016;
Gaudreau et al. 2016; Harris et al. 2016; Kukavskaya et al.

2016; Liu andWimberly 2016; Tian et al. 2016; Liu et al. 2017).

Previous research suggests that extreme weather is an important
determinant of fire severity and extent. Increased temperatures
and wind speeds and lower relative humidity are correlated with

increases in fire size, intensity and severity (Argañaraz et al.

2015; Holsinger et al. 2016). In many regions, wildfire activity
has fluctuated dramatically during the last century, and fire

regimes have been altered in most geographic regions (Ikemori
et al. 2015; Semeraro et al. 2016). Analysis of the eastern
Eurasian Steppe has only recently become possible with the
availability of national fire datasets (Eugenio et al. 2016).

The objective of the present study was to examine changes
in area burned in northern China given intra- and interannual
climate trends. To accomplish this objective, we used an

econometrics method to study the relationship between area
burned and climate time series that are non-stationary, that is,
the mean and the variance of the series do not remain constant

during the observation period. In econometrics, it is common to
estimate the effect on a response of interest, e.g. stock perfor-
mance, given non-stationary trends in time series predictor

variables, e.g. inflation and market capitalisation. In this finan-
cial market example, investigators are interested in relating past
and present observations of predictor and response variables
to future observations of the response. These effects can be

characterised either as ‘short-run’, or immediate fluctuations in
the response given a change in a predictor variable, or ‘long-run’
relationships from which variables deviate but always return to

over the entire period of observation. In the case of grassland
area burned in Xilingol over time, we used an autoregressive
distributed lag (ARDL) approach to determine the sensitivity of

grassland area burned to climate trends. We present a detailed
account of the application of this methodology and its potential
usefulness to the fire ecology community.

Data description and methodology

Study area and climate data

The Xilingol League (a league is an administrative unit of the
autonomous region of Inner Mongolia within China) is located
on the eastern Eurasian steppe in northern China (Fig. 1). The

total area of Xilingol is 2.03� 107 ha, of which 70% is grass-
lands. Xilingol grasslands are among the most productive
prairies in China (Kobayashi et al. 1994; Chen et al. 2008), and

have been shown to be highly sensitive both to climate change
and human activity, including human-caused fire (Hardy 2005;
Kaloudis et al. 2005; Zhijun et al. 2009).

Between 2001 and 2014, 564 fires within Xilingol burned

29 092 ha. Most of the fires (94.6%) occurred between March
and October. Fire activity was somewhat bimodal, with large
areas burned in April–May and also in September–October

(Fig. 2). Area burned in Xilingol increased from 2001 to 2014,
although the interannual and spatial pattern of fire varied during
this time period (Fig. 3). This variability suggests potentially

complex interactions between different climate drivers of fire.
We used six climate variables to predict area burned:

monthly average maximum temperature (Tmax), monthly
average minimum temperature (Tmin), monthly precipitation

(Precip), monthly average wind speed, monthly average
sunlight, and monthly average relative humidity (percentage
of saturation humidity). Two of these variables were weakly

correlated (sunlight hours and relative humidity) and two vari-
ables were strongly correlated (Tmin and Tmax). Following the
practice of most econometric analyses, we ignored multicolli-

nearity of variables in implementing the ARDL model because
the degree of differencing of data using this method tends to
decompose model residuals and eliminate multicollinearity.

Also, in theory, multicollinearity only inflates the errors of
regression coefficients but coefficients remain unbiased (Farrar
andGlauber 1967; Goldberger 1991). Climate data from 2001 to
2014 were taken from the China Meteorological Data Sharing

Service Centre (https://data.cma.cn/en, last accessed 20 May
2019). Data for grassland area burned were acquired from the
Monitoring Centre of the Ministry of Agriculture (http://www.

moa.gov.cn/, last accessed 20 May 2019). The basic meteoro-
logical and burned area data used in the present paper are
included in the online supplemental material.

ARDL model

The available climate data that are potentially explanatory of
grassland area burned in Xilingol League are time series. A
critical assumption of ordinary least-squares analysis methods
that could be used to evaluate the relationship between area

burned and climate is stationarity, i.e. the means and variances
of the time series are constants that are independent of time.
Failure to account for non-stationarity in time series risks

spurious regression results in which t-statistics and measures of
model fit are misleadingly significant (Granger and Newbold
1974; Phillips 1986).

This problem can be avoided by determining if there is a
stationary linear combination of non-stationary climate vari-
ables, or cointegration of time series. Analysing multiple time
series that are cointegrated can provide important information

about system behaviour over long time periods. We used the
ARDL cointegration model, which allowed us to test for the
existence of long-term climate–fire relationships, irrespective of

whether the underlying regressors require no differencing to
obtain a stationary series (I(0)), require one order of differencing
(I(l)), or are mutually cointegrated (Pesaran et al. 2001; Oteng-

Abayie and Frimpong 2006).Model fitting was performed using
Microfit 5.5 (Pesaran and Pesaran 2010; Pesaran 2015).

The ARDL model was originally proposed by Pesaran et al.

(1999, 2001). The ARDLmethodology is graphically illustrated
in Fig. 4. According to several authors (e.g. Pesaran et al. 2001;
Haug 2002; Oteng-Abayie and Frimpong 2006), the ARDL
methodology is preferable to test cointegration when there is a

single long-run relationship among the response and covariates
and there are no long-run relations in the conditional error
correction form of the covariates in terms of the response. In

other words, there is a reduced form on which all underlying
series are weakly exogenous and taken as explanatory variables.
Among these explanatory variables, there can be a mix of I(0)

and I(1) series, and one or more cointegrated relations. It is
important to note that in a case where one of the time series
in question is integrated of order$2, the ARDL method cannot
be applied.
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In the case of our study, some variables were demonstrated

to be stationary, whereas some of them required one order of
differencing. In addition, we were interested in the impact of the
climate variables on grassland burned area through a single

equation, and therefore, the ARDL cointegration approach was

the most pertinent econometric model to use in order to estimate
long-run and short-run dynamics from the error correction
model (ECM) specification. We also selected this methodology
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Fig. 1. Xilingol League, China, with the study area outlined in red (a) and the total number of grassland fires and area burned from

2001 through 2014 (b). Grey bars represent area burned and correspond to the left y axis. Black lines and red dots represent the number

of fires and correspond to the right y axis.
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Fig. 2. Area burned (left y axis), and number of fires (right y axis) by month between 2001 and 2014 in Xilingol League,

China. Grey bars indicate area burned and red lines indicate the number of fires.
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Fig. 3. Spatial pattern of grassland area burned between 2001 and 2014 in Xilingol League, China.

The distribution of area burned varied from the annual averages for the entire study region. Area

burned is expressed in deviations from the 14-year mean. Red areas indicate area burned greater

than two standard deviations from the mean, orange between one and two standard deviations

greater than the mean, yellow within one standard deviation of the mean, green between one and two

standard deviations less than the mean, and purple more than two standard deviations less than the

mean.
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because ARDL modelling performs better with a smaller
sample size than other cointegration techniques (Haug 2002;
Abdullah Yusof and Duasa 2010). For instance, the ARDL
methodology was shown to achieve good performance in

measurement of environmental quality related indicators (such
as sandy desertification and deforestation) (Ahmed et al. 2015;
Ge et al. 2016).

As a first step (see Fig. 4), we used augmented Dickey–Fuller
(ADF) (Dickey and Fuller 1979) and Phillips–Perron (PP)
(Phillips 1987) unit root tests to test the order of integration

for each variable. ARDL bounds testing requires that all vari-
ables should be integrated at purely order I(0), purely order I(1)
or mutually cointegrated (Oteng-Abayie and Frimpong 2006).
Therefore, it is necessary to test the integrating order of all

variables before applying ARDL bounds testing; otherwise, the
calculation of the F statistic of ARDL becomes invalid (Baum
2004).

The general formulation of an ARDL (n,m) model with a lag
m for exogenous variables, X ¼ ðx1; x2; . . . ; xpÞ, and lag n for
response variable Y is:

Yt ¼ a0 þ
Xn

i¼1
aiYt�i þ

Xm

i¼0
ciXt�i þ Ut; ð1Þ

where ci ¼ ðci1; ci2; . . . cipÞ are the effects of the level and
lagged exogenous variables on the response Y at time t.
Coefficients ai; . . . ; an represent the autoregressive effect of
past realisations of Y, a0 is the intercept term and Ut is the

white noise error. This model can be reformulated as an error
correction model (ECM) considering the marginal changes
with the lag � 1 difference operator (with DYt ¼ ðYt � Yt�1Þ,
and DXt ¼ ðXt � Xt�1ÞÞ, as:

DYt ¼ a0 þ
Xn�1

i¼1
aiDYt�i þ

Xm�1

i¼0
yiDXt�i þ dECMt�1 þ et;

ð2Þ
where, in the case of cointegration, d represents the speed of
adjustment to long-run equilibrium deviations. That is, the error
correction term (ECMt) specifies the magnitude of the observed

divergence from the equilibrium equation between Yt andXt that
should be corrected in each following period, and d determines
how much time it will take to come again to the long-run

equilibrium position. In order to estimate the parameters ai
and bi that correspond to the short-run dynamics, the unobserv-
able variablesECMt are estimated from the long-run parameters,

and for a significant ECM, the parameter d should be negative.

Unit Root

Test if all variables are
I (0) or I (1)

At least one variables is
I (d ) for d � 2

Stop

All variables are
I (0) or I (1)

Specify ARDL
Model

i � 1......5

Specify ARDL
Lag structure

Estimate ARDL
Model

Residuals are
serially correlated
heteroscedastic

Increase lags or
Use SIC

Residuals are
serially correlated
heteroscedastic

Estimate long-run equation
with least squares

Estimate short-run
error correction

Model

F-Bounds Test
cointegrated

Fig. 4. Flowchart for an implementation of the autoregressive distributed lag (ARDL) model showing the

preliminary tests required before applying the model to the dataset. The order of integration is represented by d,

and SIC is the Schwarz information criterion.
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We natural-log-transformed response and predictor vari-
ables, which allowed us to report model coefficients as ‘elastici-
ties’, or measures of how a variable changes in response to

another variable. Unlike partial slope coefficients, which repre-
sent the unit change in the response variable for a unit change in
the predictor variable, coefficients in the log–log model repre-

sent the estimated percentage change in the dependent variable
for a percentage change in the independent variable. If coin-
tegration exists, the long-run relation of the response with the

covariables, in the particular case of our study, can be written as:

ln Area burnedt ¼ b0 þ b1 lnHumidityt þ b2 lnTmin t þ b3
lnTmax t þ b4lnPrecipt þ b5lnSunlightt þ b6lnWindt þ vt

ð3Þ

where nt is a zero mean stationary process and grassland area
burned is in units of hectares, Tmin, and Tmax in degrees Celsius,

Precip in millimetres, Humidity in percentage, Wind in metres
per second, and Sunlight is in hours.

For testing cointegration, the conditional error correction

model in Eqn 2 is expressed as:

Dln Areaburnedt ¼ a0 þ
Xn�1

i¼1
aiD lnAreaburnedt�i

þ
Xm2�1

i¼0
y1iDlnHumidityt�i þ

Xm3�1

i¼0
y2iD lnTmin t�i

þ
Xm4�1

i¼0
y3iD lnTmax t�i þ

Xm5�1

i¼0
y4iDlnPrecipt�i

þ
Xm6�1

i¼0
y5iDlnSunlightt�i þ

Xm7�1

i¼0
y6iDlnWindt�i

þ d0 lnAreaburnedt�1 þ d1 lnHumidityt�1 þ d2 lnTmin t�1

þ d3 lnTmax t�1 þ d4 lnPrecipt�1 þ d5 ln Sunlightt�1

þ d6 lnWindt�1 þ et:

ð4Þ

The parameters a and y represent the short-run dynamics of
the model. For each of the covariables, the long-run parameter bj

is can be estimated from Eqn 4 as bj ¼ dj
�
d0, for j¼ 1,2,y6.

Parametrisation of the model in Eqn 4 is preferred in order to
implement the bound test for cointegration Pesaran et al. (2001).
Therefore, the null hypothesis of no long-run relationship

between the variables is H0: d0¼ d1¼ d2¼ d3¼ d4¼ d5¼ d6¼ 0
and is checked against the alternative hypothesis H1: at least one
dj 6¼ 0, j¼ 0,1y6. Note that this test allows for degenerate long-
run relations in the model, as stated in the alternative hypothesis.

Parameters in Eqn 4 can be estimated by ordinary least-
squares (OLS) and the test statistics correspond to the partial F
statistics for simultaneous significance of the lagged level of the

variables. Narayan (2005) provides critical boundaries for the
asymptotic distribution of the F statistic appropriate for small
sample sizes. If the computedF statistic is greater thanNarayan’s

upper critical boundary, then we conclude there is cointegration
between the variables. If the computed F statistic is less than the
lower critical boundary, then there is no cointegration among
the variables. We used the Akaike information criterion,

Schwarz Bayesian criterion and Hannan–Quinn information
criterion to determine the optimal lag selection (Schwarz 1971;
Hannan and Quinn 1978; Akaike 1981).

After confirming long-run relationship among the variables,
we applied the cumulative sum (CUSUM) and cumulative sum
of squares (CUSUMSQ) tests developed by Brown et al. (1975).

These tests are used to check the goodness of fit for ARDL as
suggested by Pesaran et al. (2001). These tests are incorporated
on the residuals of the error correction model and display results

in graphical form. Plots of CUSUM and CUSUMSQ that fall
within the 5% critical band demonstrate model stability.

Area burned increased over time and the spatial pattern of

fire within Xilingol varied over time (Fig. 3). The ARDLmodel
ultimately demonstrated both long-run and short-run effects of
climate on area burned. To provide an easy to interpret demon-
stration of the effect of climate signals on area burned at

different temporal scales, we calculated correlation coefficients
of climate parameters and area burned for three different time
periods: 2001 to 2005, 2006 to 2010, and 2010 to 2014.

Results

Unit root tests

The results of the unit root test are shown in Table 1. In the ADF

test, ln Tmin and ln Wind were stationary at a 5% significance
level, whereas in the PP test, ln Tmax and ln Precip were
stationary at a 10% significance level. However, all variables

became stationary after considering the first difference, which
is confirmed by most of our unit root test approaches. Thus,
they are indicated at order 1. The absence of a I(2) variable
corroborates the application of the ARDL bounds-testing

technique.

Bound testing for cointegration analysis

Before testing for cointegration, it is important to select the
correct number of lags in y(n) considered in the ARDLmodel in
order to avoid misspecification problems Pesaran et al. (2001).

The use of one lag in the model was indicated by most selection
criteria (Table 2).

The results of the ARDL bounds testing and critical values

are presented in Table 3. The calculated value of the F statistic
(5.11) was greater than the upper bound values (FU) at 5 and
10% levels of significance respectively, which demonstrates the
existence of long-run relationships among climate variables

irrespective of whether the covariables are I(0), I(1) or mutually
cointegrated. From this result, it is possible to find long-run
coefficients and short-run dynamics from the conditional vector

ARDL equation with error correction term.

Long-run coefficients

Once cointegration is proved, there is a linear combination of all

variables, including predictors and response, that is stationary.
This long-run relationship is scaled such that the coefficient of
the grassland area burned is 1 (Table 4). Results are estimated

from the selected ARDL model according to the Schwarz
Bayesian criterion. Significant long-run effects calculated at a
5% significance level are wind, maximum average temperature

and sunlight expressed in logarithmic scale. From these long-run
elasticities, it is estimated that a 1% change in wind is associated
with a 1.05% change in area burned. This long-run elasticity is
not expressed instantaneously, but represents the long-term
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Table 1. Unit root test of grassland area burned as a function of climate variables

The abbreviations Rel. humidity, Tmin, Tmax, Precip, Sunlight andWind represent respectively mean monthly relative humidity (%), mean monthly minimum

temperature (8C), mean monthly maximum temperature (8C), monthly precipitation (mm), mean monthly sunlight (h), and mean monthly wind speed (m s�1)

Augmented Dickey-Fuller (ADF) test statistics Phillips–Perron (PP) test statistics Level of significance

Levels 1st differences Levels 1st differences 5% 10%

lnArea burned �6.359 �7.941B �6.819 �14.001B 1(1) 1(1)

lnRel. humidity �7.138 �6.922B �4.658 �24.824B 1(1) 1(1)

lnTmin 3.880A �8.972B �4.864 �11.821B 1(1) 1(0)

lnTmax �3.449 �13.52B �6.053A �24.936B 1(1) 1(0)

lnPrecip �7.668 �12.74B �9.874A �32.864B 1(1) 1(0)

lnSunlight �9.612 �8.097B �7.826 �38.326B 1(1) 1(1)

lnWind �5.331A �7.166B �8.667 �27.942B 1(1) 1(1)

A5% level of significance.
B10% level of significance.

Table 2. Selection criteria of lag order of variables for the autoregressive distributed lag (ARDL) approach

Log L, log likelihood; LR, log ratio statistic (each test at 5% level); FPE, final prediction error; AIC, Akaike information criterion;

SBC, Schwarz Bayesian criterion; HQ, Hannan–Quinn information criterion

Lag Log L LR FPE AIC SBC HQ

0 138.86 NA 8.01� 1011 �9.11 �8.91 �4.11

1 123.92 270.51 1.31� 1011A �16.14 �14.64A �21.71A

2 119.50 67.25 6.22� 1011 �15.21 �14.11 �21.27

3 104.54 93.09A 8.1� 1011 �18.22A �17.41 �21.04

AIndicates lag order selected by the criterion.

Table 3. Results of the Wald test of cointegration following Pesaran et al. (2001)

F statistic Degrees of freedom Critical value Lower bound Upper bound

5.11 (7,37) 5% 3.14 4.19

10% 2.76 4.65

Table 4. Estimated long-run coefficients for the effect of climate variables on grassland area burned from 2001 to 2014 using an

autoregressive distributed lag (ARDL) model

ARDL (1,1,1,1,1,0,1) was selected based on the Schwarz Bayesian criterion. The dependent variable was ln (grassland area burned) with 564

observations used for estimation from 2001 to 2014

Regressor Coefficient s.e. T ratio [Probability]

lnWind 1.045A 0.267 3.902[0.001]

lnTmax 1.977A 0.532 3.695[0.001]

lnTmin 0.988 0.983 0.985[0.327]

lnRel. humidity 0.387 0.544 0.711[0.479]

lnPrecip �8.669 8.758 0.989[0.325]

lnSunlight 1.977A 0.533 3.695[0.001]

LM version F version

Diagnostic tests Probability Chi-square value (P value) Probability Chi-square value (P value)

Serial correlation 3.421 (0.154) 1.004 (0.371)

Functional form Ramsey RESET test 2.131 (0.121) 1.418 (0.152)

Normality 0.761 (0.681) Not applicable

Heteroscedasticity 5.649 (0.987) 0.281 (0.971)

A5% significance level.
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recovery to the stationary equilibrium. Similarly, a 1% change in
average maximum temperature and sunlight are expected to

produce a 1.98% change in area burned.
The reliability of the long-run results depends on an accurate

specification of the ARDL model that meets all assumptions of

this method. We performed several tests to validate the model.
First, we checked the functional form of the model by applying
Ramsey’s RESET test (Ramsey 1969). The results demonstrate

the appropriateness of the functional form of the model both in
the linear model (LM) version and F-version of diagnostic
checks. We also performed Durbin–Watson tests, which indi-
cated no first-order serial correlation (P¼ 0.154). Diagnostics

also revealed no heteroscedasticity (P¼ 0.987). In addition,
model residuals were shown to follow a normal distribution.
Tests results are presented in the lower part of Table 4.

ARDL error correction model

Short-run coefficients from the ECM are displayed in Table 5. A
1% increase in sunlight (which can be interpreted as fires

occurring closer to 21 June, the period of maximum sunlight)
was associated with a 0.27% increase in area burned. A 1%
increase in wind speed was associated with a 0.13% increase in

area burned. A 1% change in relative humidity was associated
with a 0.18% change in area burned. The lagged ECM term is
negative as expected and statistically significant, implying that
60% of changes in grassland area burned were explained by

short-run deviations from the long-run equilibrium. The rela-
tionship between area burned and different climate variables is
shown in Fig. 5.

To check the stability of the ECM, we incorporated CUSUM
and CUSUMSQ tests. The results of the tests are presented in
graphical form in Fig. 6. These plots demonstrate that the

CUSUM and CUSUMSQ lines are within the critical band of
5% significance level over time, which confirms the stability of
the model.

Correlation analysis (shown in Table 6) demonstrates
that simple models of grassland burned area produced more
significant results when dividing the study period (2010–14)
into three parts, 2001 to 2005, 2006 to 2010 and 2011 to 2014.

Interestingly, we found that significance of some climate
variables changed over these three periods. For example,

during 2011 to 2014 sunlight was highly correlated with
the area burned, but over the remaining periods, it was not.

Table 5. Error correction representation for the autoregressive distributed lag (ARDL) model

ARDL (1,1,1,1,1,0,1) was selected based on the Schwarz Bayesian criterion. The dependent variable was ln (grassland area burned)with 564 observations over

the period 2001 to 2014

Regressor Coefficient s.e. T ratio [Probability]

D ln Sunlight 0.268A 0.051 4.103[0.001]

D ln Tmax 0.008 0.013 0.121[0.542]

D ln Tmin 0.051 0.031 1.681[0.104]

D ln Rel.humidity 0.189A 0.087 2.157[0.033]

D ln Precip 0.001 0.018 0.421[0.946]

D ln Wind 0.127A 0.046 2.744[0.001]

ECM (-1) �0.601A 0.124 �4.81[0.000]

R2 0.783 Mean dependent variable 0.078

Adjusted R2 0.714 s.d. dependent variable 0.007

s.e. of regression 0.065 Akaike information criterion �2.511

Sum squared residuals 0.131 Schwarz Bayesian criterion �2.233

Durbin–Watson-statistic 2.082 F statistic 33.721 [0.001]

A5% level of significance.
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2001 and 2014 in Xilingol League, China. Area burned is in red and
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axis. Vertical grey lines divide 2001–14 into three time periods (see text).
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The significance of precipitation also varied during different
time periods.

Discussion

Time series climate data with different temporal properties

present several challenges for researchers. In the case of the
present study, some climate time series data used to explain
grassland area burned were stationary, whereas other data were

stationary after differencing. ADRL bound testing methodology
is well suited for these mixed time series orders. In addition,
given that no variable had integration order larger than 1, and that

cointegration in a single equation including the response grass-
land burned area was proved, it was possible to reparametrise the
model as an ECM.With this type of model, relevant parameters
can be estimated in a unique methodological framework. In

particular, the elasticities (long-run coefficients), the short-run
dynamics and the tendency of the series to recover the long-run
stationary level explain the relevant information about the

relations between the climate covariables and the response.
Absent cointegration among the grassland area burned and

climate variables, regression analysis would have resulted in

spurious relations with no reliable interpretation. Regression
analysis of climate–fire relationships is only appropriate with
integrated time series when there exists a linear combination of
the variables at a level (same time) that behaves as a stationary

process. Cointegration matches the order of non-stationarity of
different variables in a form that combined with a specific linear
equation produces a new predictive series. In addition, the same

coefficients of this combination represent the long-run equilib-
rium relations that give important information about the effects
on the response variable.

ARDL analysis revealed that maximum temperature is the
most important variable affecting grassland fires in Xilingol
(Table 4), a finding consistent with other studies in northern

China and worldwide that show a relationship between higher
temperatures and increased fire activity (Kobayashi et al. 1994;
Su and Liu 2004; Hardy 2005; Kaloudis et al. 2005; Zhijun et al.

2009; Chen et al. 2008). Guo et al. (2016) found that as the
temperature increased, the amount of boreal forest burned in
China increased, even when increased temperatures were
accompanied by higher than normal precipitation. Wind and

sunlight also explain significant long-term changes in area
burned.

Climate influences on grassland area burned in the eastern

Eurasian steppe may vary given the temporal scale examined.
Liu et al. (2017) analysed climate influences on daily fire
progression in Hulun Buir, a region of the Inner Mongolia

Autonomous Area north-east of Xilingol. They found positive
correlations between grassland area burned and higher temper-
ature, wind speed and sunlight, and negative correlations with
precipitation and relative humidity. At the monthly and annual

2002
�12

0

12

2005

(a) (b)

2008 2011 2014 2002
�15

0

1.5

2005 2008 2011 2014

Fig. 6. Plots of the cumulative sum of recursive residuals for the autoregressive distributed lag (ARDL)

model for short run (a), and long run (b) showing model stability. Straight lines represent the 95th

percentile confidence intervals.

Table 6. Correlation between grassland area burned and climatic variables from 2001 to 2014

Tmax, monthly average maximum temperature; Tmin, monthly average minimum temperature; Precip, monthly precipitation;

Rel. humidity, monthly average relative humidity;Wind, monthly average wind speed; Sunlight, monthly average sunlight. The top

statistic in each cell is Pearson’s r and the bottom statistic is probability

Time period Tmax Tmin Precip Rel. humidity Wind Sunlight

2001–05 0.718 0.011 0.036 0.031 0.461 0.016

0.001 0.311 0.189 0.303 0.001 0.301

2006–10 0.699 �0.108 0.041 0.004 0.791 0.044

0.001 0.186 0.911 0.541 0.001 0.219

2011–14 0.598 0.019 �0.003 0.008 0.684 0.999

0.001 0.416 0.727 0.941 0.001 0.001
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time steps analysed in the present study, we found precipitation
to be less influential on fire extent. But our study and the
findings of Liu et al. suggest that temperature exerts a powerful

influence on fire behaviour at every spatial and temporal scale
examined to date.

Directional temperature increases are likely to significantly

increase winter temperatures relative to summer temperatures,
and warmer winter and spring temperatures are likely to extend
fire seasons (Westerling et al. 2006;Deser et al. 2012). Increases

in area burned in Xilingol in May through October were
associated with higher temperatures, but there were weak
correlations between climate signals and area burned in Febru-
ary, March and April, suggesting that a threshold for increased

winter and early spring fire activity in the eastern Eurasian
steppe has not yet been reached.

Previous research in China has not incorporated wind into

fire models (Yang et al. 2008; Zhang et al. 2010; Li et al. 2017).
Wind played a key role in increasing grassland area burned in
Xilingol, similarly to results from other regions (Moritz et al.

2010; Rolinski et al. 2016; Keeley and Syphard 2017). Higher
wind speeds in the early season (e.g. February, R2¼ 0.018,
P. 0.012) can outweigh the effect of low temperatures. From

2001 to 2014, there were four monthly peaks in wind speed
(May, August, September andOctober), with the highest peak in
May.We found that the number of extreme events that occurred
in 2003, 2004 and 2014 was associated with higher area burned

in the northern regions (R2¼ 0.810, P, 0.002).
Climate change and human factors are likely to continue to

transform grasslands in northern China. Climate projections for

north-eastern China predict higher temperatures along with
lower precipitation and relative humidity Niu and Zhai (2012).
Liu et al. (2012) also indicated that the expected change in

population density is correlated with temperature as well as the
change in precipitation. However, the effects of altered human
ignitions cannot be easily predicted (Guo et al. 2016). Given the
natural range of variation in this region, neither precipitation,

relative humidity nor minimum temperature affected grassland
area burned. But wind speed was a key factor in grassland area
burned in northern areas, and theARDLmethods identified both

long-term and short-term sensitivities.

Conclusion

Both climate change and human factors are likely to continue to
transform grasslands in northern China. Climate projections for

north-eastern China include higher temperatures along with
lower precipitation and relative humidity (Niu and Zhai 2012).
Projected changes in the wind regime are as yet unknown.
Increases in population density are likely to occur in conjunction

with increasing temperature as well as changes in precipitation
patterns (Liu et al. 2012). However, the effects of altered human
ignitions cannot be easily predicted (Guo et al. 2016).

The ARDLmethod identified both long-term and short-term
sensitivities, showing that it can be a valuable tool in investigat-
ing trends in area burned, even in the presence of high variability

and short periods of climatological data. In particular, the
present study found that prevailing winds were an important
determinant of area burned and also suggests that the wind
regime may not be stationary.
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