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Abstract. Interagency Hotshot Crews (IHCs) are a crucial firefighting suppression resource in the United States. These
crews travel substantial distances each year and work long and arduous assignments that can cause accumulated fatigue.

Current dispatching practices for these crews are supposed to send the closest resource while adhering to existing fatigue-
management policies. In this research, we designed a simulation process that repeatedly implements an optimisation
model to assign crews to suppression requests. This study examines the potential effects of using an optimisation approach

to shorten seasonal crew travel distances and mitigate fatigue. We also examine the potential benefits of coordinating
crew-dispatch decisions to meet multiple requests. Results indicate there is substantial room for improvement in reducing
travel distances while still balancing crew fatigue; coordinating crew dispatching for multiple requests can increase the

assignment efficiency, particularly when both fatigue mitigation and travel distances are jointly optimised. This research
indicates implementing an optimisation model for dispatching IHCs is promising.
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Introduction

Dispatching wildland-fire-suppression resources in the United

States is an important and complex task, particularly during
periods of high fire activity. The existing dispatch system in the
US is a complex web of disparate local, regional and national

systems and resources – including people, crews, equipment,
aircraft and supplies – that respond to demand across a range of
jurisdictions. Certain fire-suppression resources available for

national-level response are used for large fire-suppression needs
and supplement resources in areas of the country experiencing
extreme fire activity. The main goal of dispatching these
resources is to efficiently send them to where they are needed

most. However, issues such as minimising travel distance and
mitigating fatigue can complicate dispatching efforts. In addi-
tion, during times of elevated resource scarcity, when there are

not enough resources to respond to all requests from fire man-
agers, prioritising assignments across fires plays a role in the
dispatching decision process.

Here we focus on the dispatching of Type 1 Interagency
Hotshot Crews (IHCs). ‘Type 1’ crews are the most highly

trained firefighting crews. In a recent survey of US Forest
Service fire managers, the field of respondents identified Type

1 crews as the single most important resource in both direct and
indirect attack efforts; most respondents also identified Type 1
crews as scarce (Stonesifer et al. 2017). IHCs are a subset of

these crews that are specifically designated as national resources
and are governed by interagency standards (NIFC 2017a). With
between 105 and 120 teams operating each summer, these

highly trained crews respond to a high level of national-scale
demand (NIFC 2016). Each crew comprises 18–22 firefighters
based out of a single location. These crews travel around the
country together, typically travelling in two to four ‘crew

buggies’ that are equipped with most of the equipment they
need. IHCs are highly sought after by the Incident Management
Teams that manage large fires, and each year some IHC requests

go unfilled due to limited supply.
Owing to high demand and limited supply, IHCs log an

extensive number of work hours each season as they move

around the country responding to requests during a fire season;
many of those hours involve highly strenuous and mentally
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taxing activities, often in intense heat. Cuddy and Ruby (2011)
describe how the combination of fatigue and heat can lead to
elevated likelihood of heat exhaustion, in spite of increased

levels of hydration. In a review of related literature, Aisbett et al.
(2012) highlight that sleep restriction, heat and smoke affect
physical and mental performance of fire responders, which

places them at increased risk in a demanding work environment.
Another important issue for IHCs is managing accumulated
fatigue. Although fatigue from a typical single shift of IHCwork

can be mitigated through adequate rest and recovery, serious
physical and mental health impacts can be attributed to accumu-
lated or chronic fatigue, resulting from an extended period of
physical or mental taxation combined with inadequate recovery

periods (Missoula Technology and Development Center
(MTDC) 2002). The MTDC found that chronic fatigue may
perpetuate risk factors because fatigued workers may behave

carelessly, tolerate greater errors or become inattentive. These
are concerns for fire responders both working on the fireline and
while in transit.

Policies do exist tomitigate both short-term and accumulated
fatigue. For example, the 2-to-1 work-to-rest ratio is an impor-
tant policy aimed at reducing the impacts of short-term fatigue.

Policy dictates that personnel are provided a minimum of 1 h of
sleep or rest for every 2 h of work each day, and that shifts
exceeding 16 h should be rare (NWCG 2016). Another primary
policy aimed at mitigating the effects of fatigue is the ‘14-day

rule’ (NIFC 2017a); fire personnel may work for up to 14 days,
but then must have at least a 2-day break. Certain exceptions to
this are allowed, which may result in fire responders working up

to 21 continuous days in unusual circumstances. Some regions
of the country do implement ‘rotations’ for out-of-region assign-
ments, which prioritise fire responders leaving on out-of-region

assignments on a rotating basis (e.g. Rocky Mountain Coordi-
natingGroup 2017). If an out-of-region assignment occurs while
a crew is at the top of the rotation, then that crew is sent on that
assignment regardless of distance to the incident. Although this

may help mitigate fatigue, it may also contribute to issues
related to excessive travel. National dispatch protocol currently
relies chiefly upon the 14-day rule and regional rotations to

account for fatigue in dispatching decisions, with some effect
from the 2-to-1 work-to-rest guidelines affecting short-term
resource availability. Other considerations specifically aimed

at mitigating accumulated fatigue are not currently part of
official national-dispatching protocol.

IHCs travel significant distances; in 2016, IHCs drove nearly

5.2 � 106 miles (,8.4 � 106 km) (L. Money, pers. comm.,
2017). IHCs, likemany other firefighting crews, tend to prefer to
drive to incidents. Because they are highly self-sufficient, IHCs
generally bring all the equipment and supplies they need to each

incident in their crew carriers (also called ‘buggies’ or ‘crum-
mies’) so that they are ready to quickly perform a variety of fire-
suppression tasks, and also so that they are able to support their

own needs while camped out on the fire line.
The written policies guiding the dispatching of IHCs indicate

that they should be dispatched according to the ‘closest forces

and total mobility concepts’ (NIFC 2017b), i.e. the closest
resource should be dispatched provided that this does not hinder
the capacity to ‘move, position, and utilise established forces to
meet existing and anticipated fire protection needs nationwide’

(NWCG 2018). Effectively implementing this policy, however,
is a multiagency challenge, and different agencies and geo-
graphic regions have their own internal policies and procedures

that complicate efficiency in dispatching. TheUSForest Service
recently included all employees involved in fire-suppression
activities in a series of ‘Life First’ safety-engagement sessions

(Tidwell 2016). Through this, fire responders and managers
noted that excessive driving occurs more frequently than neces-
sary, indicating that current dispatching practices may not be

following the ‘closest resource’ policy. This is concerning for
several reasons. First, any time fire responders are on the road
they are exposed to travel hazards. Although the risk associated
with driving may seem small, millions of miles add up to

significant exposure; 17.6% of wildland fire response fatalities
reported by NIFC from 2006 to 2016 were associated with
vehicle accidents (NIFC 2017c). Second, travel is expensive,

as it includes costs from vehicle use, salaries for time on
the road, hotels and meals. Third, if crews are spending their
time on the road, they are not spending time engaged in fire-

suppression activities, potentially leading to missed suppression
opportunities.

IHCs are designated as national resources, which means that

the National Interagency Coordination Center (NICC) controls
dispatch decisions for IHCs on assignment out of their home
region. Further, during times of highest suppression resource
demand (National Preparedness Levels 4 and 5), the National

Multi-Agency Coordination (NMAC) group is formed at NICC
to exert full control over all national resource assignments,
including IHCs (NICC 2017a, chapter 2). NMAC decisions are

informed through a variety of decision-support tools that
project such things as forecasted fire-weather and associated
potential fire behaviour; however, to our knowledge, no formal

decision-support system exists to facilitate efficient resource
assignments.

As there are a relatively small number of IHCs in comparison
with other wildland firefighting resources and because of their

strategic importance and high demand, these crews provide a
test case to examine potential impacts related to implementation
of specific dispatching policies. Many of the relevant past

studies have focussed on seasonal suppression resource dis-
patching for standard initial response needs (e.g. Haight and
Fried 2007; Ntaimo et al. 2012; Lee et al. 2013) at a scale of a

single state or national forest. Other studies have focussed on
optimally assigning local wildland fire suppression resources to
fires for initial response needs; these models used fire charac-

teristics, resource effectiveness characteristics, and resource
location to dynamically build an initial response resource
package for each fire (Wiitala 1999; Ntaimo et al. 2013; Wei
et al. 2015a, 2015b). Wei et al. (2017) tested a mixed-integer

program (MIP) model to study Colorado’s fire crew and engine
movements between dispatch zones for four fire seasons. None
of these past studies have focussed specifically on Type 1 IHCs

or suppression-resource dispatching at the national scale, gaps
that we attempt to fill here.

In light of the dispatch challenges for IHCs and the level of

unnecessary-driving exposure faced by these fire responders, we
built an optimisation model that assigns IHCs to requests while
balancing travel and fatigue. A seasonal simulation program
uses the optimisation model to test the effects of differing
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dispatch objectives. With this work we aim to explore the
potential gains fromdeveloping an optimisationmodel to reduce
seasonal IHC driving distance and promote balanced workloads

while meeting the seasonal suppression demand. Although the
optimisation model we developed is not complex, running this
model based on historical data through seasonal simulations

provides insight into the effects of different policies. Feedback
from fire responders indicates that a simple model is more likely
to be operationally adopted.

In our model, travel distance is calculated from the crew’s
location to the fire incident according toGoogle Earth’s national
atlas road-network layer. Accumulated fatigue is included in the
model by calculating each crew’s total work hours from the

preceding 21 days. Using historical data, we run the model to
simulate how requests might have been filled over a fire season
given different policy preferences; these simulated fire seasons

allow us to examine the effect of differing policies on travel
distance, trade-offs between travel distance and mitigating
fatigue, and the benefits of coordinating crew dispatching across

multiple requests.

Methods

Integer programming model formulation

During periods of low fire activity, crews are generally dis-
patched as requests come in. However, as fire activity increases
and crews become scarce, requests may be held and prioritised
by the Regional or NMAC groups and then filled simulta-

neously once or twice per day. Theoretically, holding requests
and filling them simultaneously should increase overall effi-
ciency because dispatching has the opportunity to coordinate

the assignments of multiple crews to meet the demands for
multiple incidents. The trade-off is a longer response time
between a request submission and the assignment of a crew to

that request. To reflect the possibility of holding requests and
to test if such holding of requests increases efficiency of
assignments, we assume each fire day can be divided into a

sequence of ‘dispatching coordination time windows’
(DCTWs) varying from 1 min to 24 h. IHC requests in each
DCTW are tallied using historical incident and dispatch data.
Given the requests for crews submitted within each DCTW, we

built an integer programming model to optimise the crew
assignments to minimise total travel distances and incentivise
choosing crews with a smaller workload from the preceding

21 days. This assignment model is run sequentially across
DCTWs for a fire season.

The accumulated crew workload from the preceding 21 days

is a proxy for accumulated fatigue that is included in the
objective function to allow us to examine trade-offs between
travel time and fatigue; incentivising the use of crews with less
work in the recent past should distribute work more evenly

between crews and mitigate fatigue among crews. We chose to
use 21 days to match the longest assignment time possible based
upon the 14-day rule. We did test other lengths of time (i.e. 14

days, 30 days and season-to-date) and found the implications of
themodel results to bemostly insensitive to this parameter, even
though individual assignments did differ. Only the 21-day

results are presented here for clarity and brevity; the other
results are available from the authors on request.

The mathematical formulation of the optimisation model is
below. The set of decision variables used in the optimisation
model isFc,i,t, which are binary variables used to track whether a

crew c is dispatched to fill request i during a DCTW time t.
Fc,i,t ¼ 1 means the crew is dispatched to fill the request;
otherwise Fc,i,t ¼ 0.

A set of parameters will be exogenously determined before
running the integer program (IP) model at each DCTW t. They
include dc,i,t, distance from the current location of crew c to the

incident associated with request i (or a function of distance to
reflect travel time delay before crew c reaches incident i) in
DCTW t; hc,t, hours crew c has worked in the 21 days before
DCTW t; w, manager’s weight (preference) for a balanced

workload across crews as compared with travel distance;
ac,i,t ¼ 1 if crew c is available for assignment to request i in
DCTW t, 0 otherwise. This parameter is request-specific; for

some DCTWs we find in preprocessing that a crew may be
available to go to one request but not another (for example, if a
crew is prepositioned and therefore would not bemade available

for travel to assignments outside of some predefined regions).
At each DCTW t the following IP model will be run to

optimise the dispatching of available crews to the requests that

occurred within the DCTW.

Min Z ¼
X

i

X

c

dc;i;tFc;i;t þ whc;tFc;i;t

� � ð1Þ

S:T:Fc;i;t � ac;i;t8c; i ð2Þ
X

c

Fc;i;t ¼ 1 8i ð3Þ

X

i

Fc;i;t � 18c ð4Þ

The objective function in Eqn 1 includes terms to minimise the

distance a crew travels (dc,i,tFc,i,t; further distances correspond to
larger penalties) and to incentivise using crews with fewer hours
of work in the preceding 21 days (whc,tFc,i,t). Constraint 2
ensures crews are only sent to requests if they are available for

dispatch to that request. Constraint 3 requires one crew be sent to
each request. Constraint 4 ensures that each crew can only be
sent on a single assignment.

Seasonal simulation model

The integer programing model is embedded in a seasonal sim-
ulationmodel that steps sequentially through all theDCTWs in a

fire season. Fig. 1 shows how the simulation is structured. We
test varying the length of DCTW in which crew dispatch actions
to incidents are simultaneously coordinated and optimised. For

each set of requests the program:

1. Retrieves each request’s information; specifically, the date

of the request and location of the incident.
2. Determines which crews are available and their location (e.g.

if they are on season, available and not assigned to another

incident or if they are assigned to a preposition request).
3. Calculates travel distance between each crew and the inci-

dent using the Google road-network layer.
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4. Calculates the total hours each crew worked over the
preceding 21 days.

5. Runs the dispatch optimisationmodel and records themodel-
selected crew that fills each request.

6. Updates crew availability information based upon filled

requests.

The simulation tracks the seasonal travel distances, the hours

of work, the total cost of travel and the potential lives lost to
travel for each crew (these calculations are discussed in more
detail below). We can then compare the travel costs and crew

work times of the simulated seasons with optimised assignments
to the historical travel costs and work times (estimating costs
and times from actual assignments using ourmodel parameters).
In addition, we can also examine seasonal workload-to-travel

ratios for individual crews to identify spatial and temporal
patterns.

Historical request, assignment and availability data used
for parameterisation

To parameterise the simulation model, we used requests,
assignments and crew availability records from the Resource

Ordering and Status System (ROSS) dispatch program (all IHC
requests theoretically go through ROSS). Other studies have
shown ROSS to be a valuable source of information for exam-

ining dispatching and assignments for fire responders and
equipment (e.g. Calkin et al. 2014; Belval et al. 2017; Lyon et al.
2017). We only examined filled requests for IHCs; this model is

notmeant to be used to prioritisewhich requests should be filled,
but rather to fill those already determined to be a priority.
Although California has many crews that are qualified as Type 1

crews, several of those crews are not qualified specifically as
IHCs; thus, we did not include them in the model, nor did we
include the requests that they filled. Some crews were qualified
as Type 1 IHCs in some of the years but not others; if they were

not qualified for a certain year, they were listed as unavailable
for that year. Most IHCs are seasonally employed and are
available during the active fire season. Therefore, we only

examined requests from 2013 to 2015 that occurred between 1
April and 1 November, a period of time that has historically

encompassed the primary fire seasons that tend to occur in each
region of the country, and when most seasonal suppression

resources and firefighting contracts are on line. We were also
able to use the archived crew status data to determine when their
seasons started, when their seasons ended, and if there were any

periods of extended unavailability during the season.
The ROSS dataset, although a good record of the crews’

assignments, is missing several pieces of information needed by

the model. For example, crews can move from one incident
directly to another, or they can go from their home base to an
incident and then directly back to their home base. The distinc-
tion between those two different crew travel paths is not always

indicated in ROSS records. We adopt a heuristic to distinguish
between the two types of travel. We assume if a crew’s most
recent assignment is more than 2 days ago, the crew returned to

their home base; otherwise, we assume that the crew was sent
directly from incident to incident. This heuristic is consistent
with current practice (L. Money, pers. comm., 2017) and allows

us to compare travel distances between historical assignments
and simulated assignments from the model runs. The distance
from each crew’s location to each incident was calculated using
an adapted version of Dijkstra’s algorithm (Bertsimas and

Tsitsiklis 1997) based on Google Earth’s national atlas road-
network layer. This algorithm may be biased towards over-
estimating travel distances, particularly for short distances,

because of a requirement that resources always travel by a
highway. Thus, we also calculated the travel distance ‘as-the-
crow-flies’ using theHaversine formula (Sinnott 1984).We then

ran the model using both sets of distances to see what the effect
of the distance calculation was on the final travel distances and
costs. As expected, the Haversine distances gave smaller total

distances and costs. However, both of the sets of distances
showed the same trends. We present the results using Dijkstra’s
algorithm in this study as it better reflects driving distances, but
results from the other runs are available from the authors upon

request.
Another important piece of data not recorded in ROSS is the

crew shift length; this often differs from the assignment length,

as crews do not work 24 h per day on multi-day assignments;
rather, they work assigned shifts that may last from 8 to 16 h and

Examine seasonal
statistics to examine
possible outcomes

of optimizing
decisions using

different priorities

Historical decisions on
which crew was assigned

(ROSS)

Assignment length
(ROSS)

Predicted fire activity
(Predictive Services

products and models)

Current fire activity
(ROSS and SIT)

Manager priorities

Incident location (ROSS)

Decision: which crew
should fill request(s)

No

Season
ends?

Yes

Crews: availability,
location, days lest before 2
days off, and workload to

date(ROSS)

Dispatch module:
determines “best”
crew with which to
fill the request(s)

Advance to
next request/day

with updated
information

Simulation module:
update both

historical and
dispatch-model

generated season-
to-date statistics
including crew

locations,
availability,

workload-to-date,
and days left

Fig. 1. A visual outline of the simulation program.
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are off for rest at least 8 h each day (NIFC 2017a). Although
assignment length is available fromROSS, shift length is not. To

calculate the crews’ workload, we developed the following
heuristic after discussions with fire responders (L. Money, pers.
comm., 2017, and K. Mellott, pers. comm., 2015). If an assign-

ment lasted no longer than 1 day (i.e. the mobilisation date was
the same as the demobilisation date), we used the exact number
of hours between themobilisation time and demobilisation time.

If the assignment lasted longer than 1 day, a more complicated
heuristic was needed, and hours were calculated for each day in
the following manner. If the mobilisation time was after 1400

hours then the crew did not work the first day. If themobilisation
time was before 1400 hours then the crew worked 8 h the first
day. If the demobilisation time was before 1400 hours, then the
crew did not work at all on the last day of the assignment. If the

demobilisation time was after 1400 hours, then the crew worked
8 h the last day of the assignment. For the days between the first
and last day of assignment, we assumed crews worked 12 h per

day.
Preposition requests add an extra layer of complexity to the

analysis. Prepositioning requests appear in ROSSwhen a crew is

sent to an area expecting or experiencing a high level of ongoing
or anticipated future fire activity. Thus, the preposition places
the crew in an area where they are expected to be needed,
without assigning them to an actual fire incident. It is important

to include these requests because they can substantially affect
travel distances and crew availability. A preposition request is
filled in the model like any other request. Once a crew is

assigned to a preposition request, they become available only
for incidents within the same geographic coordination area
(GCA) as the preposition request. Fig. 2 shows the GCA

boundaries. If assigned to an incident during a preposition, the

distance the crew travelled is calculated from the preposition
location to the incident location.

Although the optimisation program uses travel distance as
one of the incentives to prioritise which crews to send, manage-
ment implications are more readily assessed in the potential cost

savings and in the potential expected lives saved by lessening
distances travelled. Thus, we calculated the average seasonal
cost and the expected number of lives lost per season. Dollar

costs included mileage assuming three vehicles per crew (L.
Money, pers. comm., 2017) at US$0.535 per vehicle mile (US
$0.332 per vehicle km) using the 2017 fiscal year General

Services Administration (GSA) mileage per diem rate (GSA
2017), and a base hourly salary rate for each of the 20 crew
members assuming 50 miles h�1 and no stops. Travel costs
associated with crew salary were calculated assuming an ‘aver-

age’ IHCA. We expect these estimates to be conservative as we
did not include per-diem costs, hotel costs, overtime and we
assumed that any distance over 2500 miles (,4023 km) would

be a flight with a fixed cost of $200 per crew member plus 8-h
salary. For statistical estimates on potential lives saved, we used
1.12 lives per 100 million vehicle-miles (,1.6 � 108 km)

travelled as per the National Highway Traffic Safety Adminis-
tration (NHTSA) 2016 report (NHTSA 2016). This is also likely
conservative, as each IHC vehicle will typically have more
people (usually 5–10 persons per vehicle) than the average

vehicle on the road. Aswith travel costs, any trip over 2500miles
(,4023 km) was assumed to be a flight and we assumed zero
lives lost associated with that trip, another conservative

estimate.
Our model does not have any constraints to force the assign-

ments to conform to the 14-day rule.We considered adding such

constraints. However, resources are often assigned to fires

Alaska

Northern Rockies
Northwest

Northern
California

Southern
California

Soutwest Southern

EasternGreat
Basin

Rocky
Mountain

N

Fig. 2. A map of the geographic coordination areas used in this paper to restrict crews’ availability based upon

preposition requests and to compare regional workload-to-travel distance ratios.

AThere are several sets of possible combinations of personnel that could create a Type 1 IHC; we used average salaries computed from the Office of Personnel

Management (OPM) salary schedule (OPM 2017) for two different possible configurations and then took the average of those configurations. More detail is

available from the authors upon request.
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without knowing how long the assignment will last. Because the
14-day rule is an important policy, a crew may be assigned to a
multiple-day assignment that is terminated exactlywhen they hit

14 days of work; i.e. the assignment length ends up being
tailored to match the crew’s availability. We were limited by
the historical assignment lengths and did not want to make
assumptions about which assignments might have been short-

ened (or lengthened) due to adherence to the 14-day rule. Thus,
we assumed that it is more realistic to allow for violations of the
14-day rule than to force the model to anticipate assignment

lengths, which allows for more flexibility in dispatching than
reducing crew availability artificially. To examine how well the
model assignments conform to the current 14-day dispatching

policy, the simulation model tracks the number of times an
assignment violates the 14-day rule; if a crew was sent to an
assignment that resulted in them working longer than 14 days

without a 2-day break, that assignment was counted as a single
violation. We also observed how many violations occurred in
the historical data as a baseline comparison.

We hypothesise that certain crews might have a particularly

high historical workload and also be heavily assigned in the
simulated seasons because of their proximity to the fires. In
addition, we wanted to explore the possibilities that some GCAs

might have crews with particularly high workloads for years in
which they are particularly busy. Thus, the simulation model
also tracks each crew’s workload-to-travel distance ratio for

each simulated season and for seasons using historical
assignments.

We used requests from 2013, 2014 and 2015 from ROSS,
only examining requests occurring during the fire season in the

US. Each model run consisted of filling the requests for a single
year with a specific workload weight and DCTW for simulta-
neously filling requests. We systematically varied the workload

weights, testing 10 weights between 0 and 1000 crew-miles per

crew-hour (resulting in testing weights of 0, 111, 222, 333, y
1000 crew-miles per crew-hour)B; 1 crew-hour would be the
equivalent of one crew working for 1 h and 1 crew-mile would

be the equivalent of one crew travelling 1 mile. A weight of 0
crew-miles per crew-hour indicates we are optimising only
travel distance and not considering prior workload; as the
weights increase we are placing a higher priority on sending

crews with lower prior workloads in comparison with minimis-
ing travel distance. We varied the length of the DCTW for each
year using DCTWs of 1min, 1 h, 4 h, 12 h and 24 h.We can then

compare the model-suggested national scale dispatching deci-
sions with the historically recorded assignment decisions across
each fire season using seasonal travel distances, costs and

potential lives lost. We examined the effects of fatigue mitiga-
tion by looking at how assignedworkloads are distributed across
crews.We also examined howwell themodel results conformed

to current fatigue mitigation policy by recording how often
crews were assigned to requests that violated the 14-day rule.
Lastly, we examined how historical crew usage patterns com-
pare with simulated usage patterns using workload-to-travel

ratios to see if any crews or geographic areas see particularly
high or low usage and to examine how the simulated usage
compares with usage during historical fire seasons.

Results

Fig. 3 shows the total distance travelled for all crews for each of

the runs with workload weights up to 600 crew-miles per crew-
hour. Regardless of which DCTW length is used, the trend is the
same; low values of weights on prior workload result in sig-

nificantly lower total crew travel distances. The model runs
show that seasonal travel distances with themost opportunity for
improvement occurred in 2015, which was also a more

demanding fire year than 2013 and 2014 (NICC 2017b) so this

BThe conversion rate from crew-miles per crew-hour to crew-km per crew- hour is 1.61. Thus, the weights used in crew-km per hour are 0, 178.6, 357.3, 535.9,

1609.3 crew-km per crew-hour.
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indicates that travel costs may be more receptive to improve-

ment in busier fire seasons. This could be because the dis-
patching decisions during a busy fire year are more complex.
Table 1 translates crew travel distances into costs and loss-of-

life potential.
Fig. 3 also shows the differences in simulated travel distances

for differing DCTW lengths. At low workload weights, the total

difference in cost between different DCTWs is nearly imper-
ceptible. However, at higherworkloadweights, holding requests
for longer timeframes can have a significant effect on travel
distances. At a lower workload weight, the travel distance is the

highest priority and the impact of DCTW is low. However, at a
higher workload weight, the travel distance is a lower priority.
Thus, when the DCTW is shorter, there is not much room for the

travel distance to be optimised; alternatively, longer DCTWs
provide the model with more opportunities to optimise travel
distance. Holding requests for a few hours to provide more

efficient dispatching may be reasonable when sending crews to
large fire or preposition assignments, although it would not
likely be reasonable when crews are dispatched to initial
response assignments when hours of delay may result in

increased probability that a fire will escape. Holding requests
for 24, 12, 4 and 1 h resulted in a maximum of 38, 25, 16 and 11
requests respectively being filled simultaneously. Filling

requests as they come in with a DCTW of 1 min resulted in a
maximum of nine requests in a single DCTW. Each of the
optimisation program runs was solved by CPLEX (IBM ILOG

CPLEX Optimization Studio, provided by IBM; https://www.
ibm.com/products/ilog-cplex-optimization-studio) in less than a
second on a Hewlett-Packard ZBook laptop running Windows

10 with 16 GB of RAM. Each yearly simulation ran in under
2 min on the same laptop.

Although IHCs can be used as initial response resources,
much of their travel occurs when they are travelling to ongoing

large fires. A difference of 1 or 2 h is unlikely to matter to the
large fire management team (although reducing overall drive
times is still valuable in reducing travel costs and risks to crews).

However, crews must not drive for more than 12 h day�1; after

12 h of driving significant additional costs are incurred as hotel

costs, additional per-diem costs and an overnight delay are
added to their travel. We used a heuristic (assuming a
64.4 km h�1 travel speed) to translate travel distances into travel

time and calculated the number of requests for which the crew
could arrive in less than 12 h. We found that using a larger
DCTW can reduce the number of trips that exceed 12 h (see

Fig. 4). However, if we want to use higher weights to balance
crew workloads, we would have to accept a substantially lower
number of trips with less than 12-h travel time (Fig. 4).

An example set of our results is in Fig. 5 which shows four of

the workload distributions across crews for model runs in 2013,
2014 and 2015 using a 4-h DCTW (Fig. 5).The columns of
graphs correspond to different simulation scenarios; the leftmost

column shows the historical workload distribution, the three
middle columns show the workload distribution if requests had
been filled using a workload weight of 0, 111 and 222 crew-

miles per crew-hour, from left to right respectively. The right-
most column shows the standard deviation of the workload
distributions corresponding to five tested workload weights
from 0 to 444; the horizontal dotted line shows the standard

deviation of workload according to the historical assignments.
When the workload weight is close to zero, the seasonal crew
workload is less balanced than historical. However, even at a

workloadweight as low as 111 theworkload is as balanced as the
historical assignments, and at 222 crew-miles per crew-hour the
workload is more evenly spread across crews than historical.

Looking back at Fig. 3 we can observe that at a workload weight
of 111 crew-miles per crew-hour (indicated by the vertical
dotted line) there is still significant room for improvement in

travel costs. Thus, these results indicate that when an optimisa-
tion model is used it is possible obtain a workload distribution
that is comparable to historical values while significantly
reducing travel distances.

The number of 14-day violations for each run and for
historical records are shown by year in Fig. 6. Increasing the
DCTW does not appear to have much of an effect on 14-day

violations. The graphs do show that fewer violations are

Table 1. Examples of specific model results for model runs using a 4-h dispatching coordination time window

Results include our calculated historical and simulated travel distances, costs, and potential lives at risk. Workload weights are measured in crew-miles per

crew-hour

Year Workload weight Total travel distance (1� 106 crew-miles; 1.6� 106 crew-km) Cost ($1� 106) Potential lives lost (lives per season)

2013 Historical 1.681 12.826 0.063

2013 0 1.103 8.417 0.041

2013 222 1.474 11.249 0.055

2013 444 1.623 12.220 0.060

2014 Historical 1.515 11.562 0.057

2014 0 0.870 6.641 0.033

2014 222 1.331 10.152 0.050

2014 444 1.466 11.186 0.055

2015 Historical 1.853 13.715 0.067

2015 0 1.025 7.821 0.038

2015 222 1.395 10.626 0.052

2015 444 1.626 12.271 0.060
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associated with higher workload weights, although the
decreasing number of 14-day violations is negligible above

the workload weight of 222 crew-miles per crew-hour. The
existence of some 14-day rule violations is not surprising, as
the model did not include any constraints to prevent them.
However, even without such constraints, the number of 14-day

rule violations is not substantially higher than historical for
workload weights above 222 and, in some cases, is even below
historical. The runs for 2013 always show higher than histori-

cal numbers of violations; the runs for 2014 and 2015 show
similar or lower than historical violations. This may be because
2013 was a lower fire activity year, thus fire managers could

limit 14-day rule violations, but since our model does not have
any explicit constraint or goal for 14-day rule violations, it did
not do the same.

The workload-to-travel ratios allow us to identify regions in

which crews travel disproportionally high and low distances
given their workloads. We are most interested in identifying
regions with crews that are travelling long distances to work

comparatively less (i.e. a low ratio; low travel efficiency), or
those that are travelling short distances and working more (i.e. a
high ratio; high travel efficiency). By comparing the average

ratio of historical crew workloads to crew travel distances
between GCAs (Table 2), we found that the historical work-
load-to-travel ratio averages correspond with historical region-

al-fire activity. For example, in 2013 the region with the highest
workload-to-travel distance ratio was Southern California
(OSCC), which was also the only region that experienced above
average acres burned (138% of their 10-year average) in the

same year (NICC 2017b). Similarly, in 2014, the only regions
to observe higher than average area burned were Northern
California (ONCC; 152% of their 10-year annual average) and

the Northwest (NWC; 214% of their 10-year annual average)
(NICC 2017b); both regions were in the top three regions with
the highest workload-to-travel ratio. These patterns often held in

the simulated fire seasons using our model as well, although the

workload-to-travel ratio variability between regions was mod-
erated in the simulation runs with higher weights on workload.

For example, in the 2014 simulated runs optimised with a 4-h
DCTW, crews fromONCCandNWCboth showhighworkload-
to-travel ratios for all runs when workload weight is less than
222 crew-miles per crew-hour. As the workload weight

increases, the workload-to-travel ratio decreased for both
regions and the discrepancy between regions decreases. These
changes reflect overall longer travel distances paired with more

highly balanced workloads between crews from different
regions.

Discussion and conclusion

The test cases in this research demonstrated some major
strengths of using an optimisation model for dispatching IHCs.
By running this model across multiple fire seasons and adhering

to consistent dispatching policies across regions, we found
overall reduced travel distance, better fatigue mitigation and
increased workload equity. The discrepancy between our esti-
mates on travel distance using historical data and the travel

distances produced by using the simulation and optimisation
model with low workload weights indicate that IHCs may not
have historically been dispatched by a strict ‘closest resource

first’ policy. Thus, if reducing travel distances is important to
policy makers, there is likely substantial room for improvement,
even while mitigating crew fatigue. Besides reducing travel

times, adopting a centralised dispatch organisation would likely
reduce local and regional control over IHCs, which is a signif-
icant change from current practices, particularly during quieter
times in the fire season.

The results also indicate that as crew fatigue becomes more
of a concern to managers, holding requests within a wider
DCTW and coordinating the dispatch for multiple assignments

can have substantial benefits. During times of significant fire
resource scarcity, this has been practiced, as IHC requests have
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been submitted throughout a day and have then been processed
by NMAC after they determined the highest priority assign-
ments (NICC 2017a). Therefore, our test results suggest that this

type of practice may have led to reductions in travel and fatigue;
however, the current IHC assignment process could become
more transparent and efficient with the support of structured
decision support models such as the one developed here.

Enhanced application of optimisation models could play an
important role in ensuring improved outcomes.

This model used the crews’ workload in the preceding 21

days to balance crew workload to mitigate fatigue, which also
helps ensure equal work opportunities among crews. Workload
equity is likely a concern for seasonal fire crew personnel who

may rely upon fire season income to provide the bulk of their
yearly earnings. The results from this study show that it is
possible to both reduce travel distance and equalise workload

between crews.
Of the years that we examined, 2015 had the highest levels of

fire activity (NICC 2017b), and it was also the year where our
simulated fire seasons showed the most improvement in reduc-

ing crew travel distance. Thus, using a centralised point of
dispatching and ensuring that the policy of ‘closest first’ is
followed may provide the largest gains in years when IHCs are

in particularly high demand. Such years of high demand are also
typically years with greater fire suppression expenditure; thus,
in such years, savings on travel distance and associated cost
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would be particularly important. In addition, mitigating fatigue
becomes increasingly important during busier fire seasons. We
may observe less adherence to the ‘closest-first’ policy during
busy years in part due to drawdown restrictions, which limit how

many IHCs are allowed to be outside their home region during
times of high regional preparedness levels. Such drawdown
constraints are intended to keep IHCs in areas of high

fire activity so as to be more responsive as fires emerge. Our
results do not directly address responsiveness, but if indeed
IHCs held for drawdown were providing a higher responsive-

ness due to the drawdown acting as a preposition, then we’d
expect to actually see shorter driving distances as the IHCwould
respond to emerging fires nearby. The increased room for

decreasing travel distance in our results during busy years
may indicate that the drawdown restrictions are not having their
intended effect.

When we examined historical average workload-to-travel

ratios by region, we found substantial variation between regions.
We would expect crews in regions that experienced higher fire
activity to have higher workload-to-travel ratios; such crews are

simply closer to many incidents and thus do not need to travel as
far. Thus, this variation is not inherently concerning. However,
we can also observe that we can achieve a similar distribution of

workload-to-travel ratios with substantially less travel using
workload weights of 200–400 crew-miles per crew-hour. In
addition, some of the simulated results using workload weights
between 200 and 400 crew-miles per crew-hour show substan-

tially less variation, with improved assignment equity between
crews. However, this equity comes at the cost of the crews
closest to the heavy fire activity travelling further and working

less. It is an open policy question of what balance of fatigue
mitigation and travel distance is appropriate.

Although the test cases in this study show that running the

current optimisation model through a fire season can substan-
tially benefit the dispatching process by reducing the total crew
travel distance and balancing crew workload, it can still be

enhanced to further improve the IHC dispatching efficiency. For
example, the current model dispatches IHCs only based on the
known requests from incidents; with better prediction of future
fire activity and resource demand, the model can be more

proactive by holding an IHC in a region expecting significant
fire activity and sending an IHC from a region less likely to have
significant fire activity. We expect research in predicting future

suppression resource demand could be easily integrated into our
current modelling system to improve nationwide IHC dispatch-
ing (see e.g. Preisler et al. 2016; Wei et al. 2017). In addition,

the model could be altered to identify particularly urgent
requests (i.e. with a closing ‘due date’) and send the closest
crews to those requests before filling other requests.

Using a centralised decision system for dispatching IHCs
would reduce local control of these resources and could be
unpopular as restrictions such as drawdown and out-of-area
crew rotations are common within regions (e.g. RMCG 2017).

The applications of such dispatch systems could initially identi-
fy and recommend crewswith the highest score (closest resource
with lowest weighted recent workload) to dispatch personnel,

which may facilitate adoption without the perceived restriction
of decision-maker control.

Future research using a modified version of this model might

examine the effect of local dispatch policies, such as drawdown
restrictions. Such research would be quite valuable to determine
the policy effects and help guide both local and national decision
makers. Further, the model and research presented in this paper

provide a basis for future work examining dispatch practices
related to other types of widely used firefighting resources, such
as wildland engines and other crews, as dispatching practices for

those resources differs from the IHCs.
This research did not address responsiveness in the classic

initial response fashion (i.e. looking to see if decreased travel

time allows for more requests for IHCs to be filled). IHCs are a
limited resource often serving ongoing large fires. During
periods of high fire activity nearly every crew is out on

0

0

100

200
Historical
1 min
1 hour
4 hours
12 hours
24 hours

Historical
1 min
1 hour
4 hours
12 hours
24 hours

300

0

100

200

300

400

500

600

500400300200100 600 0 500400300200100 600 0 500400300200100 600

Workload weight

2013 2014 2015

N
um

be
r 

14
-d

ay
 v

io
la

tio
ns

0

100

200

300

400

Historical
1 min
1 hour
4 hours
12 hours
24 hours

Fig. 6. The number of 14-day rule violations for historical seasons (horizontal flat line) and simulated seasons using dispatching coordination

time windows (DCTWs) of 1 min, 1 h, 4 h, 12 h and 2 h, with workload weights measured in crew-miles per crew-hour.

578 Int. J. Wildland Fire E. J. Belval et al.



assignment or on their required 2 days of rest. Decreasing

driving time is currently a primary concern in the US. The
decreased travel distance would likely increase the amount of
time that crews can be used on a fire and fatigue recovery.

The national systems of dispatch and resource allocation in
the US have not been widely studied, and are not consistently
guided by the best available science and models, instead

relying upon expert judgement. Modelling efforts introduced
here build on a growing body of research aimed at improving
the use and allocation of suppression resources across space

and time. In the interest of improved efficiency andminimising
risk associated with excessive travel and seasonal fatigue, a
more thorough understanding of the underlying dispatch
structures could be facilitated by in-depth development of

more advanced operations research models, which might be
implemented tomeet clear resource allocation objectives in the
future.
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