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Abstract. We collected field and remotely sensed data spanning 10 years after three 2003Montana wildfires to monitor
ecological change across multiple temporal and spatial scales. Multiple endmember spectral mixture analysis was used to
create post-fire maps of: char, soil, green (GV) and non-photosynthetic (NPV) vegetation from high-resolution 2003

hyperspectral (HS) and 2007QuickBird (QB) imagery, and fromLandsat 5 and 8 imagery collected on anniversary dates in
2002, 2003 (post fire), 2004, 2007 and 2013. Initial estimates of char and NPV from the HS images were significantly
correlated with their ground-measured counterparts (r ¼ 0.60 (P ¼ 0.03) and 0.68 (P¼ 0.01) respectively), whereas HS
GV and Landsat GV were correlated with canopy GV (r ¼ 0.75 and 0.70 (P ¼ 0.003) respectively). HS imagery had

stronger direct correlations with all classes of fine-scale ground data than Landsat and also had stronger predictive
correlations with 10-year canopy data (r¼ 0.65 (P¼ 0.02) to 0.84 (P¼ 0.0003)). There was less than 5% understorey GV
cover on the sites initially, but by 2013, it had increased to nearly 60% regardless of initial condition. The data suggest it

took twice as long for understorey GV and NPV to replace char and soil as primary ground cover components on the high-
burn-severity sites compared with other sites.

Additional keywords: char, hyperspectral remote sensing, multiple endmember spectral mixture analysis, QuickBird.

Received 17 February 2016, accepted 12 June 2017, published online 6 September 2017

Introduction

The potential of wildland fires to influence the cycle of carbon
dynamics and ecosystem composition is widely recognised
(Dale et al. 2001; Loehman et al. 2014; Rocca et al. 2014).
Remote sensing is themost suitablemethod formonitoring these

fire effects over extended spatial and temporal scales (Lentile
et al. 2006; Morgan et al. 2014). Characterising severity and
ecological condition of the post-fire environment (e.g. distance

to seed source, vegetation structure and composition, likelihood
of soil erosion) is important for forecasting future effects on
ecological systems (Lentile et al. 2006; Hayes and Robeson

2011). The majority of severity assessments focus on either the
immediate post-fire changes or effects in the year following the
fire, especially when severity products from the Monitoring

Trends in Burn Severity (MTBS) project are utilised (Cocke
et al. 2005; Lentile et al. 2006, 2009; Kolden et al. 2015).
Studies employing MTBS products are also spectrally and
spatially constrained; spectrally, they only employ two spectral

indices that have been widely critiqued (Roy et al. 2006; Kolden

et al. 2015; Smith et al. 2016), while spatially, they are limited to
data at the scale of Landsat pixels (30 m). In contrast, the post-fire
environment is heterogeneous, with considerable spatial vari-
ability even within comparable burned patches at the scale of a

Landsat pixel (Smith et al. 2005) that may or may not be captured
depending on the scale andmethod of post-fire assessment (Smith
and Hudak 2005; Holden et al. 2010; Kolden et al. 2012; Viedma

et al. 2012). Such spatial heterogeneity is common, given mixed-
severity fire regimes create a wide variation in fire effects that
manifest as a fine-scalemosaic of stand-replacing and surface fire

(Agee 1998; Arno et al. 2000). This variation is shaped by com-
plex landscapes, including topography, moisture gradients, and
the diversity and flammability of vegetation (Perry et al. 2011).

Vegetation response in the first post-fire year greatly depends
on the extent of the damage to plants and soil above and below
ground, which is a function of the severity of the fire and
the resilience of the affected ecosystem (Neary et al. 1999;
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Diaz-Delgado et al. 2003; Abella and Fornwalt 2015). The surge
of new vegetation growth in the first year may seem incongruent
with the initial burn severity classification (Lentile et al. 2007a)

due to a boost in plant-available nitrogen (Stephan et al. 2012)
and nutrients remaining in the ash layer (Neary et al. 1999); thus,
it is important to monitor vegetation and soil recovery char-

acteristics over time (Sankey et al. 2013; Berryman et al. 2014).
The resilience of the ecosystem to the fire disturbance depends
on specific conditions of the pre-fire environment such as

vegetation type and density, and forest health such as drought
or insect kill, taken into consideration with the scale and
intensity of effects of the fire on the vegetation and soil (Idris
et al. 2005; Schoennagel et al. 2008; Bowman et al. 2009; Perry

et al. 2011).
Mappable ground cover components of interest in the post-

fire environment are often green vegetation (GV), brown

(senesced or dead) non-photosynthetic vegetation (NPV),
charred material (char), ash and exposed mineral soil (Sá et al.
2003; Lewis et al. 2007; Smith et al. 2007a, 2007b; Eckmann

et al. 2008). Of particular interest immediately post fire are char
and ash, which are measurable biophysical variables that can be
scaled between fires, as well as between field and remotely

sensed images (Smith et al. 2005). The amount of char present
and its persistence through the first post-fire year have been
suggested as a suitable index of burn severity (Lentile et al.

2006; Quintano et al. 2013, 2017; Fernandez-Manso et al.

2016). Smith et al. (2007a, 2007b), Hudak et al. (2007) and
Lentile et al. (2009) collectively used linear spectral mixture
analysis to estimate the subpixel fraction of char to classify burn

severity in African savannas and in multiple north-western
United States forest ecosystems. Lentile et al. (2009) deter-
mined that char fraction outperformed dNBR (differenced

Normalized Burn Ratio), when calculated from 1-year post-fire
imagery, in predictingmany of the fieldmeasures at both canopy
and subcanopy scales. Hudak et al. (2007) observed in a study of
eight north-western Rocky Mountain fires that changes in

fractional vegetation and char cover either outperformed or
were not significantly different from common severity spectral
indices. Beyond linear spectral mixture analysis (SMA), several

studies have employed multiple endmember spectral mixture
analysis (MESMA) to monitor trajectories in post-fire recovery
following field assessments of severity (Quintano et al. 2013,

2017; Fernandez-Manso et al. 2016).
Monitoring ecosystem patterns and post-fire response over

years and decades has been conducted by employing temporal

series of remotely sensed datasets (e.g. Hicke et al. 2003),
predictive modelling (e.g. Kashian et al. 2006) and long-term
field data collections (e.g. Romme et al. 2011), although the
combination of these is uncommon. In the present study, we

assembled a unique suite of post-fire field and remotely sensed
data from three 2003 western Montana wildfires over 10 years.
The combination of these datasets gave us a comprehensive

view of changing soil and vegetation conditions in the burned
area, pre-fire through 10 years post fire. Collectively, these data
were used to assess whether any immediate field or remotely

sensed indicators could forecast recovery over longer time
periods and at a finer spatial resolution, building on related
studies (e.g. Smith et al. 2007a; Lentile et al. 2009). In the
present study, we focus on a definition of burn severity (Lentile

et al. 2006; Parsons et al. 2010) that describes the longer-term
effects of fires on vegetation and soils (Morgan et al. 2014).
Specifically, we define burn severity as the effects of the fire on

the ground surface, as measured by plant mortality and char
cover. Although post-fire ‘recovery’ can have many implica-
tions and definitions (Bartels et al. 2016), for the purposes of this

study, we concentrate on vegetation regrowth and change in
ground cover, particularly the reduction in char, over the 10-year
study period.

In this study, our objectives were to: (1) use data collected
immediately post fire to confirm which factor(s) were most
indicative of low, moderate and high burn severity; (2) evaluate
the utility of high- and moderate-resolution remotely sensed

imagery to discern post-fire char and other biophysical variables
on the ground; (3) assess the contribution of the fieldmeasures to
the degree and variability of burn severity and disturbance over a

decade; and (4) analyse ecological change over 10 years using
field data collected in 2013, and compare these data with the
remotely sensed imagery to determinewhether initial conditions

are indicative of longer-term response.

Materials and methods

Study landscapes

The three study landscapes ranged from dry to wet mixed-
conifer forest types in western Montana (Fig. 1) that were his-

torically burned by mixed-severity fires at a fire return interval
of ,80 years (Fischer and Bradley 1987). The driest landscape
sampled was 2854 ha burned by the Black Mountain 2

Fire (henceforth referred to as Black Mountain) (centroid lat-
itude and longitude: 4685002900N, 11481004100W; elevation:
1072–1743 m) on 8 August 2003. The Cooney Ridge Fire

(centroid latitude and longitude: 4684001000N, 11384902700W;
elevation: 1247–2167 m) also began on 8 August 2003 and
burned 8589 ha of generally moist mixed-conifer forest. The
third landscape containing the wettest mixed-conifer forest was

burned by the Wedge Canyon Fire (centroid latitude and long-
itude: 4885402200N, 11482401400W; elevation: 1141–2414 m) that
began on 18 July 2003 and burned 21519 ha.

Warm, dry sites at lower elevations throughout most of the
Black Mountain Fire and much of the Cooney Ridge Fire were
co-dominated by ponderosa pine (Pinus ponderosa Lawson and

C. Lawson) and Douglas-fir (Pseudotsuga menziesii [Mirb.]
Franco) in the Pseudotsuga menziesii habitat type series (Pfister
et al. 1977; Cooper et al. 1991). The higher-elevation forests of

the Wedge Canyon Fire on the western border of Glacier
National Park were characterised by the Abies lasiocarpa

habitat type series (Pfister et al. 1977; Cooper et al. 1991), with
subalpine fir (Abies lasiocarpa [Hook.] Nutt.), Engelmann

spruce (Picea englemannii Parry ex Englem.) and lodgepole
pine (Pinus contorta Douglas ex Loudon). Lodgepole pine and
western larch (Larix occidentalis Nutt.) also commonly

occurred at many sites across all three fires. The soils across
the BlackMountain andCooneyRidge Fireswere predominately
gravelly silt loams and gravelly loams, whereas the Wedge

Canyon Fire soils were sandy and silty glacial tills (USDA
Natural Resources Conservation Service (NRCS) Web Soil
Survey, http://websoilsurvey.nrcs.usda.gov/app; accessed 5
June 2017). Mean annual precipitation varied from 40 to
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130 cm (Pfister et al. 1977) across the sites, mainly as a function
of elevation. July is historically the warmest month at all sites

with average annual high temperatures of 28–308C and Decem-
ber is the coldest month with average annual low temperatures
of �11 to �78C (Montana Climate Office, years 1981–2010;
http://climate.umt.edu; accessed 5 June 2017).

Field data

Field data were collected in 2003 and in 2004 to document burn
severity and initial post-fire change. We assessed the function-

ality of mapping these components using airborne hyperspectral
(HS) imagery collected immediately post fire. Decadal field
data (collected in 2013) were used to evaluate changes in veg-

etative cover relative to pre-fire conditions. Anniversary
Landsat data were acquired in 2002, 2003, 2004, 2007 and 2013
to map initial pre- and post-fire conditions and to approximate a

trendline of vegetation response (the change in ground cover
components (understorey GV, NPV, soil and char) over time) on
the sites. High-resolution satellite QuickBird (QB) imagery

from 2007 was used as an additional midpoint approximation of
recovery between field data campaigns.

Post-fire soil and vegetation data were collected between 11
September and 22October 2003 at four sites onBlackMountain,

seven sites on Cooney Ridge and five sites at Wedge Canyon
(Table 1). These sites were sampled as soon as safety and
logistics allowed after the fires were officially out following

established post-fire protocol (Lentile et al. 2007b), and were
selected using the initial post-fire Burned Area Reflectance
Classification (BARC) map (RSAC 2005) as a guide, and

sample plots were then randomly located within areas burned
across a range of low, moderate and high burn severities (Hudak
et al. 2007) based on the predominant overstorey canopy
condition: live, green (low); scorched, brown (moderate); or

charred, black (high) (Table 2).

Each site was centred a random distance between 80 and
140m from the nearest access road, within a consistent stand and

burn severity condition. As described in more detail by Hudak
et al. (2007), sampling at each site was spatially nested,
consisting of nine 8 � 8-m plots (Fig. 1) with each plot
comprising 15 1� 1-m subplots, for a total of 135 subplots per

site. Plot centres were geolocated with a global positioning
system (GPS) and differentially corrected. Sites were revisited
from 12 to 15 July 2004 on the Black Mountain and Cooney

Ridge Fires, and 13 to 14 August 2004 on the Wedge Canyon
Fire. Field data were collected at only the site centre (A plot, 15
subplots per site). Five subplots per site were resampled 10 years

after the fire (6 to 14 August 2013): one each at the centre of the
A plots, and at theB,D, F andHplots resituated 30maway in the
same orthogonal directions as in 2003 (Fig. 1).

At the subplot scale, the percent cover of understorey GV,
rock, mineral soil, ash, litter and any large organic matter (logs,
branches or stumps) was ocularly estimated. The percentage
char, if any, of each ground cover component was also recorded.

The cover measures of ground materials were constrained to
sum to unity, whereas the charred fractions of the ground
materials were summed separately to get an aggregate estimate

of percentage char. At the plot scale, litter and duff depths were
measured, canopy closure was estimated using a convex spheri-
cal densiometer, canopy vegetation condition (% green, brown

or black) was estimated at one plot per site, and a digital photo
was taken for reference. To ensure consistency and repeatability
between field crews, sampling protocol was calibrated daily and
there was at least one common person on the field crew for each

of the three field campaigns.

Field spectra

Multiple endmember spectra of ash, soil, rock, GV, NPV and
charred NPVmaterials (Fig. 2) were collected in 2003 and 2004
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on cloud-free days within 2 h of solar noon within all burned
areas using an ASD Pro-FR field spectroradiometer1 (ASD
2002). Additional bright-target reference calibration spectrawere
acquired in a ,100-m2 area of highly reflective light-coloured

soil (such as a wide road intersection) on each fire. All field
spectra were collected following the methods in Lewis et al.

(2011), were compiled by fire and cover type, and are provided

online for public use (http://www.frames.gov/partner-sites/
assessing-burn-severity/spectral/; accessed 1 December 2016).

Airborne hyperspectral imagery

Airborne hyperspectral imagery was collected shortly after fires
were contained in the fall (autumn) of 2003 (Table 1). The Probe-
1 whisk-broom sensor was flown at 2100 m above ground level

and datawere collected along tracks 2.3 kmwide and up to 28 km
long fromone end of the fire perimeter to the other, corresponding
to a 512-pixel swathe width with an approximately 5 � 5-m
ground instantaneous field of view at nadir. Image acquisition

was between 1100 and 1300 hours local time to minimise shad-
owing; the solar zenith angle within 1 h of solar noon in the fall at
this latitudewas between 36 and 468 (458 and lower is desirable to

reduce shadowing). Thirteen of the sixteen field sites fell within

two flight lines each on the Black Mountain and Cooney Ridge
fires and one flight line on theWedge Canyon fire, whereas three
sites fell outside the airborne imagery.

Satellite multispectral imagery

Weused the Landsat ThematicMapper (TM)-based burn severity
dataset provided through the MTBS program (Eidenshink et al.

2007) to assign a burn severity class post-hoc to each site for

comparison with our initial classes. MTBS data provide a
standardised classification of unburned, low, moderate and high
severities for all large fires based on pre- and 1-year post-fire

dNBR data. We also acquired Landsat 5 images from years
2002–04 and 2007 and Landsat 8 images from 2013 that cor-
responded with post-fire anniversary dates (Table 1).

QuickBird-2 satellite imagery was acquired in the summer of
2007 (Table 1) over several large areas that encompassed all three
fires in our study. The QB satellite collected data over a 16.8-km
swath in five bands: a panchromatic band and four visible and

near-infrared bands (DigitalGlobe, Longmont, Colorado, USA).
QB imagery (2.4-mmultispectral; 0.65-m panchromatic at nadir)
allows fine-scale spatial discrimination of ground components in

the post-fire environment. Images at eachwildfire were delivered

1Trade names are provided for the benefit of the reader and do not imply endorsement by the USDA.

Table 1. Remotely sensed image characteristics and acquisition dates for each platform, fire and image

Imagery Platform Spectral bands

used (nm)

Resolution Image dates

(Landsat path/row) (nominal)

Probe-1 hyperspectral Fixed-wing aircraft 432–2498AB 5.0m after orthorectification 13, 14 Sept 03

Landsat 5 multispectral Satellite B1: 450–520 30m Black Mountain

B2: 520–600 3 Aug 02

Black Mountain: (41/27) B3: 630–690 25 Oct 03

B4: 760–900 25 Sept 04

Cooney Ridge: (40/28) B5:1550–1750 2 Sept 07

B6: 2080–2350 Cooney Ridge

Wedge Canyon: (41/26) 13 Sept 02

2 Oct 03

4 Oct 04

11 Sept 07

Wedge Canyon

20 Sept 02

25 Oct 03

25 Sept 04

16 Jul 07

Landsat 8 multispectral Satellite B2: 450–510 30m Black Mountain

B3: 530–590 4 Oct 13

(Same path/row as above) B4: 640–670 Cooney Ridge

B5: 850–880 11 Sept 13

B6:1570–1650 Wedge Canyon

B7: 2110–2290 20 Oct 13

QuickBird-2 multispectral Satellite B1: 450–520 2.6m after orthorectification Black Mountain

B2: 520–600 11 Jul 07

B3: 630–690 Cooney Ridge

B4: 760–900 19 Jul 07

Wedge Canyon

29 Aug 07

AExcluding 1340–1480 and 1810–1970 nm at Black Mountain and Cooney Ridge Fires.
BExcluding 1280–1480 and 1735–1995 nm at Wedge Canyon Fire.
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as multiple geotiff files that were combined into radiometrically
corrected and orthorectified image mosaics.

Processing methods

Image and field spectra processing steps are summarised in a

flowchart in Fig. 3.

Airborne image preprocessing

Before delivery, the airborne hyperspectral data were converted

to reflectance using FLAASH (Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes) (FLAASH Spectral Sciences,
Inc., Burlington, Massachusetts, USA) (Black Mountain and
Cooney Ridge Fires) or ACORN 4.0 (Atmospheric Correction

Now; AIG 2002) (Wedge Canyon Fire) by the image provider.
Atmospheric conditions were more favourable at the Wedge
Canyon Fire situated more than 200 km north of the other two

fires, where smokier conditions demanded different atmos-
pheric correction techniques. All reflectance data were further
refined with a Radiative Transfer Ground Calibration (RTGC)

(Clark et al. 2002). To ensure that all images were comparable,
reflectance data were also corrected using an Empirical Line
Calibration (ELC), which minimises atmospheric and illumi-

nation effects by standardising them across all bands in the
image (Richards and Jia 1999).Wavebands between 1340–1480
and 1810–1970 nm were eliminated from all images because of
atmospheric water absorption in these bands, and band 2512 nm

was removed for noise, leaving 119 bands for analysis. The
excluded water absorption ranges were slightly wider for the
Wedge Canyon imagery: 1280–1480 and 1735–1995 nm,

leaving 108 bands for analysis.
On-board GPS and inertial measurement unit geolocation

data, together with a 30-m digital elevationmodel, were used for

georeferencing the imagery. On examination, the georeferenced
images were distorted; therefore, we warped the imagery with a
high density of ground control points (60–130 per flightline,
proportional to area) via Delauney triangulation. Orthorectified

digital orthoquads (1-m)were used as base imagery, necessitating
resampling to 5-m resolution. No error statistics are reported for
Delauney triangulation; however, accuracy was thoroughly

checked between the warped images and the base images to
visually confirm that features (such as road intersections) easily
recognised on the ground and independently geolocated with a

resource-grade GPS (i.e. with differential correction) spatially
corresponded.

Multiple endmember spectral mixture analysis

In linear SMA, the solution of a linear model enables the cal-

culation of the relative proportions that a given cover type
contributes to pixel reflectance (Roberts et al. 1993; Settle and
Drake 1993). The linear mixture model (eqn 6 in Cochrane and

Souza 1998) is defined by:

Ri ¼
Xn
j¼1

Ri; j fj
� �

þ ei ð1Þ

where Ri is the spectral reflectance of the ith spectral band of a
pixel; Ri, j is the spectral reflectance of endmember j in band i; fj
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Fig. 2. The four spectral libraries that were used for the multiple endmember spectral mixture analysis

(MESMA).Atmospheric water absorption bandswere removed at,1400 and 1900 nm.GV is green vegetation;

NPV is non-photosynthetic vegetation. The three soil samples were from different road intersections, all bright,

uncharred soils. Blue, green, red and near-infrared (grey) Landsat and QuickBird bands are shaded, as well as

two short-wave-infrared Landsat bands (grey).
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Fig. 3. An overview of the endmember selection and image processing steps. (ATREM, Atmospheric Removal Program;

FLAASH, Fast Line-of-sight Atmospheric Analysis of Hypercubes; RTGC, radiative transfer ground calibration; ELC, empirical

line calibration; MESMA, multiple endmember spectral mixture analysis; RMSE, root mean square error; EAR, endmember

average RMSE; MASA, minimum average spectral angle; CoBI, count-based endmember selection index.)
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is the fraction of endmember j; and ei is the error in band i.

MESMA utilises the same linear model as SMA, but the end-
members mapped vary on a pixel-by-pixel basis rather than the
strict SMA constraint of each pixel containing the same end-

members (Roberts et al. 1998). MESMA code is part of VIPER
(Visualisation and Image Processing for Environmental
Research) Tools (VIPER Tools, Santa Barbara, CA, USA).

VIPER Tools have a built-in, iterative endmember process
that allows the selection of the most representative endmembers
relative to the objects of interest (Tompkins et al. 1997;
Dennison and Roberts 2003). Related yet spectrally distinct

endmembers (e.g. GV functional types) may be combined into a
single endmember class. MESMA also allows for variations
present within the same material, such as different soil types,

which can all be accounted for within a single ‘soil’ spectral
library. Computational intensity is increased with a high number
of endmembers, whereas too few may result in large residuals

(Dennison et al. 2004; Li et al. 2005; Roth et al. 2012).
It has been suggested that natural and disturbed systems are

best modelled by two- or three-endmember models (Powell and

Roberts 2008; Wang et al. 2012); thus, we used VIPER Tools to
investigate two-, three- and four-endmember models to estimate
char, soil, GV and NPV cover and photometric shade after
wildfire. A large set of potential endmembers (59 unique end-

members, with 5–30 replicates of each)was iteratively narrowed
down. Endmembers were first sorted into broad classes: GV,
NPV, soil and char. Within the GV class, multiple species of

deciduous and conifer trees, shrubs, forbs and grasses were
considered to account for spectral variability, particularly in the
sparsely vegetated post-fire environment (Okin et al. 2001). The

NPV class consisted of various uncharred litter and bark
materials. Uncharred soil and rock made up the soil class, and
a separate char class had dark char, and charred soil and NPV.
Two to four ‘best’ endmember signatures were selected for each

category based on how well they spectrally represented the
cover class; the same set of endmembers was used on all three
fires (Fig. 2).

MESMAwas applied to the 20 post-fire HS image strips. The
minimum allowable endmember fraction, maximum allowable

endmember fraction, and maximum allowable shade fraction

were set to the default values of�0.05, 1.05 and 1.0 respectively,
and the maximum root-mean-square error (RMSE) was 0.05.
Typically, the shade fraction is set at 0.8, but because of low

albedo in some areas of the HS imagery due to tall trees and
topographic shading (Dennison et al. 2004; Yang et al. 2015),
and the preponderance of dark char, we were able to extract

more spectral information by increasing the shadow allowance.
By analysing the models that mapped the greatest percentage of
the area of interest, we were able to iteratively select the best
endmembers and endmember combinations (Youngentob et al.

2011) until the best model results (i.e. accurate fractional
estimates over the greatest area) were obtained.

The same endmember bundles were used for MESMA

modelling of the Landsat and QB images. QB only has four
spectral bands; thus, we were constrained to two- or three-
endmember models. Modelling efforts were most successful via

a series of two-endmember models in which each endmember
component was estimated separately (plus shade); the relative
cover fractions of each pixel were calculated by combining the

separate model results.

Accuracy assessment

Pixel values from the fractional cover images were extracted at

the field subplot locations (i.e. 135 subplots per site). These data
were aggregated along with the field data at the plot (15 subplots
per plot), and site (nine plots per site) scales. Most sample dis-

tributions were non-normal (via the UNIVARIATE procedure in
SAS (SAS Institute Inc. 2003)); therefore, non-parametric statis-
tical tests were used for subsequent analyses. TheMESMAcover

estimates of char, soil, GV and NPV from the remotely sensed
imagery were compared with the 2003, 2004 and 2013 field data
to evaluate the ability to make accurate estimations (2003 data)
and predictions (2004 and 2013data).Direct (e.g. 2003 image and

field data) and predictive (e.g. 2003 image and 2013 field data)
correlations among the variables were assessed using the non-
parametric Spearman rank correlation test (SAS Institute Inc.

2003); Spearman correlation coefficients (r) are reported. A
significance level of 0.05 was used for all statistical tests.

Table 3. Comparing the change in mean ground and canopy cover percentages at the spatially coincident A plots for all fires; standard error

in parenthesis

The burn severity classes are based on the Monitoring Trends in Burn Severity (MTBS) extended assessment. In 2013, all plots but one were resampled (one

moderate-severity plot was inaccessible). Cover fractions besides char sum to 100%.NPV is uncharred non-photosynthetic vegetation; GV is green vegetation.

The sum of the canopy vegetation components in a row is the mean canopy cover of that burn severity class

Year, burn severity Char (%) Ash (%) Soil (%) NPV (%) GV (%) Canopy char (%) Canopy NPV (%) Canopy GV (%)

2003

High (n¼ 4) 92 (1.5) 12 (7.6) 57 (8.7) 1 (0.7) ,1 (0.2) 23 (8.1) 2 (2.0) 0 (0)

Moderate (n¼ 3) 64 (5.2) 5 (3.9) 39 (7.5) 10 (3.4) 2 (0.8) 10 (5.3) 35 (9.1) 11 (9.6)

Low (n¼ 9) 53 (4.2) 4 (1.3) 42 (8.7) 14 (3.2) 2 (1.3) 7 (4.1) 13 (5.3) 23 (9.1)

2004

High (n¼ 4) 74 (3.9) 4 (2.1) 46 (11.5) 10 (5.9) 6 (3.3) 20 (7.7) 5 (5.1) 0 (0)

Moderate (n¼ 3) 42 (1.2) 1 (0.1) 18 (6.7) 39 (6.7) 14 (6.1) 10 (6.8) 22 (8.8) 4 (4.1)

Low (n¼ 9) 27 (6.3) 2 (1.3) 25 (9.3) 36 (9.9) 28 (8.0) 14 (6.6) 14 (5.4) 21 (7.4)

2013

High (n¼ 4) 6 (2.3) 0 (0.0) 10 (3.4) 34 (7.1) 57 (4.2) 28 (8.3) 0 (0) 0 (0)

Moderate (n¼ 2) 5 (0.7) 0 (0.0) 2 (0.3) 20 (4.0) 79 (3.7) 13 (12.6) ,1 (0.3) 20 (18.9)

Low (n¼ 9) 4 (1.3) 0 (0.0) 9 (6.5) 33 (5.4) 57 (5.9) 7 (2.8) 1 (0.4) 24 (6.6)
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Results

Initial burn severity condition

At the plot scale (,10m), we characterised the variability of fire

effects on soil and understorey vegetation and canopy condition.
In 2003, plots classified as MTBS high burn severity had 92%
average char cover and a trace of understorey GV, whereas

moderate and low burn severity plots had less char (64 and 53%
respectively) and sparse understorey GV cover (2%) (Table 3).
Understorey GV was not a differentiating indicator of fire

effects immediately after the fire. However, based on the 2004
extended assessment of coincidental plots, understorey GV
increased considerably to 14% on moderate burn severity plots
and 28% on low burn severity plots. Char was still most prom-

inent on high burn severity plots (74%) in 2004 and less prev-
alent on the moderate (42%) and low (27%) burn severity plots

(Table 3). Remaining canopy cover was low on all sites

(25–56%), with high-severity sites dominated by charred can-
opy (23%), moderate-severity sites dominated by NPV
(including dead and scorched) canopy (35%), and low-severity

sites dominated by green canopy (23%).

Correlation between field and remotely sensed variables

At the site scale (n ¼ 13 sites where HS imagery was available),
there were significant positive correlations between three field

components (2003) and their remotely sensed counterparts
(Table 4a): char cover and the HS char estimate (r¼ 0.60); NPV
cover and the HS NPV estimate (r ¼ 0.68); and green canopy
cover and the HS GV estimate (r ¼ 0.75). The most significant

correlation between Landsat and field data was canopy GV
(r¼ 0.70).We also found correlationswere split by inorganic and

Table 4. Direct (e.g. 2003 image and 2003 field data) and predictive (e.g. 2003 image and 2013 field data) Spearman rank correlation coefficients for:

(a) 2003; (b) 2004; and (c) 2013 field cover measures

HS refers to hyperspectral imagery; NPV is uncharred non-photosynthetic vegetation; GV is green vegetation. Bold values are significant at P, 0.05;

correlation coefficients with an absolute value of ,0.1 are denoted by ‘,0.1’

Image fractional cover estimates Char (%) Soil (%) NPV (%) GV (%) Canopy GV (%)

(a) 2003 Field cover measures

HS (2003, n¼ 13 sites)

Char 0.60 0.62 20.59 ,0.1 20.76

Soil �0.37 0.41 ,0.1 �0.21 ,0.1

NPV �0.38 �0.17 0.68 0.44 0.54

GV �0.35 20.55 0.61 0.11 0.75

Landsat 5 (2003, n¼ 16 sites)

Char 0.25 0.67 �0.39 ,0.1 20.55

Soil 0.10 �0.22 ,0.1 0.10 �0.13

NPV ,0.1 0.61 �0.39 ,0.1 20.53

GV �0.38 20.63 0.60 �0.11 0.70

(b) 2004 Field cover measures

HS (2003, n¼ 13 sites)

Char 0.74 0.61 �0.49 20.66 20.78

Soil �0.15 0.21 0.13 �0.12 0.13

NPV �0.23 �0.20 �0.11 0.62 0.50

GV �0.47 �0.44 0.49 0.31 0.75

Landsat 5 (2004, n¼ 16 sites)

Char 0.56 0.51 20.51 �0.37 20.59

Soil ,0.1 ,0.1 0.28 �0.10 0.25

NPV 0.45 0.44 �0.43 �0.32 20.60

GV 20.71 20.72 0.49 0.72 0.84

(c) 2013 Field cover measures

HS (2003, n¼ 13 sites)

Char 0.39 0.24 �0.12 �0.03 20.88

Soil ,0.1 0.48 �0.12 0.03 0.23

NPV �0.47 �0.22 �0.53 0.51 0.65

GV �0.13 �0.46 �0.09 0.31 0.84

Landsat 5 (2003, n¼ 16 sites)

Char �0.23 0.58 �0.31 �0.36 20.52

Soil 0.62 �0.43 ,0.1 0.54 0.18

NPV �0.31 0.74 �0.19 �0.46 �0.48

GV 0.12 20.60 0.32 0.33 0.76

Landsat 8 (2013, n¼ 16 sites)

Char �0.38 0.56 �0.35 �0.34 20.81

Soil �0.30 0.14 ,0.1 ,0.1 ,0.1

NPV �0.45 0.64 �0.29 �0.36 20.82

GV 0.41 20.80 0.20 0.36 0.76
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organic cover classes (e.g. HS and Landsat char were correlated

with soil cover, andHSandLandsatGVwere correlatedwithNPV
cover), as the cover variables logically aligned by broader cover
classes such as inorganic or organic, and charred or uncharred.

In 2004, the most notable direct correlations were between

Landsat GV with GV on the ground (understorey) and in the
canopy (r¼ 0.72 and 0.84 respectively) (Table 4b). For the first
post-fire year, HS char remained positively correlated with char

(r ¼ 0.74) and soil (r ¼ 0.61) on the ground, and negatively
correlated with GV on the ground or in the canopy (r ¼ �0.66
and �0.78 respectively) (Table 4b). Hyperspectral GV was

correlated with canopy GV (r ¼ 0.75). The char and soil
correlations remained mostly consistent from 2003 to 2004,
whereas the Landsat GV correlations were stronger with vege-

tation regrowth.

Trends in site recovery across burn severity classifications

The change in site characteristics over the first 4 years

(2003–07) on three representative sites after the Cooney Ridge
wildfire (Fig. 4) implied a significant shift in dominant cover
from char toNPV andGV, regardless of theMTBSburn severity

classification. Initially, char was prevalent on the high burn
severity site, withmoremixed components on themoderate burn
severity site, and a prevalence of understorey GV on the low

burn severity site. The transformation in site characteristics was
apparent in the images: char was mostly replaced by soil and
NPV, and on the high and moderate burn severity sites, GV
(likely canopy GV from trees that later died) was replaced pri-

marily by NPV. On the low burn severity site, GV was mixed
with NPV rather than char after 4 years.

In 2007, when the QB and Landsat midpoint images were

acquired, the trends from our field data (solid lines on Fig. 5)
show an estimate of 40%understoreyGVcover onmoderate and

low burn severity sites and closer to 20% on high burn severity

sites. Understorey GVwas seemingly underestimated in the QB
imagery across all burn severities, whereas the Landsat data
overestimated understorey GV on the low-severity sites (Fig. 6).
Soil, char and NPV ground cover were closely approximated on

the low- and moderate-severity sites by both QB and Landsat in
2007; on the high-severity sites, however, soil and char were
underpredicted by the remotely sensed images and NPV was

overpredicted (Fig. 6).
Ten years after the fires in 2013, there was 10% or less char or

exposed soil left on the plots, and the primary cover classes were

NPV (20–34%) and understorey GV (,60–80%) (Table 3;
Fig. 4). These data indicate a significant trend towards site
recovery regardless of initial burn condition. Interestingly, the

canopy data donot reflect as considerable change as do the ground
data; canopy char on the high-severity sites (20–30%) and canopy
GV on the low-severity sites (20–25%) are similar across 10
years, whereas themost notable change is the loss of canopy NPV

as nearly all the scorched, brown needles fell from trees (Table 3).
The 2013 Landsat data underpredicted understorey GV and

overpredicted char across all burn severity classes (Fig. 6).

Although there was little char left on the ground, there was still
nearly 30% charred (black) canopy remaining on the high-
severity sites in 2013 (Table 3). Correspondingly, there was

significant GV on the ground, but less than 25% in the canopy.
Moderate-spatial-resolution sensors likeLandsat will often detect
occluding canopy rather than occluded surface condition (Hudak
et al. 2007), which would account for the prediction discrepan-

cies. Landsat estimates of NPV and especially soil cover were
more accurate (Fig. 6).

The only significant direct correlation between 2013 Landsat

8 data and the ground data was between Landsat GV and canopy
GV (r ¼ 0.76); Landsat 8 char and NPV were negatively

High burn severity – CR1

Hyperspectral
        2003

Moderate burn severity – CR5 Low burn severity – CR2

Char

GV

Soil

QuickBird
    2007

NPV

GV

Soil

MESMA True colour MESMA True colour MESMA True colour

500 m

Landsat 8
    2013

NPV

GV

Soil

Fig. 4. A comparison of the immediate post-fire images (2003) and those collected 4 years later (2007) and 10 years later (2013) across a range of burn

severities. The multiple endmember spectral mixture analysis (MESMA) results are shown next to the true colour (red, green, blue) images. Resolution

(pixel size) varied by image type: hyperspectral (5 m); QuickBird (2.6 m); Landsat (30m). All three site subsets are from the Cooney Ridge (CR) Fire, sites

1, 5, and 2 with plot locations overlaid; site characteristics are shown in Table 2. (GV, green vegetation; NPV, non-photosynthetic vegetation.)
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correlated with canopy GV (r ,�0.8). The 2003 Landsat data

indicated a few predictive correlations: between char and soil
measured on the ground and in the image (r,0.6) and between
Landsat GV and canopy GV (r ¼ 0.76). Predictive correlations

between the 2003 HS remotely sensed estimates and the 2013
field data were very similar to the 2013 Landsat 8 data, and were
significant between canopy GV and HS char (r ¼ �0.88), HS

NPV (r ¼ 0.65) and HS GV (r ¼ 0.84) (Table 4c).

Discussion

The post-fire environment in the first year

We were able to reasonably estimate char cover on all sites from
the HS imagery because of its cover dominance and spectral
separability (Figs. 4, 6). The significant correlations (r ¼ 0.6–

0.74) between image-predicted char and the field measures in the
first post-fire year (Table 4a, b) combinedwith the prevalence and
persistence of char lead us to confirm that char is a consistent

indicator of burn severity, which is in agreement with prior
studies in other ecosystems (French et al. 2004; Smith et al. 2005;
Veraverbeke et al. 2012; Quintano et al. 2013). The data dis-
tributions in the first full year of the present study were bimodal,

as the low and moderate sites had comparable cover fractions of
char, understorey GV and NPV and soil, whereas the exclusively
charred high burn severity sites were more distinctly separable

(Table 3, Fig. 4). Quintano et al. (2017) also found post-fire data
collected after a Mediterranean wildfire to more naturally sepa-
rate between two classes: low–moderate and high, rather than the

three classes commonly used (low, moderate and high).
There was more char remaining on the high burn severity

plots 1 year after the fire (74%) than on the moderate burn

severity plots immediately after the fire (64%). The amount of
residual char through the first post-fire year and beyond is a
measurable biophysical variable that can be scaled between fires
(Smith et al. 2010), between field and remotely sensed images

(Quintano et al. 2017), and may be used to forecast ecological
response and future vulnerability, an area of remote sensing that

will likely see further investigation (Smith et al. 2014). Lentile

et al. (2009) suggested fractional char cover as estimated via
spectral mixture analysis of Landsat Enhanced Thematic Map-
per Plus (ETMþ) data was the best correlate to 1-year post-fire

field measures, thus providing a physical indicator of eventual
site recovery. This result was also confirmed in later studies
(Hudak et al. 2013).

Contribution of other factors to burn severity and
disturbance

Negligible understorey GV was found immediately after the
fire; however, more overstorey GV (tree canopy) remained:

23 and 11% on the low and moderate burn severity plots
(Table 3). Moderate severity sites had 35% NPV canopy cover
in 2003, which decreased to 22% by 2004, and almost

completely disappeared by 2013. Scorched needles in the can-
opy and subsequently on the ground are a signature of moderate
burn severity.

Because our study objectives concentrated on understorey
vegetation and ground cover, we only have tree crown condition
data (e.g. green, scorched, or charred) on one plot per site per field

year. Although most of the canopy is consumed or blackened in
high burn severity areas, tree crowns remaining on the low and
moderate burn severity sites can occlude fire effects on soils,
which may be disproportionately decoupled from the overstorey

condition immediately post fire (e.g. prolonged soil heating due
to a sustained, low-intensity surface fire that consumes much of
the duff layer (Ryan 2002)). We observed these conditions at two

CooneyRidge field sites (4 and 6) that had 100% green crown yet
67 and 62% ground char cover (Table 2). Canopy occlusion of
fine-scale ground effects likely further confounded our remotely

sensed estimates on other sites as well.
Neither NPV nor soil cover were diagnostic indicators of

burn severity immediately after the fire. Uncharred NPV cover
was low (,15%) on all sites in 2003 and soil cover was

somewhat ubiquitous (40–60%), regardless of burn severity
(Tables 2 and 3). Quintano et al. (2013) also confirmed that
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the amount of soil cover did not change predictably among burn
severity classes. Soil cover decreased by 20–50% in 2004, yet
was still a primary cover factor (Table 3); however, 10 years

after the fire, less than 10% exposed soil remained on any of the
plots. The change in exposed soil due to a disturbance (or
recovery from a disturbance) can be an indication of the degree

of disturbance (Page-Dumroese et al. 2009), such as after a
wildfire or logging.

Vegetation recovery was rapid regardless of burn severity
classification

The Landsat MTBS extended assessment classes suggested
there were far more low burn severity sites than we initially

assessed. Even though these sites were mostly charred in 2003
(.50%), significant vegetation recovery occurred in the first
post-fire year, a trend that was sustained for 10 years (Figs. 5, 6).

This is consistent with Bataineh et al. (2006), who found that
even in lightly burned areas, removal of forest canopy or litter
stimulated understorey vegetation growth for more than a

decade following a wildfire in Arizona.
While soil and char cover decreased consistently over time,

NPV and understorey GV increased; the rates of increase varied

depending on the initial burn severity condition (Figs. 5, 6).
Most notable was the increase in understorey GV on the high
burn severity sites from 0 to 60% over the 10-year study period.
This is comparable with findings of Shive et al. (2013), who

found four-time greater understorey cover in areas burned at
high severity compared with low severity 8 years after the
Rodeo–Chediski wildfire in Arizona, and Wittenberg et al.

(2007), who measured vegetation cover equivalent to pre-fire
levels 5 years after a Mediterranean wildfire. Idris et al. (2005)
reported following wildfires in Borneo and in China, the recov-

ery time for areas burned at high severity was also highly
dependent on the scale of the fire – larger patches took longer
to recover. The relatively rapid understorey recovery we mea-
sured on these western Montana fires can partly be attributed to

historical mixed-severity fire regimes in this region (Arno et al.
2000), which result in a mosaic of forest structure and plant
communities, and often patchy fire effects.

As stated, we found inorganic variables changed more
consistently and predictably during the post-fire period consid-
ered, while organic cover measures understorey GV and NPV

responded non-linearly and exhibited greater discrepancies
between the ground and canopy. Viedma et al. (1997) modelled
asymptotic vegetation recovery over a decade in the Mediterra-

nean using Landsat 5 data. The three field data points over a
decade fromour study are not sufficient to create a good fit, but it
is possible to visualise that the green vegetation is increasing
asymptotically (Figs. 5, 6).

Understorey GV and NPV cover replaced char and inorganic
cover as primary ground cover 1 year after the fire on low burn
severity sites (Fig. 5). We estimate this same benchmark of

recovery occurred on the moderate burn severity sites approxi-
mately 2 to 3 years later, and another 3 to 4 years later (7 or more
years after the fire) on the high burn severity sites (Fig. 5). As

stated previously, the true shape of these recovery trajectories is
almost certainly non-linear, as expected from a biological
process (Peters et al. 2004), but importantly, the up-or-down
tendencies in these basic post-fire projections are corroborated

by the QB and Landsat estimates, substantiating the revegeta-
tion trends. At the scale of our study sites, recovery among the
burn severity classes converged after 10 years in terms of major

cover classes (Table 3, Fig. 5).
The shift and convergence of primary cover types over time

emphasise the dynamic nature of the post-fire environment.

Char is most prevalent immediately after the fire, but in the
following decade, char is concealed by an abundance of NPV
and understorey GV. Although none of the initial measures were

statistically indicative of eventual understorey GV, HS char, HS
NPV and HS GV estimates from 2003 were significantly
correlated with the amount of canopy GV found in 2013. As
expected, the absence of char and any presence of understorey

GV immediately after the fire indicated a greater amount of
understorey GV 10 years later (Table 4c). It is notable that initial
remotely sensed HS estimates were sustained over a decade,

suggesting their potential use for longer-term vegetation recov-
ery predictions. The considerable presence of understorey GV
and NPV 10 years post fire emphasises a productive vegetation

response in the burned environments (Table 3).

Limitations of remotely sensed data for inferring burn
severity

High-spatial- and spectral-resolution HS imagery allowed
effective discrimination of fine-scale post-fire ground cover,

especially char, as others have found (van Wagtendonk et al.

2004; Kokaly et al. 2007; Robichaud et al. 2007). The time lag
between site burning, field sampling and image acquisition as

well as the difference in conditions between sites (e.g. smoke)
likely affected correlations between the image and field data
across all sites, as described in detail by Hudak et al. (2007).

Ideally, all data would be collected as temporally coincidentally
as possible; however, field campaigns and tasked image col-
lections are often challenging to coordinate, and we felt fortu-
nate to have collected all initial data within 3months of burning.

As supplied from the vendor, theHS image datawere distorted
even after georeferencing. To compare the field data with the
image data at coincidental locations, warping and resampling the

imageswas necessary. Although these intensive adjustmentsmay
have affected data at the subplot (1–5-m) scale, all field and
image data were aggregated to the site scale (0.01 km2) and we

feel confident that the spatial variability and true means of
the data were captured at this resolution on aggregation to the
site level. The potential formisaligned datawas further overcome

by the unusually intensive ground sampling effort undertaken in
the initial assessment, with 15 times as many 1-m2 subplots per
plot in 2003 compared with 2004 and 2013, over an area
equivalent to nine Landsat pixels in 2003 and five pixels in

2004 and 2013. The initial sites were also situated randomly but
well within large (0.1-km2) patches of a given burn severity
condition to minimise edge effects confounding the relationships

to Landsat resolution imagery (Hudak et al. 2007).
We had some difficulty with shadowing and low albedo in

the both the HS and QB images. Shadows are common in

forested areas, and these study areas had significant topographic
relief. Shadows were apparent from both tall trees and steep
terrain, and the HS imagery was acquired from a fixed-wing
aircraft, which added to off-nadir viewing angles, especially
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compared with satellite imagery. Additionally, the burned sites
averaged 65% char cover in 2003, which decreased the overall
albedo of the images and thus spectral contrast (Rogan and Yool

2001). We compensated for some of the darkness and shadow-
ing by allowingmore shadow to bemapped as well as increasing
the maximum allowable RMSE to 0.05 or 0.1 as needed. Overall

mean RMSE for the MESMA modelling was low: 0.01–0.02.
The Cooney Ridge QB image had the highest RMSE at 0.06.
Adjusting the constraints of the MESMA model within VIPER

Tools allowed more pixels to be mapped in several images.
QB data were acquired from the DigitalGlobe image archive

(https://browse.digitalglobe.com/imagefinder; accessed 16 Sep-
tember 2016). QB ismore often used as a ‘ground truth’ dataset in

ecological studies (Willis 2015) and somewhat less often for
high-level analysis (such as spectral unmixing) because of its
broadband spectral resolution. It is worth noting that there is no

conceptual reason why SMA cannot be applied to any type of
calibrated, multispectral imagery. Arguably, the estimation of
char, understorey GV and other ground-cover components is a

more scalable method in the context of burn severity assessments
than the much more commonly considered Normalized Burn
Ratio (NBR) (Veraverbeke and Hook 2013). Indeed, the absence

of a short-wave infrared (SWIR) band inQB andmost other high-
resolution imagery precludes the calculation of NBR. However,
our primary intention in this studywas to use themidpoint images
(QB and Landsat) to validate the field data trends (Fig. 6), and

both image types served that purpose well.

Conclusions

The rate of post-fire environmental change (e.g. increase in
understorey GV and decrease in exposed char and soil) is high in

the first year and slowswith time. The initial post-fire conditions
were highly spatially heterogeneous at the scale of our study,
with the exception of sites burned at high severity, which were
primarily charred. We found char cover to have considerable

persistence; it remained the primary cover factor for high burn
severity 1 full year after the fire. Although ,25–75% char
remained on site in the first post-fire year across all burn sev-

erities, the ratio of understorey GV and NPV to char and soil
cover was much higher after a growing season, indicating
resurgence of the vegetative strata and consequent protection of

the soil strata. An increase in NPV cover reduces the risk of soil
erosion and runoff, helps maintain soil moisture and provides
microsites for vegetation establishment.

Substantial vegetation regrowth was measured 10 years post
fire across all fires and burn severities. Understorey GV, NPV
and inorganic cover proportions were nearly equal on all sites 10
years post fire regardless of whether they were initially classi-

fied as low, moderate or high burn severity. The convergence of
cover fractions between burn severity classes after 10 years may
constitute the single best indicator of post-fire recovery. The

shift in associations from char (immediately post fire) to under-
storey GV and litter (10 years post fire) occurred at varying rates
depending on the initial degree of disturbance, and represents a

continuum of responses that we were able to infer from the
initial post-fire HS images and confirm from the 2007 QB and
2007 and 2013 Landsat images. The proportional cover combi-
nations of char and soil, understorey GV and NPV capture the

dynamics of burn severity and vegetation recovery. This study
adds to the growing evidence that scalable fractional cover
components have a firmer biophysical basis than field (e.g.

Composite Burn Index, CBI) or remotely sensed (e.g. dNBR)
burn severity indices with less interpretability (Roy et al. 2006).
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