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Abstract. A wildfire forecasting tool capable of estimating the fire perimeter position sufficiently in advance of the 
actual fire arrival will assist firefighting operations and optimise available resources. However, owing to limited 
knowledge of fire event characteristics (e.g. fuel distribution and characteristics, weather variability) and the short time 
available to deliver a forecast, most of the current models only provide a rough approximation of the forthcoming fire 
positions and dynamics. The problem can be tackled by coupling data assimilation and inverse modelling techniques. We 
present an inverse modelling-based algorithm that uses infrared airborne images to forecast short-term wildfire dynamics 
with a positive lead time. The algorithm is applied to two real-scale mallee-heath shrubland fire experiments, of 9 and 
25 ha, successfully forecasting the fire perimeter shape and position in the short term. Forecast dependency on the 
assimilation windows is explored to prepare the system to meet real scenario constraints. It is envisaged the system will be 
applied at larger time and space scales.
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Introduction

Wildfire phenomena constitute a widespread problem that
causes human, environmental and economic losses all over the
world every year. One of the key aspects to reduce their impact is
to improve and optimise wildfire-fighting capacities by pro-

viding the emergency responders with sound information on the
upcoming wildfire dynamics. However, the accuracy of
the current available operational wildfire models such as

FARSITE (Finney 1998) or PHOENIXRapidfire (Tolhurst et al.
2008) is limited owing to the scarcity of precise data available to
initialise them (Finney et al. 2013) and the empirically devel-

oped submodels that they contain (Sullivan 2009), which make
them unsuitable to be exported to all sorts of different fire
events. An alternative approach to wildfire modelling is
computational fluid dynamics (CFD)-based models such as

FIRETEC (Linn 1997), FOREFIRE (Filippi et al. 2009; Filippi
et al. 2014a) or Wildland–Urban Interface Fire Dynamics
Simulator (WFDS) (Mell et al. 2007). However, these are

restricted to research use, and small- and particular-scale
applications owing to the high computational costs and initi-
alising data required (Viegas 2011). A simplified version of a

CFD model that couples weather modelling with Rothermel’s
fire-spread model (Rothermel 1972) named WRF-SFIRE
(Mandel et al. 2014, 2011) was recently reported to have been

applied operationally, as a 6-h forecast could be launched with a
30-min run in a multicore processor.

Cruz and Alexander (2013) reviewed 49 fire spread models
datasets and found that only 3% of the simulations acceptably

predicted the observed rate of spread (RoS) and revealed the

need to adjust thosemodels if theywere to be used operationally.
To deal with this problem, data assimilation has shown great
potential to correct a model’s predictions. Mandel et al. (2009)
pioneered the use of data assimilation for wildfire modelling,

predicting flame temperature and location using an ensemble
Kalman filter framework and an atmosphere-coupled wildfire
model. Their work showed promising results while raising

some concerns about spurious fire corrections and the
computing time required. Following their idea, Rochoux et al.

(2014a, 2014b, 2015) explored a data-driven wildfire simulator

based on parameter and state estimation that assimilates fire
front positions and corrects the wildfire forecast by means of a
level set model based onRothermel’s. They explored a parameter
and state estimation strategy with stochastically based estimation

of the error covariance matrices. The simulator was run using
parallel computing and showed great capacity both in syntheti-
cally generated data and a small-scale controlled experiment.

Lautenberger (2013) also used Rothermel’s model and a data-
assimilating approach to calibrate fire propagating parameters to
meet observed fire shape. All these authors used an Eulerian level

setmethod to track fire front propagation.Although this approach
offers advantages when dealing with crossovers and large peri-
meters, it also has some drawbacks such as the level set solution

dependency on the mesh (Mallet et al. 2009) and the requirement
of a flux limiter to filter fire front shapes (Bova et al. 2016).

The alternative approach to propagate the front is the
Lagrangian framework, which tracks front markers individually.
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This approach has been successfully applied on most broadly
used fire simulators (FARSITE (Finney 1998), Phoenix RAPID-
FIRE (Tolhurst et al. 2008), or PROMETHEUS (Tymstra et al.
2010) as an example). The final front shape equivalence of both

approacheswas recently demonstrated byBova et al. (2016) over
complex topographical domains.

Some authors also worked to couple Lagrangian-based fire

modelswith data assimilation. Denham et al. (2012) successfully
applied genetic algorithms (GA) to find the wind configurations
that best resemble observations to launch an improved forecast.

A combination of weather and fuel calibration using fire peri-
meters has also been implemented using FARSITE (Finney
1998) and high-performance computing, showing great
improvements and potential for long-term predictions (Wendt

et al. 2011; Artés et al. 2014). Combining these ideas, Rios et al.
(2014) developed a data-driven algorithm based on Rothermel’s
RoS model (Rothermel 1972) and Huygens’ elliptical propaga-

tion (Richards 1990; Glasa and Halada 2008) and proved that it
provides a short-term highly accurate forecast of wind-driven
wildfires when tested with synthetically generated data.

In the presentwork, we further develop this algorithm to cope
with real wildfire data to produce a reliable short-term forecast.
We test it by assimilating airborne infrared images captured

from two large-scale experiments conducted in South Australia
(Cruz et al. 2013) and assess the forecast reliability by means of
Jaccard (Jaccard 1901; Filippi et al. 2014c) and Sørensen
(Sørensen 1948; Perry et al. 1999) similarity indices, finding

great agreement in the available short-term forecast.
The paper is organised as follows: the Methods section

presents the complete algorithm rationale and description of

real-scale experiments used for validation. The algorithm per-
formance is explored in depth in the Results and discussion

section where the forecasting capabilities and system para-

meters are investigated and discussed. Finally, we provide some
concluding remarks and an outline of proposed future work.

Methods

Our system combines two main sequential tasks that are

envisaged to take place cyclically. The first one involves

solving an inverse fire modelling problem by which the
parametric space of certain observed fire front behaviour is
found. This approach is based on the assumption that there are
several variables that remain constant during a certain period of

time, and thus we call them invariants. These invariants can be
either physical quantities or unknown model parameters that
determine the fire front dynamics. With the aid of a proper

assimilation framework, these invariants can be resolved using
the available data (e.g. fuel characteristics, topography, weather
conditions) to reproduce certain fire behaviour observations

(i.e. fire perimeters sensed by airborne IR). The second task
involves launching a forecast with the forward fire behaviour
model, relying on the corrected invariants, which are then
entered as input back into the model to deliver a more accurate

forecast. The algorithmbeginswith the input of the observed fire
front isochrones, the complementary available data and initi-
alisation of the invariants. Then, an optimisation loop identifies

the proper invariants that best suit the fire dynamics observed,
and these are finally used to launch the forecast. The algorithm
flow is depicted in Fig. 1 and shows the key aspects that will be

explained in detail in the following sections.

Algorithm rationale

Forward model

The first key aspect of the overall system is the forward
model. The forward model is the mathematical model that
allows one to explain the phenomenon and exhibits a capacity

to reproduce the assimilated wildfire dynamics. To be suitable
for an operational inverse-modelling scheme, the forwardmodel
has to be computationally efficient to ensure the forecast is

delivered before the event takes place (i.e. positive lead time).
While keeping options open to explore further models, in the
present work, we chose amodel based on Rothermel (Rothermel
1972) to determine RoS and a Huygens’ expansion-based

approach to propagate the front in 2D (Richards 1990, 1993).
The Rothermel model (see Eqn 1) is based on a simple energy
balance that expresses the fire heat source by means of the

reaction intensity (IR), the propagating flux ratio (xpf ), the fuel
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Fig. 1. Flow diagram showing the algorithm rationale. Orange rectangular boxes are inputs

and green elliptical boxes are outputs. (For colour reproduction of figures, see online version

available at http://www.publish.csiro.au/nid/17.htm.) Adapted from Rios et al. (2014).
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heat sink by means of the heat of preignition (Qig), the effective
heating factor (E) and the bulk density (rb). The RoS is
corrected by two experimental factors to account for the slope

(Fs) and wind effects (Fw).

RoS ¼
IRxpf
rbEQig

1þ Fw þ Fsð Þ ð1Þ

Using Rothermel’s (1972) correlations, the RoS can be ulti-
mately expressed in terms of the fuel depth (d), oven-dry fuel

loading (Wo), the surface area-to-volume ratio (SAV), the
packing ratio (b), the moisture of extinction and fuel moisture
content (Mx;Mf ), and the wind and slope factors (Fw;Fs):

RoS ¼ F d;WO; SAV ; b;Mx;Mf ;Fw;Fs

� �
ð2Þ

In the current version of our algorithm, the slope factor is not
considered, thus the model applies only to flat terrains.

In order to reduce the number of invariants, we performed a
sensitivity study of Rothermel’s model to explore the depen-
dency and influence of the variables on the RoS. One thousand

randomly generated fuels models sets (Wo; b; SAV ;Mx;Mf ; d),
ranging among physically possible values taken from Scott and
Burgan (2005), were used to explore the variables’ correlation

withRoS. For each given set, the variableswere swept from their
minimum to their maximum while calculating the Pearson’s
product-moment correlation coefficient to search for linear

dependencies. The fuel depth (d) was found to be the variable
that exhibited the greatest linear behaviour as demonstrated by
the Pearson’s coefficient histogram for the randomly generated
fuel sets shown in Fig. 2.

Thus, to determine useful invariants, the Rothermel RoS was
factorised as:

RoS ¼ Imfwd ð3Þ

where Imfw is an invariant that accounts for the overall effect of
fuel moisture, moisture of extinction, bulk density, surface area-

to-volume ratio and wind factor.
The Huygens’ expansion approach considers every point in

the fire front as a virtual ignition point that will expand

following an elliptical geometry called a firelet. The curve that
envelops all firelets is then the expanded perimeter. The lateral
(a) and the front velocity (bþ c) of each firelet (Fig. 3) can be

derived from geometrical relationships given RoS and the
length-to-breadth ratio LB of the firelet as:

a s; tð Þ ¼ RoS s; tð Þ
1þ LB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LB2 � 1

p� �2

2LB
ð4Þ
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Fig. 2. Sensitivity study of Rothermel’s model dependency with fuel depth d. The Pearson’s product-moment correlation

distribution (a) and the corresponding rate of spread (RoS) vs fuel depth for 1000 model sets (b).
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Fig. 3. Geometrical relationship between aj, bj and cj velocities for the

elliptical firelet corresponding to the nodepj of a givenperimeter. y is thewind–
slope direction and the subscript j identifies a node of a given fire front.
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b s; tð Þ ¼ RoS s; tð Þ
1þ LB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LB2 � 1

p� �2

2
ð5Þ

c s; tð Þ ¼ b s; tð Þ � RoS s; tð Þ

LBþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LB2 � 1

p� �2
ð6Þ

where s is a front discretisation parameter and t is the spreading
time.

Note that Eqns 5 and 6 satisfy Eqn 7, as this is the distance

between the virtual ignition point on the perimeter and its
perpendicular expansion as illustrated in Fig. 3.

bþ c ¼ RoS ð7Þ

To determine the length-to-breadth ratioLB, we usedAnderson’s
experimental correlation (Anderson 1983):

LB ¼ 0:9360:2566U þ 0:461�0:1548U � 0:397 ð8Þ

where U is the mid-flame wind speed (in m s�1).
The curve enveloping the firelets is calculated using the

partial differential equations derived by Richards (1990, 1993)
(Eqns 9 and 10), which are resolved using a predictor–corrector
method.

@x s; tð Þ
@t

¼
a2 cos y @x

@s sin yþ
@y
@s cos y

� �
� b2 sin y @x

@s cos y�
@y
@s sin y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 @x

@s cos y�
@y
@s sin y

� �� �2

þ a2 @x
@s sin yþ

@y
@s cos y

� �� �2
r þ c sin y

ð9Þ

@y s; tð Þ
@t

¼
�a2 sin y @x

@s sin yþ
@y
@s cos y

� �
� b2 cos y @x

@s cos y�
@y
@s sin y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 @x

@s cos y�
@y
@s sin y

� �� �2

þ a2 @x
@s sin yþ

@y
@s cos y

� �� �2
r þ c cos y

ð10Þ

where t is the simulation time, and y is the slope–wind direction,
which corresponds to the direction in which the wind is blowing

(i.e. where it is blowing towards) if the terrain is flat. Variables
x and y are the coordinates of the nodes that constitute a front xi
at a given time.

In the present implementation, the mid-flame wind speed U
in Eqn 8 and direction y used in Eqns 9 and 10 are also
considered invariants to be identified and are named IU and Iy
respectively.

With Eqns 4–10, the final forward modelM that provides the
output of the set of front perimeters xif g for a given simulation
time t can be defined as a function of the initial observed

perimeter xo, the fuel depth d and the invariants vector q as:

xif gi¼t
i¼0¼ M xo; d; q; tð Þ ð11Þ

q ¼ Imfw; IU ; Iy
� �

ð12Þ

Owing to the Lagrangian formulation of the forward model in

hand, when the front exhibits convex regions the Huygens
expansion approach may create some loops or overlaps along
the perimeter (Fig. 4). These topological problems are physically

meaningless and a loop-clipping filter is required to remove these
loops and reclose the remaining front. There are different
methods in the literature to tackle this problem. The turning

number approach (Barber et al. 2008) can be used to identify the
front sections that are internal to the curve and filter them out.
However, if small integration steps are used in Eqns 9 and 10, the

loops do not interactwith the perimeter (see left loop in Fig. 4) but
just fold in on themselves (right loop depicted in Fig. 4). In this
case, the loops can be filtered out by finding the adjacencymatrix
corresponding to the nodes pj (see Fig. 4) and removing all closed

paths.
The Lagrangian formulation also yields another problem. As

the fire front grows and spreads, the distance between nodes

increases andmore nodes are needed to avoid formation of sharp
unreliable regions (see Fig. 5). This regridding process is
conducted by comparing the adjacent angles aj and ajþ1 (see

Fig. 4) of two consecutive segments of the front. If the largest
angle exceeds a given threshold T, an extra node is added at the
midpoint of the corresponding segment. With this filter, more
nodes are automatically generated in the more abrupt and sharp

areas, smoothing the forthcoming simulated isochrones.

Optimisation scheme

To perform a proper assimilation process, we need to define a

cost function (J ) to minimise differences between the observed
front and the simulated front. We define this cost function as the
sum over all simulated isochrones of the averaged Euclidean

distance between simulated and observed fronts. These dis-
tances are computed by selecting themodelled (m) points (~pmj;i) in
between simulated nodes (pmj;i 2 xmi ) and each point in the

corresponding observed (ob) nodes (~pobj;i 2 xobi ) determined by
perpendicular intersection (as depicted in Fig. 6).

pj

aj

aj�1

pj�1
pnew

Fig. 4. Schematic representation of loop formation scenarios and regrid-

ding strategy. The loop on the right (red dotted line) corresponds to a double

loop that only intersects once with the perimeter (red asterisks). The left loop

interacts multiple times with the perimeter. pnew is the new node introduced

by applying the regridding algorithm as ajþ1 is larger than the threshold T.

(For colour reproduction of figures, see online version available at http://

www.publish.csiro.au/nid/17.htm.)
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Then, the cost function (J ) can be written in terms of the
invariants vector q as:

J qð Þ ¼
Xtf
i¼ti

xobi � xmi
� �T

Wi x
ob
i � xmi

� �
ni

¼
Xtf
i¼ti

xobi �Mi qð Þ
� �T

Wi x
ob
i �Mi qð Þ

� �
ni

ð13Þ

where ni is the number of nodes in each isochrone, the subscript i
is the identifier of the simulated (and assimilated) front at any

given time, andWi is the weight matrix, which can be set to give
more weight to the perimeters assimilated later in time, and give
less importance to those assimilated a longer time ago. Note that

to efficiently apply the optimisation condition (rJ qð Þ ¼ 0) of
Eqn 13, we take the square of the Euclidian distance (removing
the squared root) as it does not affect the optimisation.

For the examples presented in the present study, the identity
matrix is used, which represents a homogeneousweight function
distribution.

Once the cost function is defined, the inverse problem to find
q can be formulated as the following optimisation problem:

min J qð Þ

such thatM xo; q; d; tð Þ � xobi
	 
i¼t

i¼0

q ¼ Imfw; IU ; Iy
� �

Imfw 2 0� Imax
mfw

h i
s�1
� �

IU 2 0� Umax½ � m�1
� �

Iy 2 0� 2p½ � radð Þ

ð14Þ

for a given initial front with observed coordinates xo, fuel depth d
and assimilating period t. The invariants Imfw; IU and Iy cover a

rangeofvalues that have a physicalmeaning,with Imax
mfw and Imax

U as
themaximum invariant values for a given scenario. This turns the
optimisation problem into a constrained problem and allows

particular optimisation techniques. In the present implementation,
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if any invariant exceeds these ranges during an assimilation loop,
its value is reset to the previous estimated value.

The vector-based cost function definition J qð Þ is critical

because it will drive the invariant’s convergence to the final
optimised value. The actual vector-based method used to quantify
the dissimilarity between two curves may entail some converging

discrepancy when compared with the actual area between curves
(see Fig. 6), as some close curves may give large vectored
distances – i.e. large values of J qð Þ– due to the perpendicular

definition even though the areadifference iskept small (seeFig. 6).
This effect canappearwhenhandling large time steps and irregular
front shapes (normally caused by highly heterogeneous terrain or
fuel distribution). Thus, although we need a point-to-point func-

tion to apply our optimising strategy,we evaluate the area between
curves at each optimisation loop to control both convergences.

Two main approaches can be used to solve optimisation

problems (Onwubolu and Babu 2013): the gradient-free and the
gradient-based algorithms. The former involves searching the
optimisation domain to find a global minimum, but is computa-

tionally expensive if multiple invariants are used, because the
cost function needs to be evaluated multiple times for each
invariant change and so does the forward model. On the other

hand, the gradient-based strategies do not guarantee an absolute
minimum; however, if the forwardmodel behaves smoothly and
the algorithm is initialised in the vicinity of the solution, they
will provide the correct answer with great computational effi-

ciency (Nocedal and Wright 1999).
Which is the more suitable strategy depends on the particu-

larity of the system and its requirements. The problem at hand is

a constrained non-linear optimisation that may have to be solved
multiple times during an operational event, and thus has to be
computationally efficient. Moreover, we want the algorithm to

be ready to handle a larger number of invariants. Therefore, we
choose a gradient-based approach.

To speed up the optimisation process, we take advantage of a
Tangent LinearModel (TLM) to iteratively linearise the forward

model Mi qð Þð Þ on the vicinity of a set of parameters (q). The
TLM is applied by means of a first-order Taylor expansion
around an initial parameter estimation q0ð Þ. The q0 vector with
the initialisation of the invariant values is chosen by an educated
guess based on available data.

The gradient of the linearised cost function is then written as:

rJ qð Þ

¼
Xtf
i¼t0

rMi q0ð Þ q� q0ð Þ½ �TW xobi � Mi q0ð Þ þ rMi q0ð Þ q� q0ð Þð Þ
� �

ni
¼ 0

ð15Þ

which can be rewritten as:

Xtf
i¼ti

rMi q0ð ÞTWrMi q0ð Þ
ni

q� qb
� �

¼
Xtf
i¼ti

rMi q0ð ÞTW xobi �Mi q0ð Þ
� �
ni

ð16Þ

which is a linear system that can be rapidly solved for (q� q0) by

using a QR factorisation algorithm (Nocedal and Wright 1999).

To solve the gradientrMi q0ð Þ, we use automatic differenti-
ation (Bischof et al. 2006) because it does not require running
the forward model multiple times as more common methods

such us central differences (Griewank 2000) do. Adimat soft-
ware (Bischof et al. 2002) was used to differentiate the code.

Infrared monitoring of real fire behaviour: the
Ngarkat experiments

The algorithm was tested with data from two large-scale

experimental fires performed in South Australia in March 2008.
Despite these being within the framework of a scientific
experimental burning program, the fires exhibited real wildfire
behaviour patterns as they were performed in large plots under

extremely severe weather conditions. These experiments were
conducted in Ngarkat Conservation Park (358450S, 1408510E),
which consists of a characteristic dune and swale system com-

prising large flat areas (130 m above sea level) of mallee-heath
shrublands. Fire behaviour in mallee-heath fuel types is char-
acterised as being discontinuous and highly variable owing to

the heterogeneous characteristics of the various fuel layers that
comprise mallee-heath fuel complexes (Cruz et al. 2013).

Data used in the present paper come from two experimental

burns. These burns were performed in two different sites named
hereafter ‘Shrub site’ and ‘Woodland site’ (plots A and AS2E
respectively according to Cruz et al. 2013). The burn in the
Shrub site was performed in a 9-ha, 9 year-old heath plot on 4

March 2008. This fuel complex was characterised by scattered
small-leafed shrubs, organised in clumps, and a discontinuous
litter layer partially buried by sand. The main fire-carrying fuel

layer was the discontinuous shrub canopy. Ambient conditions
were a temperature of 328C and relative humidity of 25%.
Wind speed (10-m open) averaged 15 km h�1, with gusts up

to 30 km h�1. Wind direction was south–south-westerly. The
characteristic dead fuel moisture of the fuel complex was 7.7%.
The fire was ignited with a 150-m long line and 2 min after
ignition, flame heights were ,2–2.5 m, with flashes up to 4 m.

The fire spread vigorously throughout the plot with sustained
flames heights of 4–5 m. Eight minutes after ignition, the main
flame front hit the northern border of the plot, concluding a

350-m head fire run (Planas et al. 2011).
The burn in the Woodland site was performed on 5 March

2008, in a 25-ha plot of a 22-year-old woodland dominated by

mallee eucalypts. The fuel complex in this plot was charac-
terised by a mallee overstorey 2 to 3 m tall and a shrubby
understorey that constituted the main fuel layer supporting fire

propagation. Air temperature was 368C and relative humidity
13%. The 10-m open wind speed averaged 17 km h�1, gusting
up to 36 km h�1. Sampled dead fuel moisture of dead suspended
fuels was 7%. The fire was ignited using a 250-m line and

initially spread in heath vegetation with flame heights averaging
4 m. As the fire burnt into mallee vegetation, crowning ensued,
with flame heights averaging 4.5m, and peaking at 10m.A short

lull in wind speed 5 min after ignition slowed fire propagation
and revealed multiple spot fires along the fire perimeter. As
wind speed increased again, the fire made an intense crown fire

run in the mallee vegetation, with flame heights between 8 and
10 m and spot fires developing 40–60 m ahead of the fire.

The Woodland site was used to study and characterise aerial
suppression efficiency (Plucinski and Pastor 2013). Thus, for the
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evaluation of the algorithm developed in the present work, only
those perimeters before the first aerial drop were used.

Both plots were filmed from a hovering helicopter equipped
with an IR camera. This camera operated within the 7.5–13-mm
range and stored sequences of IR images (240� 320-pixel) at an
approximate rate of 5 frames s�1. The helicopter was positioned

so that the majority of the plot was in view for the duration of
each fire. The images were georeferenced using beacons
deployed along the plot as referencing markers and georectified

assuming a flat terrain (see Fig. 7). Fire front positions were
extracted every 10 s to create isochrones and RoS maps for both
plots by applying a methodology for IR analysis described

elsewhere (Pérez et al. 2011).
The fire in the Shrub site lasted 370 s, giving 38 perimeters at

10-s frequency, although the initial 130 s are considered to be
within the artificial linear ignition and were discarded, leaving

25 perimeters available for the current algorithm validation (left
plot in Fig. 8). The fire in the Woodland site lasted 450 s but the
first drop discharge took place 240 s after ignition. Thus, taking

the perimeters from 60 s on to avoid the effect of the artificial
ignition, 19 perimeters at 10-s frequency were left for the
purpose of the current study (right plot Fig. 8).

Results and discussion

The two presented plots are chosen to illustrate the algorithm
performance when tested with real data. The wind speed and

direction invariants are initialised using approximate values
registered during the experiment (simulating the manner the

system could be used in a real operation). The Imfw invariant
initial value (Table 1) is calculated with Eqns 1 and 2. Required

parameters are taken from the standard fire behaviour fuel
model SH5 (Scott and Burgan 2005) corresponding to ‘Very
high load, dry climate shrubs’ and complemented with values of
moisture measured during the Ngarkat experiments (Table 1).

The moisture content was measured using the oven-dry method.
The upper limits for the invariants Imax

mfw and Umax are an upper
bound needed to set the optimisation problem. Their values were

set considering conservative maximum reasonable values for
the scenario. In the present examples, those values were never
reached.

The fuel depth d is considered homogeneous. The system is
tested using this approximation as in a real-case scenario where
an accurate fuel map might not be available. In the following
sections, different outputs of the system are separately evaluated.

Assimilation step

The first factor to validate the system at hand is the assimilation
stage. Only if the optimisation algorithm manages to find the

proper invariants that model the observed fronts will it be pos-
sible to launch a reliable forecast. The assimilating process is
iterative and stops when the percentage difference of the
invariants between two consecutives loops (named relative

error, xk) reaches a threshold of 0.05% as:

xk ¼
qik � qi�1

k

qbk
� 100 � 0:05 ð17Þ

Visible channel Raw IR channel

Geo-orthonomalised Isochrones extraction

(a) (b)

(c) (d )

Fig. 7. Shrub site composite of (a) the visible channel, (b) the raw infrared (IR) image, (c) the orthonormalisa-

tion of the image using reference points and (d ) the isochrone extractions and representation in a geographic

information system (GIS) interface. All the images represent t ¼ 210 s after ignition.
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where the index k represents each invariant, the superscript i each
loop iteration, and qbk is the invariant initialisation value.

Asmentioned before, the area between the curves is tracked to
check the correctness of the cost function. The absolute areal error
is calculated by summing all the enclosing areas between the

simulated front, Am
i , and the corresponding observed front, Aob

i :

ð18Þ

where � is the XOR logical operator, xareaabs is the absolute areal
error and the subscript i corresponds to a given assimilating time.

The match between simulated and observed fronts is evalu-
ated by three similarity indices:

1. SDI0 is the inverted shape deviation index (SDI) (Cui and
Perera 2010):

ð19Þ

2. Sørensen (Sørensen 1948):

ð20Þ

3. Jaccard (Jaccard 1901):

ð21Þ

The three similarity indices have a score range of [0–1], 1
being the best score, indicating identical shapes. Their main

difference is the denominator identification or, in other words,
the normalising factor. Because it is not clear which of the
mentioned indexes performs best to quantify simulation cor-

rectness (Filippi et al. 2014b), we analyse the three of them.
Fig. 9 shows six assimilated isochrones for theWoodland site.

The isochrone captured at 40 s after the ignition is used as the
initial perimeter xo. The subsequent assimilated isochrones span

10 s.The optimisation loop converges after three iterations and the
similarity indices are kept over 0.9, showing great resemblance.

The same procedure is applied to the Shrub site; in this case,

six isochrones spanning 10 s are assimilated. The first isochrone
corresponds to 140 s after fire ignition. The optimisation loop
converges after eight iterations (Fig. 10). The similarity indices

are over 0.9 for the three initial fronts and decrease to 0.8 owing
to imperfect simulation of the right flank. This flank showed an
extremely low RoS that could not be fully replicated by the
forward model as only one common lateral RoS (a) is resolved.

In both cases, the assimilation stage shows great ability to
model the front data regardless of the number of assimilated
isochrones.

Invariants convergence

The effectiveness of the algorithm relies on the individual

convergence of each invariant. Only if they are all individually
resolved will their value be meaningful and useful to run the

Table 1. All values needed to initialise the algorithm and their source

Variable Initial value Source

Shrub site Woodland site

SAV 4107m�1 4107m�1 SH5A

Mx 15% 15% SH5

b 2.06 � 10�3 2.06 � 10�3 SH5

Wo 1:45 kgm�2 1:45 kgm�2 SH5

Mf 7% 7:7% Measured

d 1:5m 1:4m Measured

U 0 4:16m s�1 4:7m s�1 Measured

I0mfw 0.388 s�1 0:664 s�1 Estimated

I0dir 0 rad 0 rad Estimated

Imax
mfw 10 s�1 10 s�1 Estimated

Umax 20m s�1 20m s�1 Estimated

AFuel model from Scott and Burgan (2005).

(a) (b)

Fig. 8. Shrub site (a) and Woodland site (b) burnt during the Ngarkat experiments campaign. Isochrones

plotted every 10 s are represented on GoogleEarth after georeferencing and orthonormalising. Map data:

Google, CNES/Astrium.
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forecast. For each assimilation, the convergence of the cost

function and the invariants’ individual convergence is tracked
and displayed in Fig. 11 and Fig. 12.

The invariant relative error (xk , Eqn 17) shows how far from

the final value the invariant was initialised. For the Woodland

site, the invariants converge to values of 0.542 s�1, 2.651 m s�1

and 0.569 rad (see Table 1), which represents a change from the

initial values of 500%,�80%and 25% (Fig. 11). Applying Eqn 3
and assuming an average fuel depth of 1.4 m, the Imfw invariant

can be expressed as a RoS with the value of 45.5 m min�1. This
value represents a RoS average for the whole perimeter during
the assimilation period and is in agreement with the values
reported in Planas et al. (2011) where RoS was found to range

between 20 and 60mmin�1 along thewhole perimeter. Thewind
speed and direction also had reasonable values although more
detailed data are not available for comparison.

The vector cost function calculated as Eqn 13 converges to
1.2 m (see Fig. 11), which indicates the average normal distance
between simulated and observed fronts. At the same time, the

sum of the absolute areal error for all perimeters converges to a
value of 1363 m2.

Similar results are obtained for the Shrub site (see Fig. 12). In
this case, invariants converge to the values 0.447 s�1, 5 m s�1

and 5.95 rad, which represent an average RoS of 10.4 m min�1.
The values observed in Planas et al. (2011) ranged from 5 to
40mmin�1. In this case, the average distance between simulated

and observed fronts is ,4 m whereas the areal distance is
2135 m2. As mentioned before, both convergence indicators do
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not follow exactly the same behaviour and the vector-based one
finds a minimum before stabilising. This highlights the need for
an areal-based cost function instead of a vector-based one.

Forecasting step

Once the invariants are resolved, we can launch a forecast using
the last assimilated isochrone as the initial perimeter (xo) and

propagate it with the forward model while assessing its effi-
ciency. For each case explored, the observed available fronts are
split into two groups. The first is used as data assimilation input

whereas the second group is reserved for evaluating the cor-
rectness of the forecast. In addition to the forecasting error, to
evaluate the appropriateness of the system, the lead timemust be
computed. The lead time is defined as the period of validity of

the model once the computational time is subtracted. In order

for the model to be operative, the lead time needs to be positive.
For the current exploration, we considered the forecast to be
valid as long as the SDI0 index was kept over 0.85.

Following the already defined scenarios, when five iso-

chrones are assimilated every 10 s in the Woodland site, the
lead time reaches 130 s as the similarity index gradually
decreases, reaching the 0.85 threshold (see Fig. 13). The forecast

run for the Shrub site, when six fronts are assimilated, yields a
larger lead time. Although the similarity indices decrease to 0.8
at 50 s, they stabilise at 0.9 for the rest of the available fronts, as

shown in Fig. 14.
From this point on, the fire behaviour in the right flank

changes, accelerating the rate of spread, and the forecasted front
is therefore underpredicted. The underlying cause might be due

to the fact that Rothermel’s model was initially derived for
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surface fire spread. As fire propagates through crowns, the
model is no longer valid, although a proper assimilation struc-
ture extends its validity as fire in the Woodland site was
erratically torching and crowning.

It is important to mention that the forecasting step can be
improved by adding extra layers of information, particularly
those that can change in time and space (i.e. fuels depth map,

wind speed and direction, etc.). If those layers are available, the
lead time can be improved as the present algorithm cannot
resolve time-dependent variables.

Assimilation window exploration

If the algorithm is to be used operationally, the consequences of
the amount and frequency of assimilated data need to be

investigated. The assimilation window (AW) is defined as the
number of fronts assimilated before launching a forecast. To
explore this, we use the Shrub site to run our assimilation and
forecasting system12 times, changing the number of assimilated

fronts. The assimilationwindow varies from 8 assimilated fronts
(i.e. 70 s) up to 19 assimilated fronts (i.e. 180 s) in the last run.
The last assimilated front is kept constant for all runs and cor-

responds to 190 s after ignition. Then, the forecast is launched to
generate the 18 fronts corresponding to the 180 s left of observed
data. The areal relative error is computed to assess the validity of

each forecast.
The results are shown in Fig. 15. As more fronts are assimi-

lated, the SDI0 index tends to stabilise at,0.87. It is interesting to

note that, for the current experiment, there is an optimum AW at
,11–12 assimilated fronts where the lead time is maximised and
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reaches 180 s. As more than 12 fronts are assimilated, the fronts
corresponding to times close to ignition are taken into account. In
particular, when 17 fronts are assimilated, the first assimilated

isochrone corresponds to 10 s after the ignition. At this stage, the
fire is still driven by initial acceleration effects, and thus the
forecast slightly overestimates the RoS and the forecasting areal

error tends to grow, dramatically decreasing the lead time.

Concluding remarks

We present a data assimilation framework that enhances a
Rothermel-based model to make it capable of forecasting

short-term wildfire dynamics even when using it beyond its
original applicability scenarios. The assimilation framework
previously applied to synthetically generated data is improved

to deal with real scenarios and tested in two large-scale
shrubland fire experiments conducted in South Australia,

yielding similarity index scores over 0.8 and obtaining positive
lead times of 130 and 160 s, depending on the scenario. The
system performance when changing the AW is explored to

conclude that the more fronts are assimilated, the better the
forecast validity, up to a point where the initial fire dynamics
perturb the forecast. Different forms of the weighting matrix

present in the cost function are also explored in depth although
improvement is limited.

Even though in the present work the available fire data last a

few minutes and extend up to several hundred metres, the
algorithm structure is envisaged to be applied at larger time
and space scales. At the operational level, the time required to

perform image processing tasks such as georeferencing and fire
front edge detection must be considered as they will directly
affect the lead time. Current work is being done to automate and
improve those tasks (Valero et al. 2015).
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In the future, the algorithm will be prepared to handle non-
flat terrain scenarios by interacting with digital terrain models
input beforehand. Time-varying inputs (such as wind speed or
moisture content) will be used to enlarge the lead time and take

full advantage of the available data. Space-dependent invariants
will be explored to handle fuel and fire dynamics heterogeneity.
Finally, the algorithm will be implemented recursively as we

believe that by running it systematically, the fire spread predic-
tion could be updated and extended to provide a sound opera-
tional tool.
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List of symbols, quantities and units used in
equations and text

Variables

A Fire area (m2)

a Lateral firelet propagation velocity (m s�1)
a Two-node adjacent angle (rad)
b Firelet partial front velocity, starting at the centre of the

firelet (m s�1)
b Fuel packing ratio (–)
c Firelet partial front velocity, starting at the ignition point

(m s�1)

d Euclidian distance (m)
d Fuel depth (m)
E Effective heating factor (–)
x Relative error (%)

xareaabs Absolute areal error (m2)
xpf Propagating flux ratio (–)
Fs Rothermel’s slope factor (–)

Fw Rothermel’s wind factor (–)
IR Reaction intensity (J m�2 s�1)
IU Wind speed invariant (m s�1)

Iy Wind direction invariant (rad)
Imfw Fuel–wind invariant (1 s�1)
J Cost function
LB Firelet length-to-breadth ratio (–)

M Forward model
Mf Moisture content (%)
Mx Moisture of extinction (%)

N Number of isochrones
n Number of front nodes
p Principal fire front node
~p Auxiliary fire front node
Qig Heat of preignition (J kg�1)
q Invariants vector

RoS Rate of spread (m s�1)
rb Bulk density (kg m�3)
SAV Surface area-to-volume ratio (m�1)
s Front discretisation parameter (–)

T Regridding angular threshold
t Simulation time (s)
U Mid-flame wind speed (m s�1)

W Weighting matrix
WO Oven-dried fuel loading (kg m�2)
x Set of front coordinates

y Slope–wind direction (rad)
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Fig. 15. Forecasting areal relative error for shrub site and 10 different assimilationwindows (from70

to 160 s, assimilating one front every 10 s). SDI is shape deviation index.
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Indices

f Final
i Isochrones index
j Node index
k Iteration index

m Simulated
max Maximum value
ob Observed

0 Initial
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Pérez Y, Pastor E, Planas E, PlucinskiM, Gould J (2011) Computing forest

fires aerial suppression effectiveness by IR monitoring. Fire Safety

Journal 46(1–2), 2–8. doi:10.1016/J.FIRESAF.2010.06.004

Perry GLW, SparrowAD, Owens IF (1999) AGIS-supported model for the

simulation of the spatial structure of wildland fire, Cass Basin, New

Zealand. Journal of Applied Ecology 36, 502–518. doi:10.1046/J.1365-

2664.1999.00416.X

Planas E, Pastor E, Cubells M, Cruz MG, Greenfell I (2011) Fire behaviour

variability in mallee-heath shrubland fires. In ‘5th International Wild-

land Fire Conference’, 9–13 May 2011, Sun City, South Africa.

PlucinskiM, Pastor E (2013) Criteria andmethodology for evaluating aerial

wildfire suppression. International Journal of Wildland Fire 22(8),

1144–1154. doi:10.1071/WF13040

Richards G (1990) An elliptical growth model of forest fire fronts and its

numerical solution. International Journal for Numerical Methods in

Engineering 30(6), 1163–1179. doi:10.1002/NME.1620300606

Richards GD (1993) The properties of elliptical wildfire growth for time-

dependent fuel and meteorological conditions. Combustion Science and

Technology 95(1–6), 357–383. doi:10.1080/00102209408935341

N Int. J. Wildland Fire O. Rios et al.

http://dx.doi.org/10.1016/J.PROCS.2014.05.109
http://dx.doi.org/10.1109/SCAM.2002.1134106
http://dx.doi.org/10.1007/3-540-28438-9_16
http://dx.doi.org/10.1071/WF13178
http://dx.doi.org/10.1016/J.ENVSOFT.2013.04.004
http://dx.doi.org/10.1016/J.ENVSOFT.2012.07.003
http://dx.doi.org/10.1016/J.ENVSOFT.2012.07.003
http://dx.doi.org/10.3808/JEI.201000174
http://dx.doi.org/10.1016/J.JOCS.2012.06.002
http://dx.doi.org/10.1016/J.JOCS.2012.06.002
http://dx.doi.org/10.3894/JAMES.2009.1.11
http://dx.doi.org/10.3894/JAMES.2009.1.11
http://dx.doi.org/10.14195/978-989-26-0884-6_29
http://dx.doi.org/10.5194/NHESS-14-3077-2014
http://dx.doi.org/10.1071/WF12202
http://dx.doi.org/10.1071/WF11117
http://dx.doi.org/10.1016/J.MATCOM.2007.06.001
http://dx.doi.org/10.1016/J.FIRESAF.2013.08.014
http://dx.doi.org/10.1016/J.CAMWA.2008.10.089
http://dx.doi.org/10.1016/J.CAMWA.2008.10.089
http://dx.doi.org/10.1109/MCS.2009.932224
http://dx.doi.org/10.1109/MCS.2009.932224
http://dx.doi.org/10.5194/GMD-4-591-2011
http://dx.doi.org/10.5194/NHESS-14-2829-2014
http://dx.doi.org/10.5194/NHESS-14-2829-2014
http://dx.doi.org/10.1071/WF06002
http://dx.doi.org/10.1007/B98874
http://dx.doi.org/10.1016/J.FIRESAF.2010.06.004
http://dx.doi.org/10.1046/J.1365-2664.1999.00416.X
http://dx.doi.org/10.1046/J.1365-2664.1999.00416.X
http://dx.doi.org/10.1071/WF13040
http://dx.doi.org/10.1002/NME.1620300606
http://dx.doi.org/10.1080/00102209408935341


Rios O, JahnW, Rein G (2014) Forecasting wind-driven wildfires using an

inverse modelling approach. Natural Hazards and Earth System

Sciences 14(6), 1491–1503. doi:10.5194/NHESS-14-1491-2014

Rochoux M, Emery C, Ricci S, Cuenot B, Trouvé A (2014a) Towards
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