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Abstract. Loss prediction models are an important part of wildfire risk assessment, but have received only limited
attention in the scientific literature. Such models can support decision-making on preventive measures targeting fuels or
potential ignition sources, on fire suppression, on mitigation of consequences and on effective allocation of funds. This

paper presents a probabilistic model for predicting wildfire housing loss at the mesoscale (1 km2) using Bayesian network
(BN) analysis. The BN enables the construction of an integrated model based on causal relationships among the
influencing parameters jointly with the associated uncertainties. Input data and models are gathered from literature and
expert knowledge to overcome the lack of housing loss data in the study area. Numerical investigations are carried out with

spatiotemporal datasets for the Mediterranean island of Cyprus. The BN is coupled with a geographic information system
(GIS) and the resulting estimated house damages for a given fire hazard are shown inmaps. The BNmodel can be attached
to a wildfire hazard model to determine wildfire risk in a spatially explicit manner. The developed model is specific to

areas with house characteristics similar to those found in Cyprus, but the general methodology is transferable to any other
area, as well as other damages.
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Introduction

Wildfire risk prediction is an important tool for firemanagement
planning because it can justify and guide fire risk-management
measures, including preventive measures targeting fuels (e.g.

thinning, pruning, mechanical treatments, prescribed burning)
(Ager et al. 2010) or elimination of potential ignition sources
(e.g. activities of the public), fire suppression (e.g. firefighting

crew allocation) and mitigation of consequences (e.g. property
insurance, education of citizens to make their homes fire resis-
tant). Wildfire risk is commonly defined as the expected net
value loss in a particular geographic area and time period

(Finney 2005). In recent years, significant effort has been
devoted to fire risk analysis across wildlands, leading to meth-
odological advances and the development of advanced tools

(Finney 2006; Miller and Ager 2013).
In most forest landscapes, the highest wildfire risks are

associated with houses damaged by forest fires. Therefore, the

development of a method for assessing housing losses is an
important step towards improved decision support for authori-
ties and private owners. Significant research efforts are devoted

to improved prediction of housing losses due to wildfires.
Studies focus on the analysis of past house losses, either
concentrating on the documentation of the events (Lynch
2004; Xanthopoulos 2008) or providing in-depth analysis and

discussion (Gibbons et al. 2012; Syphard et al. 2012). Other

studies use spatial simulation of fires (Ager et al. 2010; Salis
et al. 2013; Mitsopoulos et al. 2015; Platanianaki et al. 2015).
Only few studies compare model predictions with real-world

data (Cohen 2000, 2004).
In general, it has been found that house losses due towildfires

are mainly influenced by fire characteristics (fire intensity,

spread rate, burning ember density), by house location,
surroundings (defensible space, distance from forest, fuel accu-
mulation), design and construction materials, and by fire
suppression effectiveness. The fire impact may be at various

intensity levels and may include convective heating or direct
contact of the flames, radiant heat flux from nearby flames and
airborne firebrands (Cohen 2000; Koo et al. 2010; Mell et al.

2010). Focusing on the effect of meteorology on fire character-
istics, Blanchi et al. (2010) analysed the relationship between
house loss and the fire weather under which it occurred and

found that virtually all of the losses occurred under extreme
conditions. Harris et al. (2012) considered a measure of the
power of the fire (PWR), calculated as the product of Byram’s

fireline intensity (Byram 1959) and a portion of the length of the
fire perimeter, and showed the existence of a strong relationship
between community loss and PWR. Gibbons et al. (2012)
examined the effectiveness of fuel management on decreasing
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house losses and found that all fuel treatments were more
effective when undertaken closer to houses.

The vulnerability of a house is usually determined by its

weakest point (Xanthopoulos 2004). Inmost cases, houses either
survive a fire or are totally destroyed; partial damage is less
common (Blong 2003). Structure flammability depends on

exterior construction materials (e.g. roof type and roof material
influence the ignition by firebrands (Koo et al. 2010; Gibbons
et al. 2012)) and construction design (e.g. number, size and

characteristics of openings). The most fire-resistant roofing
materials that also remain effective under severe fire exposure
are metal, clay tile and asphalt shingles (Forest Service British
Columbia (FSBC) 2003). In addition, houses are not only a loss

potential, but also serve as potential fuels (Cohen 2000).
Therefore, building density is also included in studies of house
losses due to wildfires (Gibbons et al. 2012; Syphard et al.

2012). However, for areas where houses are built with less
flammable materials than those in Northern America and
Australia, such as the Mediterranean region, this may be less

relevant (Xanthopoulos et al. 2012). Poor firefighter access may
explain why housing clusters with fewer roads are more vulner-
able (Butler and Cohen 1998). Finally, there is significant

variability in behaviour under fire even for houses with the
same characteristics. Occasionally, houses with low ignitability
can be destroyed even during low-intensity fire events, whereas
houses with high ignitability can sometimes survive high-

intensity fires (Cohen 2000).
Despite the insights intowildfire-related housing loss that are

provided by these studies, there is currently no broadly accepted

generalised predictive model that would allow performing cost
assessments at sites other that the ones for which studies have
been carried out. Reports on community wildfire protection

plans use damage rating systems to assess consequences
(Ohlson et al. 2003; Oregon Forestry Department (OFD)
2004; ECONorthwest 2007). Rating systems are also often used
to evaluate the vulnerability of items at risk on the basis of expert

knowledge (Tutsch et al. 2010; Penman et al. 2013).
The interdisciplinary domain knowledge needed to predict

house loss requires model frameworks that can account for the

interdependencies among the processes involved. Bayesian
networks (BNs) are well suited to combine interdisciplinary
models (Straub andDer Kiureghian 2010). They combine expert

knowledge with quantitative models and data and can be
modified when additional information is available. For these
reasons, BNs are an ideal modelling framework for a quantita-

tive system for the assessment of the consequences of a natural
hazard. For example, they have been used in assessing volcano
hazards (Aspinall et al. 2003), rock-fall hazards (Straub 2005),
seismic hazards (Bayraktarli et al. 2005; Li et al. 2012; Bensi

et al. 2014), avalanches (Grêt-Regamey and Straub 2006),
floods (Vogel et al. 2013), tsunamis (Blaser et al. 2009) and
landslides (Song et al. 2012). Applications of BNs to wildfires

include the prediction and assessment of wildfire occurrence
and burn severity (Dlamini 2010; Sunderman and Weisberg
2012; Papakosta et al. 2013; Zwirglmaier et al. 2013), wildfire

spread (Dahmani and Hamri 2011), effectiveness of wildfire
management measures such as fuel treatment and fire suppres-
sion (Penman et al. 2011, 2014), ecological consequences of
wildfires (Howes et al. 2010), risk of human fatality from fires in

buildings (Hanea and Ale 2009), fire spread in buildings (Cheng
and Hadjisophocleous 2009) and wildfire causes (Biedermann
et al. 2005).

In the present study, we propose a methodology to quantify
economic loss to housing at a resolution of 1 km2. This
methodology accounts for the lack of data and the variability

among data types and sources, and facilitates incorporation of
expert knowledge. It is based on a BN model that includes
variables expressing hazard characteristics, houses at risk and

their susceptibility, and fire suppression.
As a case study, the proposed BN is applied to Cyprus. The

parameters of the model (initial probability distributions) are
developed with both data and expert knowledge. Past wild-

fire disaster events in Cyprus from the period 2006–10 are
chosen to demonstrate the model’s ability to predict housing
economic loss (in h). For given hazard characteristics, the

information is propagated through the Bayesian network and
the model predicts expected housing economic loss (HEL). We
examine the influence of the model parameters (including fire

management options) on HEL. The BN is coupled with a
geographic information system (GIS) and maps of expected
economic losses for given wildfires are provided to illustrate the

results. The predictions are compared with the damages regis-
tered in the NatCatSERVic.E database (https://www.munichre.
com/de/reinsurance/business/non-life/natcatservice/index.html,
accessed 14 November 2016) of the reinsurance company

Munich Re. The model presented can potentially be transferred
to other regions with similar hazard and house characteristics.

Methodology

Study area

The parameters of the proposed BN model are learnt for
the Mediterranean island of Cyprus. The study area covers
5285 km2. The state forests of Cyprus are made up of the fol-
lowing plant communities: Pinus brutia (accounting for more

than 80% coverage), Pinus nigra, mixed Pinus brutia–nigra,
Cedrus brevifolia, mixed Cedrus brevifolia–Pinus brutia,
Quercus alnifolia, mixed Pinus brutia–Quercus alnifolia,

Eucalyptus spp. and riverine communities. The private forests in
Cyprus in addition to Pinus brutia also include stands of
Cupressus sempervirens, Ceratonia siliqua, Olea europaea,

Juniperus phoenicia andQuercus infectoria. Furthermore, there
is significant coverage ofmaquis and garrigue vegetation, which
is foundmainly on private land (Department of Forests,Ministry

of Agriculture, Cyprus, http://www.moa.gov.cy, accessed 16
November 2016).

The topography of the island is dominated by the densely
forested Troodos Range with Mount Olympus at 1953 m being

its highest peak; to its north lies the central Messaoria plain
while many coastal valleys surround it along the southern
coast.

Owing to its Mediterranean climate, Cyprus is prone to fires.
In the 2006–10 period, the annual mean occurrence rate of fires
was 5.5� 10�5 fires day�1 km�2 and the average total burnt area

was 21 km2 year�1 (Papakosta and Straub 2015). Fires of all
sizes were recorded, with 10% of recorded fires being less than
0.01 ha (100 m2). The total number of recorded fires in 2006–10
was 616, which corresponds to a mean annual number of fire
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occurrences of 123 (Fig. 1). The mean burnt area of the fires is

0.17 km2 and the standard deviation is 0.92 km2. The maximum
burnt area recorded in 2006–10 was 13.62 km2 (Papakosta
2015).

Besides human safety, the main assets at risk on Cyprus are
buildings, protected natural habitats and agricultural areas
(Fig. 2).

Risk assessment framework

In risk assessment for natural hazards, varying conventions are
applied, and the terminology is not unified even within the
forestry world (Hardy 2005). We therefore briefly summarise
the concept and terminology of risk as used in the current paper.

Inmany areas of natural hazard risk assessment, it is common
to express risk as a function of hazard, vulnerability and expo-
sure; the latter is also known as value at risk, and characterises

the damage potential. Vulnerability describes the response of the
affected system to the hazard, e.g. the probability of a house
being destroyed by a specific fire. This framework dates back to

1980 (Office of the United Nations Disaster Relief Co-ordinator
(UNDRO) 1980) and is commonly used in earthquake (Carreño
et al. 2007), flood (Kron 2002) or landslide (Guzzetti et al. 2005)

risk assessments; it has also been adopted by the International
Panel on Climate Change (IPCC) (Cardona et al. 2012).

The hazard H describes the hazard process in probabilistic
terms, e.g. bymeansofoccurrenceprobabilities for different types

and magnitudes of events. Therefore, fire hazard in this study
refers to both the occurrence and intensity of the phenomenon.
This is similar to Scott (2006), who characterised wildfire hazard

with burn probability, fireline intensity and a composite index. It
is, however, in disagreement with the common approach of tying
hazard only to the contribution of the forest fuels to fire danger

(Hardy 2005; Miller and Ager 2013).
In spite of these differences, it is commonly agreed that risk

is the expectation of losses (UNDRO 1980; Finney 2005).

Using the above definitions, the risk to an asset (or resource) j

is mathematically expressed as

Riskj ¼
Z

Hazard
scenarios h

pH ðhÞ
Z

damage
scenarios d

pDjjH djhð ÞCjðd; hÞ dd dh

ð1aÞ

wherein pHðhÞ is the probability (density) of a particular wildfire
hazard event. pDjjH djhð Þ is the vulnerability of asset j, which
describes the probability of damage d conditional on a hazard

event h. Cðd; hÞ is the economic loss associated with the hazard
and the damage scenario, it is a measure of exposure.

Wildfire risk has previously been defined as (Finney 2005;

Miller and Ager 2013):

Riskj ¼
X
i

PrðFiÞRFjðFiÞ ð1bÞ

where PrðFiÞ is the probability of a fire at intensity level i and
RFj is the response function of resource j as a function of fire

intensity level j (Miller and Ager 2013). PrðFiÞ corresponds to
pHðhÞ, with the difference that the hazard (a fire at a specific
intensity level) is modelled by a discrete number of scenarios;
hence the integral in Eqn 1a is replaced by the summation. The

inner integral in Eqn 1a corresponds to the response function:

RFj ¼
Z

D

fDjjH djhð ÞCðd; hÞ dd ð2Þ

This integral considers that a fire with a given intensity level h
can lead to different responses, depending on which damages d
occur. In this study, this response function is developed for

damage to housing.

(a)

(b)

0
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10.00–15.00

6.00–10.00

3.00–6.00

1.00–3.00

0–0.01

Burnt area 2006–10 (km2)

0.10–1.00

0.01–0.10

10 km

Fig. 1. Cyprus study area: (a) municipalities; (b) fire events during 2006–10 classified by burnt

area (km2). (For colour figure, see online version available at http://www.publish.csiro.au/nid/17.

htm.)
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Consequences can be classified based on their ability to be
measured by market values as either tangible (e.g. house

damage) or intangible (e.g. cultural heritage losses). Conse-
quences can furthermore be classified according to whether they
are direct (e.g. house damage) or indirect (e.g. erosion on slopes

following the destruction of a stabilising forest). Tangible direct
damages can be measured by the costs of repairing or replacing
damaged assets, whereas intangible direct damages may often

be measured in terms of number of affected items (Paul 2011).
In order to quantify consequences, vulnerability and expo-

sure indicators are identified, which are related to the degree of
loss and the items at risk by means of a BNmodel. Selecting the

appropriate indicators is crucial for an accurate assessment of
vulnerability and exposure. Indicators should be relevant, mea-
surable, easy to interpret, and analytically and statistically sound

(Birkmann 2006).

Bayesian networks

BNs are directed acyclic graphs and consist of nodes, arcs and

probability tables attached to the nodes (Jensen and Nielsen
2007). In a discrete BN considered here, each node represents a
discrete random variable whose sample space consists of a finite

set of mutually exclusive states. The arcs describe the depen-
dence structure among the random variables.

A conditional probability table (CPT) is attached to each of
the nodes, defining the probability distribution of the random
variable conditional on its parents. The full (joint) probabilistic

model of the random variablesX ¼ X1; . . . ;Xn½ � in the BN is the
joint probability mass function (PMF), pðxÞ ¼ p x1; . . . ; xnð Þ. By
making use of the independence assumptions encoded in the

graphical structure of the BN, this joint PMF is equal to the
product of the conditional probabilities (Kjaerulff and Madsen
2013):

pðxÞ ¼
Yn
i¼1

pðxijpaðxiÞÞ ð3Þ

wherein paðxiÞ are realisations of the parents of Xi. Eqn 3 states
that the joint PMFof all randomvariables in the BN is simply the
product of the conditional PMFs of each individual random

variable given its parents. Therefore, the graphical structure of
the BN and the conditional PMFs PrðxijpaðxiÞÞ specify the full
probabilistic model of X ¼ X1; . . . ;Xn½ �.

Urban/Rural

Distance to fire station (km)

Land cover types

Urban

Rural

0–5

5–10

10–15

15–25

1: Urban, wetland, pasture

7: Open spaces

0–1.8

1.9–17.3

17.4–151.9

152.0–1317.4

N

House density (no. km�2)

6: Shrubs/herbaceous

4: Heterogeneous agriculture
3: Permanent crops
2: Arable land

5: Forests

(a)

(b)

(c)

(d)

0 10 km

Fig. 2. Exposure indicators for Cyprus study area: (a) urban/rural land; (b) distance to next fire station

(km); (c) land-cover types; (d) house density (no. houses km�2).

Economic losses to housing by Bayesian networks Int. J. Wildland Fire 13



Inference in BNs is performed by computing the conditional
probabilities of selected variables given the available data on

other variables. Efficient algorithms for performing these
computations are implemented in software such as GeNIe

(http://genie.sis.pitt.edu/, accessed 14 November 2016) or

HUGIN (http://www.hugin.com/, accessed 14 November
2016). The latter is employed in this study. However, in the
context of wildfire consequence assessments, the advantage of
the BN is not its computational effectiveness but that it facil-

itates the combination of information from various sources into
a single model.

We propose the BN model of Fig. 3 for assessing conse-

quences to houses caused by wildfires. Houses are defined here
as separate households contained within a multi-unit apartment
building (dwelling unit) (Statistical Service 2010). The BN

structure is based on phenomenological reasoning, the authors’
experiences and existing models, such as a fire-containment
model. The present version of the model reflects the availability

of data that can be used for defining and learning the model
parameters, and may be modified if additional data become
available. Table 1 summarises the definitions of the variables
and the corresponding data sources. We remind the reader that

the spatial resolution of themodel is 1 km2,which is of relevance
for the definition of the variables.

The BN includes variables that correspond to (1) hazard,

(2) exposure, (3) vulnerability and (4) costs (Fig. 3). Connecting
arcs show the causal relationships among the variables. The BN

models the probabilistic relation between the hazardH , damage
D and cost C, to compute the response function to a given

wildfire hazard following Eqn 3. The BN thereby automatically
performs the integration (or summation) over the possible
damage states, d.

(1) Wildfire hazard H is characterised by the variables Fire
type, Burnt area and the Fire Weather Index (FWI) of the
Canadian Forest Fire Weather Index System, a numeric rating
of fire intensity, used as a general index of fire danger as

influenced by weather conditions (Lawson and Armitage
2008). In the BN applied here, FWI influences only the result
of suppression effectiveness. No link of FWI to the Burnt area

and the Fire type is included. The reason for this omission is that
in the present study, we account for specific hazard character-
istics and are not interested in modelling the hazard itself.

However, in a full risk analysis, these links must be included,
as shown in Papakosta et al. (2014). Fire type distinguishes
between a surface fire with flame length ,3.5 m, a surface fire

with flame length.3.5 m and a crown fire (Table 1). Burnt area
represents the extent of the wildfire. Through the link to Fire

type, the variable Burnt area also provides information on
wildfire severity, because it influences the posterior probability

distribution of the variable Fire type. The variables describing
the fire hazard typically result from a fire hazard model
(Papakosta and Straub 2013; Zwirglmaier et al. 2013). As our

interest in the present study is in the response to a given hazard h
according to Eqn 3, these models need not be included here (the

   House stock
Distance to 

next fire station

Time for 
ground attack

House damages

Fire type

House density

Construction value

House damage
 costs

Urban/Rural

Burnt area

Fire containment 
in 24 h

Construction type

Hazard

Exposure Vulnerability

Costs

Land cover type

Vegetation type

FWI

Air suppression

Fig. 3. Bayesian network (BN) for consequences to houses caused bywildfires. Influencing variables are classified into hazard, exposure,

vulnerability and economic loss variables. The BN estimates housing economic loss in 1 km2. FWI, Fire Weather Index.
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Table 1. Description of Bayesian network (BN) variables and data sources for the definition of the conditional probability tables

Discretisation varies based on data (e.g. Fire type) or established classification (e.g. Fire Weather Index, FWI), WUI, wildland–urban interface

Variable No. of states States Source of probability distribution and additional information

Fire type 3 1 1: Surface fire with flame length ,3.5 m

2 2: Surface fire with flame length .3.5 m

3 3: Crown fire

Classification based on fire events in WUI Greece 1993–2003

Burnt area (km2) 7 0–1� 10�12 Historical fire events (2006–10)

1� 10�12�0.01 Data source: Department of Forests, Ministry of Agriculture Cyprus

0.01–0.1

0.1–1

1–3

3–10

10–30

Distance to next

fire station (km)

3 0–5 Edited from fire station locations

5–10 Data upon request: Cyprus Fire Service (http://www.fs.gov.cy)

10–30

Time for ground

attack (min)

4 5–10 Ground troop response time assumed to be 5 min

10–15 Conditional on distance to next fire station

15–20 Vehicle travel velocity assumed 70 km h�1

20–25

FWI 4 0–10 FWI calculated from interpolated weather data from five weather stations

10–30 Source: Deutscher Wetterdienst (DWD), Cyprus Meteorological Service

(Papakosta and Straub (2015)30–60

60–120

Land cover 7 1: Urban or wetland

or pastures

Edited from Corine Land Cover map (version 13), created by the European

Environment Agency (http://www.eea.europa.eu/legal/copyright, accessed

14 November 2016)2: Arable land

3: Permanent crops

4: Heterogeneous

agriculture

5: Forests

6:Shrubs or herbaceous

vegetation

7: Open spaces

Vegetation type 4 Grass Conditional on land-cover types

Forest Edited from Corine Land Cover map (version 13)

Shrub

No burn

Air suppression 2 No No: 50%

Yes Yes: 50%

(Initial probability that air suppression will be performed assumed)

Fire containment

in 24 h

2 Yes Conditional on vegetation type, FWI, air suppression, time for ground attack

No Probabilities calculated based on regression models from Plucinski et al. (2012)

Urban or rural 2 Urban Classified based on population density values: urban .120 residents km�2

Rural Rural ,120 residents km�2

House stock 2 40s_25r_35a s: Single houses

70s_20r_10a r: Row houses

a: Apartments

(%)

Probabilities from data from Statistical Service (2010)

Construction type 2 5t_15s_80i t: Traditional house, stone or mud wall

10t_25s_65i s: Single brick wall or flat roof house

i: Insulated brick or inclined roof

(%)

Edited from Statistical Service (2011)

Florides et al. (2001, p. 228)

Nemry and Uihlein (2008, p. A147)

Probabilities from data (Statistical Service 2010)

(Continued)
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hazard characteristics h are provided as an input to the conse-
quence model).

As a rule, more intense wildfires, i.e. those with longer flame

lengths, are more difficult to extinguish and thus result in larger
burnt areas (Rothermel and Deeming 1980). In the proposed
model, there is an arc from Burnt area to Fire type, which is
contrary to the causality among these two variables. Such a

contra-causal connection is possible in BNs, but care is needed
to ensure that the overall dependence structure among variables
is consistent with reality (Straub and Der Kiureghian 2010). The

arc is introduced here in view of an extension to a larger BN,
which includes fire size prediction, i.e. a model that predicts
Burnt area (Papakosta et al. 2014). The variableFire type and its

probabilities conditional onBurnt area are ideally defined based
on data. As no data on Fire type are available for Cyprus, a
dataset is used that includes the Fire type, the resulting Burnt

area and theHouse damages of 195 fire events that took place in
the wildland–urban interface (WUI) in Greece in the 1981–2003
period. These fire events resulted in 442 heavily damaged
structures. Wildfire conditions in Greece are generally consid-

ered similar to those in Cyprus, as both countries have a
Mediterranean climate and similar forest vegetation. Fig. 4
shows a boxplot of fire type versus resulting burnt area for the

Greece data used to learn the CPT of Fire type.
(2) Exposure nodes in the BN describe the exposure of the

system (items at risk).Urban or Rural discriminates urban from

rural areas, which influences House density (house km�2) and
House stock. House stock accounts for the house type portfolio
at the mesoscale. It describes the relative distribution of house

types in 1 km2, which include single houses, semi-detached or
row houses, and apartments. Specifically for the study area,
House stock can be in one of two states: 40s_25r_35a, meaning
that 40% of the houses are single houses, 25% row houses and

35% apartments, and 70s_20r_10a, meaning 70% single hous-
es, 20% row houses, 10% apartments (Table 1). The definition

of House stock should be adjusted when modelling at different
scales and for other regions. The vulnerability of House stock

classes (single houses, row houses, apartments) based on the
possible flammability of their surroundings is considered to be
high for single houses, medium for row houses and low for

apartments (Long and Randall 2004; OFD 2004). The house
stock classification influences the costs of rebuilding, which is
taken here as the construction value of the houses in monetary

terms. The above variables were chosen to represent the
exposure of the houses based on their arrangement and sur-
rounding conditions. At the applied mesoscale, the portfolio

Table 1. (Continued)

Variable No. of states States Source of probability distribution and additional information

House density

(houses km�2)

6 0–3 Based on no. dwellings (houses) statistics and municipality borders

3–10 Data source: Statistical Service 2010

10–30

30–100

100–300

300–1000

1000–3000

Construction value 4 0–10 Customised to house stock based on mean value and range for each building type,

(� 103 h) 10–50 data from:

50–100 Statistical Service 2010

100–500

House damages 3 No damage Conditional on fire type based on fire events in WUI Greece 1993–2003

Minor: ,20% Conditional on fire containment, assumed 60% minor, 40% major

Major: .20% Conditional on construction type based on scores from:

Oregon Forestry Department (OFD) (2004, pp. 11–12)

ECONorth-west (2007, appendix C, p. C-8)

Conditional on house stock (defensible space) based on scores:

OFD (2004, pp. 11–12)

10�3

10�2

10�1

100

101

102

1 2 3

Fire type
1: surface(FL � 3.5 m), 2: surface(FL � 3.5 m), 3: crown

B
ur

nt
 a

re
a 

(k
m

2 )

Fig. 4. Boxplot of Burnt area (km2) versus Fire type in the wildland–urban

interface (WUI) areas of Greece (1993–2003). Fire types: 1 ¼ surface fire

(flame length,3.5 m); 2 ¼ surface fire (flame length.3.5 m); 3 ¼ crown

fire.
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of the variable House stock is the combination of house types
in each 1-km2 spatial unit and is defined specifically for the
study area. Fig. 2 shows selected exposure indicators of the

study area.
(3) Fire containment in 24 h and Construction type are

vulnerability nodes. The parents to the vulnerability variable

Fire containment in 24 h are chosen based on Plucinski et al.
(2012), where a logistic regression analysis is performed to
determine the effect of multiple variables on fire containment.

The probability of successful Fire containment in 24 h is
modelled as:

PrðFire Containment in 24 hÞ ¼ b0 þ b1 � FFDI or GFDI

þ b2 � Time for ground attack þ b3 � Air time ð4Þ

where bx are the parameters of the model or regression coeffi-
cients, FFDI is the Forest Fire Danger Index and GFDI is the
Grass Fire Danger Index, which were developed for Australia

(McArthur 1967). Which of the two should be used depends on
the vegetation type (forest, shrub, grass). Here, FFDI or FGDI
are adapted to the FWI according to Dowdy et al. (2010).

Time for ground attack and Air time are the time needed by
ground and air suppression crews to reach the fire. In the BN,
Time for ground attack (min) is modelled as a function of the

Distance to next fire station (km), which describes the shortest
distance to the next fire station. The response time of the ground
firefighting group is defined as 5min. Themean vehicle velocity
is assumed to be 70 km h�1. The response time of the air

firefighting group is 10 min with a mean aircraft travel time of
306 km h�1 (190 mph). Land cover types refer to the land cover
type nomenclature of the Corine Land Cover (Coordination of

Information on the Environment Land Cover, CLC) created by
the European Environment Agency (EEA) (http://www.eea.
europa.eu/legal/copyright, accessed 14 November 2016) and

influence the variable Vegetation type. Vegetation type can be
grass, forest, shrub and non-burnable. Air suppression can
be either present or absent (yes or no). The above variables

are chosen to express the suppression result and how it influ-
ences the house damages.

Construction type categorises the houses based on the con-
struction materials and roof type. It represents a portfolio of

construction types found in the 1-km2 cell, and includes con-
struction materials such as stone or mud, single or insulated
brick, and roof types such as flat concrete or inclined roof with

tiles (Table 1). The definition of Construction type may be
modified when modelling at different scales and for different
areas. The vulnerability node House damages represents the

degree of damage to the house portfolio in the cell. Vulnerability
is influenced by Fire type, Fire containment in 24 h, Construc-
tion type and House stock. It is expressed as percentage of

houses totally destroyed in 1 km2. As House damages refers to
the portfolio in the cell, it is expressed as the percentage of
destroyed houses (Table 1). The definition of the CPT of House
damages can vary based on themodelling scale and the available

dataset. Here, the CPT ofHouse damages results from a normal-
ised summation of the individual contributions to the damage
from each of the influencing variables. The influence of Fire

type on House damages is quantified using the Greek dataset.

The failure of Fire containment is assumed to lead to minor
House damages with 60% probability and major House

damageswith 40% probability. TheConstruction type of houses

in Cyprus includes mainly three types of structures. Traditional
houses, mostly built in the period before 1945 with stone or mud
walls and roofs with wood parts (Nemry and Uihlein 2008), are

considered the most vulnerable. The vulnerability of houses
built with single brick walls and flat reinforced concrete roofs in
the period 1946–70 (Nemry and Uihlein 2008) is considered to

be lower, and newer houses with insulated brick walls and
inclined roofs with ceramic tiles are the most fire-resistant.

(4) The node Housing economic loss (HEL) in Fig. 3
expresses the housing economic loss in the 1-km2 cell as the

product of House damage, Construction value, House density

and Burnt area. HEL is expressed in monetary terms (h).

Coupling with GIS

TheBNmodel is coupledwith aGIS for both parameter learning
and output mapping. GIS layers are used as inputs for some BN

nodes and the spatially referenced output of the BN is returned
and visualised in the GIS. First, the spatial information is
managed in a geodatabase and attached to a 1 km2 grid. ArcGIS

10.1 is used for geospatial analysis and mapping (ESRI 2012).
The CPTs of the BNmodel are trained with the attribute table of
the grid, which combines the attributes of the GIS layers. After

the learning process, the BN model is applied to additional
spatial datasets for predictions. The new dataset is initiated as
evidence on the BN nodes and the target node is updated via
inference based on the trained CPTs. The output of these cal-

culations is the expected losses (in h) in each 1-km2 cell of the
study area. Evidence propagation is conducted as batch propa-
gation within the BN software shell (HUGIN).

The BN is run separately for each of the grid cells. Note that
spatial dependence between cells is represented through the
dependence of the observed indicator variables, but not through

the BN itself.

Results

The expected HEL estimated by the BN model for an average
cell of the study area conditional on a fire occurring is 18 635 h.
To obtain this result, the BN is evaluated without any infor-

mation, i.e. all influencing variables are represented by their
probability distributions reflecting an average 1-km2 area on
Cyprus.

Fig. 5 illustrates the BN estimate of the HEL conditional on a
fire with the lowest hazard conditions, i.e. with a burnt area
,0.01 km2 and of fire type 1 (surface fire with flame length
,3.5 m). The average HEL in a 1-km2 cell over the study area is

331 h. In each node of Fig. 5, the posterior marginal distribution
of the variable is shown together with the expected HEL, given
the corresponding state. As an example, were the FWI fixed to

its largest value of 60–120, with all other parameters left
unaltered, the expected HEL would increase to 580 h. For
different land-cover types, the expected HEL varies from 0

(for urban areas and wetlands) to 588 h (for forested areas).
Areas with forests (land cover type: 5) are expected to have the
highest HEL, followed by shrubs (land cover type: 6) and
permanent crops (land cover type: 3).

Economic losses to housing by Bayesian networks Int. J. Wildland Fire 17
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As expected, HEL increases proportionally with burnt area
(Fig. 6).When burnt area. 1 km2, it exceeds the total area of the

cell. In such a case, if burnt area were visualised as a circular
buffer zone from the cell where fire occurred, this burnt area
circle would also intersect with neighbouring cells. In this case,
and because we still want to include bigger burnt areas in the

study, for simplification, the neighbouring cells are assumed to
have similar characteristics to the ‘fire’ cell (where fire occurs)
and this would result in similar losses. The losses for the ‘fire’

cell when burnt area . 1 km2 are thus overestimated, because
they include losses that are expected in neighbouring cells if
they are similar to the ‘fire’ cell. The effect of Fire type can be

studied by fixing this variable while leaving all others without
evidence; the expected HEL varies between 7.6 � 103 h (Fire
type ¼ 1) and 57 � 103 h (Fire type ¼ 3).

To assess the sensitivity of HEL to the model variables and
their variability, we compute the variance (and standard devia-
tion) of HEL with respect to each individual variable. This
variance-based sensitivity analysis is global, i.e. it accounts for

the interaction among the input variables and the non-linearity
of the model (Saltelli et al. 2008). The variables with the highest
influence onHELare (in decreasing order)House damage,Burnt

area, Fire containment in 24 h, House density, Urban/rural,
House stock, Construction value, Fire type, Air suppression,
Vegetation type, Land cover, FWI, Construction value, Time for

ground attack and Distance to next fire station (Fig. 7). The
variable House stock is deterministically related to the variable
Urban/rural, and hence their effect on HEL is the same.

Two examples of past fire periods were selected to compare

the estimated HEL with available observations (Fig. 8). Based
on the hazard characteristics (Burnt area and FWI) and the
exposure and vulnerability indicators, the model estimates the

expected HEL for each cell (1 km2) in which a fire occurred.
The results vary from 0 to 570� 103 h. The aggregated expected

HEL from all fire events in the periods is also provided. The BN
model gives results that are in agreement with actual recorded

losses (Table 2). However, the NatCatSERVICE database
(Munich Re) gives information on the number of houses
damaged, and not on the resulting HEL, which hinders direct

verification of the BN results. It is also noted that the BN model
provides expected (mean) values, which do not have to coincide
with the actual observed losses for a single event.

On the assumption of a specific fire occurring throughout the

entire study area, it is possible to get estimates of the HEL in
maps (Fig. 9). The specifics of the assumption (Burnt area, Fire

Fig. 5. Expected housing economic loss for average cell, estimated for burnt area ,0.01 km2 and fire type 1 (screenshot from HUGIN).
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Fig. 6. Housing economic loss (h) conditional on burnt area (km2)

estimated by the proposed Bayesian network.
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Fig. 7. Global sensitivity of housing economic loss to individual variables, as expressed by the

individual contribution of each variable on the standard deviation of HEL (see Table S1 in online

supplementary material).
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Fig. 8. Expected housing economic loss (HEL) (h) for days and locations where fires occurred in the

period (a) 20 June 2007–16 July 2007; and (b) June 2008 in the Cyprus study area.
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type and FWI) are based on data for the prefectures of East
Attica, West Attica, Corinthia and Viotia as reported by

Xanthopoulos et al. (2014). As expected, the HEL under more
destructive fire (Burnt area ¼ 0.4 km2, Fire type ¼ 1–3) and
dryer vegetation conditions (FWI¼ 60) is higher than under less

destructive and easier-to-contain fires (Burnt area¼ 0.003 km2,
Fire type ¼ 1) and humid vegetation conditions. Urban areas
have the lowest conditional HEL, owing to the lack of flamma-
ble vegetation and a higher probability of fire containment. The

peri-urban areas, which represent the coexistence of residential
areas and natural vegetation, have the highest expected HEL
values for a given fire hazard. Forested areas also exhibit an

above-average expected HEL (see also Fig. 2c).

Discussion

Predictive models for quantitatively estimating consequences to
houses are an important component of wildfire risk assessment.
Our aim is to present a methodology than can be used in

assessing different types of damages and can be useful in cases
of variable data sources or even lack of data. The model should
be able to incorporate other existing models. Moreover, we are
interested in evaluating the influence of different variables on

the damage economic loss. The model should be able to predict
damage economic loss for given fire characteristics in monetary
values at a 1-km2 spatial resolution.

The model shows that the WUI is expected to experience the
highest damages, a result that agrees with previous studies

Table 2. Aggregated expected housing economic loss (HEL) comparedwith registered losses (NatCatSERVICE) for two past fire periods in 2007 and

2008 on Cyprus

n.a., not applicable

Fire period Aggregated burnt

area (km2)

Aggregated estimated

expected HEL (h)

Losses as recorded in

NatCatSERVICE service

Estimated losses (h)A

20 June 2007–6 July 2007 34 1.11� 106 Several buildings n.a.

June 2008 19.54 761� 103 5 houses 728� 103

AEstimated losses¼NatCatSERVic.E service � mean house construction value (145 684 h).

(a)

(b)

0 5 10
N

1000–3000
3000–10 000
10 000–30 000
30 000–100 000
100 000–300 000
300 000–1 000 000
1000 000–3 000 000
3 000 000–10 000 000

0–100

Burnt area � 0.003 km2, Fire type � 1, FWI � 3

Burnt area � 0.4 km2, Fire type � 1–3, FWI � 60

300–1 000
100–300

20 km

Expected house damage (  )

Fig. 9. Expected housing economic loss (h) conditional on (a)Burnt area¼ 0.003 km2,Fire

type ¼ 1 and FWI¼ 3; and (b) Burnt area ¼ 0.4 km2, Fire type ¼ 1–3 and FWI ¼ 60 in the

Cyprus study area. Note that in (b), for forested areas Fire type¼ 3, for shrubs, Fire type¼2

and for the remaining land-cover types, Fire type¼ 1, to account for realistic assumptions of

the fire occurring (e.g. Fire type ¼ 3 refers to a crown fire, relevant only to forested areas).
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(Mozumder et al. 2009; Gibbons et al. 2012; Syphard et al.

2012). Moreover, the influence of more severe fire danger
conditions (FWI ¼ 60) on the expected house losses shows that

themajority of losses are expected to occur on days with adverse
fire weather conditions, as found in other studies as well
(Blanchi et al. 2010). Although such results are potentially

useful and can serve as a plausibility check, they are not the
main aim of the present study. Instead, the goal is to develop a
predictive model for wildfire consequences based on readily

available spatially and temporally variable indicators that are
known to have an effect on wildfire risk.

Although the proposed model has been shown to give
plausible and useful results and can be applied to other areas

with similar characteristics, there are limitations that should be
addressed. Mesoscale modelling requires that the indicators be
representative for a 1-km2 spatial unit. This introduces uncer-

tainties into the model, as it is necessary to identify representa-
tive states not of individual houses, but of portfolios of houses,
e.g. housing stock, construction type. These must be adjusted

when the model is transferred to other regions. The resulting BN
includes the Australian model from Plucinski (2012) on fire
suppression. Clearly, the conditions are different in the Medi-

terranean, but we believe that the model is still valuable as the
variables influencing the probability of fire containment are
similar in both regions. Furthermore, the approach is flexible. As
we demonstrate, the BN can easily incorporate existing models,

in this case a linear regressionmodel, andwith the same ease, the
models can be replaced. The CPTs of the corresponding vari-
ables will simply need to change when a similar model calibrat-

ed with data from the Mediterranean is available. We have also
demonstrated the ability of the model to incorporate expert
knowledge, but in case of missing data, care is needed when

incorporating such information.
The proposed model should be seen as an initial step towards

a comprehensive consequence analysis for wildfires. Besides
extending it to consequences other than house damage, the

model should include additional factors known to influence
wildfire consequences. The flexibility of the BN framework
facilitates such an extension of the model. Additional influenc-

ing variables that could be added to increase the model accuracy
include the adjacent vegetation influencing house damages,
evacuation plans and a distinction between permanent and

non-permanent house use to account for the suppression
attempts of residents, the existence of fire protection plans at
the community level to account for the preparedness of residents

to protect their houses from fire, and the existence of house
insurance against fire, which also influences residents’ behav-
iour in case of fire. These (and other) parameters can be included
in the BN model by adding them as nodes, together with the

appropriate links. Their inclusion does, however, require that
quantitative models of their influence on house damage, or on
other variables of the BN, are available.

Finally, data on actual house damages and fire characteristics
would be valuable for model calibration and validation.
Although databases on fires are available, it is difficult to obtain

reliable statistics on the consequences of fires. In the absence of
such data, the BN enables the combination of the limited
available data with expert knowledge and models.

Conclusions

A BN model for estimating HEL at the mesoscale was devel-

oped and applied to the Mediterranean island of Cyprus. The
coupling of a BN with GIS results in maps providing the
expected building damage economic loss for different hazard

types. The model is flexible and can be extended to include
additional indicators and to assess consequences related to
human safety, habitat and agricultural losses.
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