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Abstract. The environmental, economic and social impacts of wildfires depend on spatial patterns of fire severity.

An understanding as to how drivers of fire severity vary across broad vegetation communities exists. However,
examination of variation within communities in response to gradients of moisture has received little attention so far.
This study examined whether relationships between environmental variables (i.e. fire weather, topography and fuel age)
and fire severity were modified by increasing mean annual precipitation. Understorey fires were more likely to occur in

young fuels (i.e. ,5 years since fire) in drier sites, although this effect diminished as precipitation increased. The
probability of occurrence of understorey fires under non-extremeweather and on steep slopes was reduced in wetter areas.
Relationships between crown fire and weather, topography and fuel age were largely unaltered by the precipitation

gradient, with only a marginally significant interaction occurring between weather andmean annual precipitation. Greater
fine fuel accumulation associated with increased precipitation presumably reduced fuel limitations imposed by
environmental factors (i.e. fire weather, slope, fuel age), altering their relative control on the probability of understorey

fire. The probability of crown fires is predominantly driven by fire weather and is consequently less sensitive to
precipitation gradients. Consideration of precipitation gradients will be necessary when identifying controls of fire
severity and devising effective fire management strategies.
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Introduction

Large wildfires show considerable spatial variability in severity
(i.e. the degree of vegetation damage or consumption) across

temperate forest ecosystems (Bradstock 2008; Schoennagel
et al. 2008), which may reflect underlying variations in fire
intensity (Keeley 2009). Ecologically, this variability may be

beneficial as it can create heterogeneity in forest structure
(Franklin et al. 2002) and ecosystem function (Schoennagel
et al. 2008). Furthermore, the spatial arrangement of unburnt
and low severity patches may influence the resilience of fire

sensitive biota and communities through the provision of fire
refugia (Camp et al. 1997; Mackey et al. 2002; Wood et al.

2011). Conditions associated with low severity fire (e.g. mod-

erate fire weather, riparian areas, young fuels) may facilitate fire
suppression (Kauffman 2001; Plucinski et al. 2012). By con-
trast, crown fires occurring at the wildland–urban interface can

have disastrous implications in terms of loss of life and property
(Price and Bradstock 2012). Hence, an understanding of the
determinants of variations in fire severity is required to effec-

tively manage risks to ecological and human values.
Weather, fuel availability and topography are key influences

on fire severity in temperate forest ecosystems globally (Collins
et al. 2007; Thompson and Spies 2009; Bradstock et al. 2010;

Murphy and Russell-Smith 2010), and are often used to quantify
fire risk and wildfire probability across large spatial scales
(Bradstock et al. 1998; Parisien et al. 2012). However, the

relative effect that these variables have on fire regimesmay vary
across landscapes in response to environmental gradients
(Schoennagel et al. 2004; Krawchuk and Moritz 2011; Perry

et al. 2011; Price and Bradstock 2012). Landscape variation in
vegetation productivity in response to variation in mean annual
precipitation or soil fertility may potentially alter the relative
influence of weather, fuel age and topography on severity by

effects on fuel characteristics (i.e. accumulation rates and total
biomass). In much of Australia and other water-limited envir-
onments positive associations exist between long-term annual

precipitation and tree cover or aboveground biomass (Archibald
et al. 2009; Keith et al. 2009; Pekin et al. 2009). Consequently,
fuel accumulation and connectivity is generally greater in

ecosystems with high annual precipitation than ecosystems with
low annual precipitation (Huston 2003; Govender et al. 2006;
Bradstock 2010). Fire intensity and fuel biomass are likely to be

positively related (Gill et al. 1987), though fuel structure and
moisture will also influence this relationship (Sullivan et al.

2012). Variations in rates of fuel accumulation therefore have
the potential to affect fire intensity and resultant fire severity.
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Fuel reduction burning is utilised across large areas of
temperate forest ecosystems to manage wildfire risk (Fernandes
and Botelho 2003; Penman et al. 2011). This management

technique aims to reduce fuel loads and consequently the
intensity, and hence severity, of subsequent wildfires, in order
to increase the likelihood of suppression by fire crews

(Fernandes and Botelho 2003). The frequency at which fuel
reduction burns are applied within a landscape is generally
predicated on relationships between fuel accumulation, time

since fire and fire intensity (Gill et al. 1987; Morrison et al.

1996; Penman et al. 2011). However, studies examining time
since fire–fuel relationships are often limited in geographic
extent (e.g. Fox et al. 1979; Morrison et al. 1996; Penman and

York 2010) and rarely consider the effect of precipitation
gradients across a vegetation community. Spatial variation in
fuel accumulation will have important implications for fire

management, as it will shape the temporal window of fuel
reduction burning effectiveness and overall fire suppression
potential across a landscape (Fernandes and Botelho 2003;

Schoennagel et al. 2004). Broad scale analysis of relationships
between fuel age (i.e. time since fire) and fire severity patterns
across spatial gradients of precipitation may provide a way of

quantifying these effects.
Quantification of the effect of gradients of productivity on

fire severity requires measurement of fire severity over large
areas (e.g. 100 000 ha). Remote sensing offers the opportunity

to undertake such measurements through the use of satellite
imagery (Lentile et al. 2006). Previous studies have found
strong correlations between pre- to post-fire change in reflec-

tance (e.g. Normalised Difference Vegetation Index, difference
Normalised Burn Ratio) and field based measures of vegetation
consumption (Chafer et al. 2004; Hammill and Bradstock 2006;

Keeley 2009). Remotely sensed indices of reflectance change
have been frequently utilised to identify variables driving spatial
patterns of fire severity across forested landscapes (Collins et al.
2007; Bradstock et al. 2010; Murphy and Russell-Smith 2010).

The aim of this study was to determine whether the effects of
key drivers of fire severity (i.e. weather, topography and fuel
age) change along a gradient of mean annual precipitation. We

anticipate that greatermean annual precipitationwill reduce fuel
limitations and consequently reduce the influence of key fire
severity drivers, in particular fuel age and weather. Our study

utilised existing severity data from four large wildfires
(.40 000 ha) that burnt within temperate dry sclerophyll forests
and woodlands of the Sydney region during summer 2001–02.

The fires burnt concurrently under similar weather conditions in
comparable environments that differ in mean annual precipita-
tion. Therefore, these fires provide a controlled natural experi-
ment that is appropriate to investigate how drivers of fire

severity vary along gradients of mean annual precipitation.

Methods

Study area

The Sydney region of south-eastern Australia (Fig. 1) is char-

acterised by large areas of urban development surrounded by
expanses of natural bushland. The dry sclerophyll eucalypt
forests covering much of this area are highly flammable and
characterised by rapid fuel accumulation (Fox et al. 1979;

Morrison et al. 1996), which accompanied with periodic con-
ditions of drought and extreme fire weather, make this region
prone to recurrent large wildfires (Bradstock et al. 2009).

A gradient of decreasing mean annual precipitation occurs
from east to west across the study region, inland from the
coast. Near the coast (i.e. Sutherland and Wollongong) mean

annual precipitation ranges from,900 to 1500mm, declining to
,600 to 1000mm further west on the margins of the Blue
Mountains (i.e. Mount Hall and Nattai) (Fig. 1; Bureau of

Meteorology, see http://www.bom.gov.au/jsp/awap/rain/index.
jsp, accessed 2 February 2010). Mean annual precipitation then
increases in theBlueMountains (i.e. within and to thewest of the
Mount Hall fire perimeter) (Fig. 1). The study focussed on this

gradient of long-term average rainfall (Table 1). Mean daily
maximum temperatures range from 25 to 318C in the summer
months and mean daily minimum temperatures range from 2 to

108C in the winter months. Average maximum temperatures are
typically greatest at the centre of the study region, declining
towards the coast and mountains. Average minimum tempera-

ture tends to be greater on the coast than inland (www.bom.gov.au,
accessed 7 March 2013).

The region is characterised by locally pronounced relief,

consisting of ridges and plateaus that are dissected by networks
of gullies and gorges (Fairley and Moore 2000). The average
ridge–gully distance across the study area is,400m (Bradstock
et al. 2010). Terrain becomes more deeply incised from the

coast to the foothills of the Blue Mountains, which is reflected
by the greater average slope and topographic position index
(i.e. difference between site elevation and highest elevation

within the surrounding 1000� 1000-m window) in the Mount
Hall and Nattai landscapes compared with Sutherland and
Wollongong (Table 1). Triassic sandstones are the dominant

geological substrate across the study region (Fairley and
Moore 2000).

Vegetation across the study area is dominated by dry scler-
ophyll forest and woodland communities with an open canopy

largely comprised of Eucalyptus, Corymbia and Angophora

species (Keith 2004). Canopy species in these communities
typically resprout following fire by epicormic buds beneath their

bark, and have been shown to exhibit low rates of mortality
(,5%) following high intensity crown fires (Bradstock 2008).
Canopy height typically ranges from 10 to 30m, and the under-

storey, dominated by sclerophyllous shrubs, is generally up to
4m tall (Keith 2004). Variation in the structure and composition
of these communities across the study region is driven largely by

precipitation and soil fertility (Fairley and Moore 2000). The
drier hinterland forests and woodlands (annual precipitation
,650–950mm) of the study region have similar vegetative
structure but a more open and less diverse shrub layer than the

wetter coastal forests and woodlands (annual precipitation
.1000mm) (Keith 2004). Evidence suggests that fuel hazard
development in dry sclerophyll forest and woodlands of this

region is slower in drier cooler climates than wetter warmer
climates (Watson et al. 2012), as has been found in other areas of
southern Australia (Huston 2003).

The 2001–02 Sydney fires

The study focussed on four large fires (.40 000 ha; the Mount
Hall, Nattai, Sutherland and Wollongong fires) that burnt during
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lateDecember2001andearly January2002 (Fig. 1).All fires burnt
under ‘Extreme’ weather conditions (temperature ,30–358C;
relative humidity 7–15%; wind speed 30–40 kmh�1) on 25
December. Weather conditions eased between 27 and 30
December (temperature 20–308C; relative humidity 20–60%;

wind speed 10–30 kmh�1), resulting in more moderate fire

behaviour (Bradstock et al. 2010). The severity of these fires
wasmapped byChafer et al. (2004) using SPOT2 (Satellite Pour

l’Observation de la Terre) imagery. This involved (i) computing
the Normalised Difference Vegetation Index (NDVI) for pre-
and post-fire images, (ii) calculating the difference between the

pre- and post-fire NDVI (DNDVI; 20-m spatial resolution) and

Table 1. Summary of slope, topographic position and mean annual precipitation across the study area

Mean (�s.e.) of slope, topographic position andmean annual precipitation from each of the study fires. Values are based on data

from sample points used in the analysis of fire severity patterns. Topographic position is the difference in elevation (metres)

between a sample point and the highest local point within a surrounding 1000� 1000-m sample window

Fire n Slope (8) Topographic position Mean annual precipitation (mm)

Mount Hall 692 19.81� 0.44 72.66� 2.12 891.12� 3.87

Nattai 577 19.21� 0.45 101.35� 3.78 816.89� 2.56

Sutherland 582 9.34� 0.26 39.48� 0.95 1220.70� 5.23

Wollongong 468 10.64� 0.36 43.23� 1.33 1268.81� 5.71

Wildfire 2001–02

�801

�1000

801–1000

Mean annual rainfall (mm)

0 10 20 km5

Fig. 1. Location of the study area and the four study fires within the Sydney region of Australia. The

location of the two weather stations (i.e. Penrith Lakes and Sydney Airport) used to calculate the forest

fire danger index is also presented.
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(iii) classifying DNDVI into six severity classes based on on-
ground measures of vegetation consumption (Chafer et al.

2004). The classification had at least 88% accuracy (Chafer

et al. 2004), with independent verification finding high levels
of agreement (Hammill and Bradstock 2006). Bradstock et al.

(2010) subsequently utilised this severity mapping to examine

the relative influence that weather, time since fire, topographic
position, slope and aspect had on patterns of fire severity for the
Mount Hall and Nattai fires, which occur at the low end of the

precipitation gradient (Fig. 1).
Our study utilises fire severity mapping derived by Chafer

et al. (2004) to examine whether the effect of weather, topog-
raphy and fuel age on fire severity is dependent upon annual

precipitation. Six severity classes were mapped: (1) foliage and
stems ,10mm in the shrub and tree canopy layer consumed,
(2) shrub foliage consumed and tree canopy partially scorched

or consumed, (3) understorey shrub fire with complete tree
canopy scorch, (4) understorey shrub fire with partial tree
canopy scorch, (5) understorey shrub fire with no tree canopy

scorch and (6) unburnt. Binary reclassification was undertaken
as per Bradstock et al. (2010) to permit two separate analyses
focusing on (i) understorey fire (1: classes 3, 4, 5, 6; 0: classes 1,

2) and (ii) crown fire (1: class 1; 0: classes 2, 3, 4, 5, 6).
Understorey fires (UF) are confined to the shrub and ground
layers, with unburnt patches sometimes present. These fires
burn at low to moderate intensity (i.e.,1500 kWm�1) and are

potentially suppressible. Crown fires (CF) are those that enter
the tree canopy (i.e. consuming all vegetation ,10mm thick)
and burn at intensities at which fire suppression is not possible

(10 000–70 000 kWm�1) (Bradstock et al. 2010).

Data

A combination of fire progression data and daily weather
observations were utilised in order to identify the climatic
conditions under which different parts of the study area burnt.
Meteorological data from Penrith Lakes (station number 67113)

and Sydney Airport (station number 66037) weather stations
(Fig. 1) were used to calculate daily estimates of the McArthur
Forest Fire Danger Index (FFDI), which is commonly used to

assess fire risk across eucalypt forests (Noble et al. 1980). Fire
weather was subsequently classified as extreme (EX – maximum
FFDI 60–100) or non-extreme (NEX – maximum FFDI ,35).

A combination of MODIS satellite imagery, NOAA hotspot

data, web fire mapper (http://firefly.geog.umd.edu/firemap/,
accessed 3 February 2009) and written accounts (NSW Rural
Fire Service, unpubl. data) were used to digitise progressive

boundaries of the fires, and subsequently identify areas that
burnt under EX (1100 hours–,1800 hours 25 December) and
NEX (1100 hours 27 December–1100 hours 31 December)

weather. The use of MODIS imagery and hotspots has been
found to provide estimates of fire progression that are compa-
rable to on-ground mapping (Bradstock et al. 2010). In order to

increase sample size for NEXobservations in the Sutherland fire
additional areas that burnt under NEX weather (FFDI ,20)
between 3 and 6 January 2002 were included. These areas were
identified using hotspots and fire progression records (NSW

Office of Environment and Heritage, unpubl. data).
Three measures of topography were used in our analysis,

namely topographic position, slope and aspect (Table 2). These

layers were generated using digital elevation models (25-m
resolution) obtained from the NSW Office of Environment
and Heritage (OEH). Topographic position (TOPOS) was cal-

culated as the difference in elevation (metres) between a pixel
and the highest local point within a surrounding 1000� 1000-m
sample window. This provided a continuous measure of topo-

graphic position in which ridges are typically represented by
small values and gullies are represented by large values. Slope
was calculated using the Spatial Analyst Tool in ArcGIS (9.2).
Aspect was calculated as a continuous measure relative to north

as described in Penman et al. (2007), which resulted in values
ranging from 0 to 1808 (i.e. values approaching 08 represent
northerly aspects, values approaching 1808 represent southerly
aspects).

Digitised fire history records (NSW OEH, unpubl. data)
were used to create a layer of time since fire (TSF) from the

1976–77 fire season to the 2000–01 fire season. Areas with no
recorded fires in this period were assigned the maximum TSF
of 25 years. A range of fuel ages were recorded across the
study sites (0–25 years), though these were heavily distributed

towards the older age classes (i.e. .15 years; Table 2).
A logarithmic transformation (i.e. ln[xþ1]) was performed to
TSF, due to the non-linear trend in fuel accumulation within

eucalypt forests (Fox et al. 1979; Morrison et al. 1996; Penman
and York 2010). Mean annual precipitation for the period
1977 to 2001 was calculated using monthly rainfall grids

(0.058 resolution) obtained from the Bureau of Meteorology

Table 2. Predictor variables used in the regression analysis

Variable Description Format Data range (untransformed)

WEATHER Fire weather: Categorical –

Extreme (EX): maximum FFDI. 60

Non-extreme (NEX): maximum FFDI, 35

MAP Mean annual precipitation in millimetres (1976–2001). A precipitation

ratio (point value/dataset mean) was used for model fitting (see text)

Continuous 663–1532

TSF Time since fire (years), ln(xþ1) transformed. This variable included

both wildfire and prescribed burns.

Continuous 0–25

TOPOS Topographic position (see text) Continuous 0–393

SLOPE Slope (8) Continuous 0–72

ASPECT Aspect relative to north (see text) Continuous 0–180

SLRV Spatially lagged response variable (see text) Continuous �1.8–3.5
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(http://www.bom.gov.au/jsp/awap/, accessed 2 February 2010).
Details of the derivation of the monthly grids are provided in
Jones et al. (2009). A proportional measure of mean annual

precipitation (MAP) was used in the analyses as it facilitated
model fitting. This was calculated by dividing the mean annual
precipitation for a sample point by the mean of all sample points

(mean¼ 1032mm). Back-transformed values of mean annual
precipitation are presented in figures for ease of interpretation.

A grid of data points with 400-m spacing was generated using

‘Hawths Tools’ (v3.27) in order to sample variables used in the
analysis. Spacing of 400mwas utilised as it represents the typical
ridge–gully distance across the study area, and hence the spatial
grain at which fire severity consistently varies (Bradstock et al.

2010). Sampling was restricted to dry sclerophyll forest vegeta-
tion communities, as defined by Tindall et al. (2004), occurring
within reasonably undisturbed vegetation located in National

Parks, water catchments and military training areas. Sampling
was excluded from within 40m of fire trails and roads, 60m of
powerlines, 20m of significant water bodies (i.e. dams, lakes,

rivers with pooled water) and 100m of conservation area
boundaries. Data were extracted from layers of fire severity,
weather, terrain, time since fire and precipitation at each sample

point using the Spatial Analyst Tool in ArcGIS (9.2).

Data analysis

Spatial autocorrelation in fire severity data was assessed using
Moran’s I, which is ameasure of correlation between data points

at different spatial proximities (Haining 2003). Values between
one and six were assigned to each of the six ordinal categories of
severity (as described earlier in the text) and used to calculate

Moran’s I. A spatial variogram indicated that data were spatially
autocorrelated (P, 0.000) up to a distance of 12 000m, which
approximately equates to the size of the sampling area within
each fire. This suggests that spatial autocorrelation was only an

issue within the perimeter of individual fires. A spatially lagged
response variable (SLRV) was derived, as described in Haining
(2003), from the classified fire severity data. For each data point,

the SLRV represents the sum of the fire severity scores, trans-
formed according to an inverse-distance weighting, within a
12 000-m radius. The following equation was used to calculate

the SLRV for a data point (Threlfall et al. 2011):

SLRVi ¼
Pj ðWij � YjÞ

Pj
W ij

ð1Þ

where i represents the focal data point, j represents a point within
the 12 000-m radius of the focal point,W represents the inverse
distance between i and j and Y represents the response variable

(i.e. fire severity). LowSLRVvalueswill represent pointswhere
there is a large area of the surrounding landscape burnt at high
severity and high SLRV values will represent areas where there
is a large area of the surrounding landscape burnt at low severity.

The SLRV was fitted as a model term in all models, in order to
adjust model coefficients of predictors to account for the effect
of spatial autocorrelation (Haining 2003). If spatial autocorrela-

tion is present, the SLRV will show a significant negative
relationship with CF and a positive relationship with UF.

Logistic regression was used to model the probability of
occurrence of UF and CF as binary responses. The process used
for testing assumptions and model selection was based on

methodology described in Logan (2010) and Burnham and
Anderson (2002). Prior to model fitting, the Pearson correlation
coefficient and variance inflation factor were respectively used

to test for correlation and multi-collinearity between predictor
variables (Logan 2010). Correlation coefficients between pre-
dictor variables were generally small (i.e.,0.5), and coefficient

estimates did not vary significantly when correlated variables
were added to the same model, hence multicollinearity was
assumed to be absent. Analyses were done using a randomly
selected subset (75%) of the data. For each severity response

(i.e. UF, CF) all combinations of weather, topographic position,
slope, aspect, time since fire, mean annual precipitation and two
way interactions involving mean annual precipitation were

modelled. Akaike’s information criterion (AIC) was used to
select the best model, whereby the model with the lowest AIC is
considered to have the best fit (Burnham and Anderson 2002).

Models within two AIC points of the model with the lowest AIC
score are considered to have strong support and were considered
as plausible alternatives, with the most parsimonious model

being selected preferentially (Burnham and Anderson 2002).
The discriminative ability and predictive accuracy of each

model was examined using the remaining 25% of the data.
Discriminative ability of the models was assessed using

Receiver Operating Characteristic area under curve (ROC
AUC). A ROC AUC value of 1 indicates that a model has
perfect discrimination, whereas a value of 0.5 would be the

equivalent of a random guess (Pontius and Schneider 2001). The
predictive accuracy of the models was assessed by calculating
the proportion of data points for which a fire severity class was

correctly assigned by each model. This was undertaken using a
model cut-off point of 0.5 (i.e. predicted probability ,0.5 was
classed as 0; predicted probability $0.5 classed as 1). Model
derivation, probability plots and ROC AUC analyses were done

using the software package R v 2.11.1 (R Development Core
Team 2010). The package ‘ROCR’ (Sing et al. 2009) was used
to calculate ROC AUC and predictive accuracy.

Following the model selection process, hierarchical parti-
tioning was used to assess how the relative contribution of
weather, topography and time since fire to goodness of fit

(i.e. rootmean square ‘prediction’ error) changes under different
levels of mean annual precipitation. The data were grouped into
two precipitation categories (‘low’, #850mm; ‘high’,

.850mm) and hierarchical partitioning was performed for both
UF and CF within each precipitation category. Logistic regres-
sion was also performed and the Nagelkerke’s R2 index was
calculated to facilitate comparison of the variability explained

by each set of predictor variables. The R packages ‘hier.part’
(Walsh and Mac Nally 2012) and ‘Design’ (Harrell 2009) were
respectively used for hierarchical partitioning and the calcula-

tion of R2 values.

Results

Understorey fire and crown fire were recorded at 41 and 24% of
the 2320 sample locations (Table 3). There was a reasonable
spread of sample points within the different levels of fire
weather (WEATHER), topographic position (TOPOS), slope
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(SLOPE), aspect (ASPECT) and time since fire (TSF) across the
range of mean annual precipitation (MAP; Table 3), indicating

that the dataset was robust enough to assess interactions
involving precipitation.

The best UF model contained TOPOS and interactions

between MAP and weather, slope and TSF (Table 4). There
were two plausible alternative models (i.e. DAIC ,2), which
contained the same core variables as the best model and an
additional variable (i.e. ASPECT or an interaction between

TOPOS and MAP). The alternative models were dismissed as
theyweremore complex and had a lower goodness of fit than the
best model. The significant interactions contained in this model

indicate that the effect weather, TSF and slope have on the
probability of UF decreases with increasing MAP (Fig. 2a–c).
Fires of low intensity (UF) were more likely under non-extreme

(NEX) weather than extreme (EX) weather (Fig. 2a), as
expected. Increasing MAP led to a decreased likelihood of
UF under NEX weather, but had little effect on the likelihood
of UF under EX weather, as expected (Fig. 2a). In areas of the

landscape receiving relatively low MAP (i.e. ,850mm), UF
was more likely to occur in younger fuels (0– 5 years since fire)
(Fig. 2b). However, as MAP increased (i.e. .1000mm), the

effect of TSF on the probability of UF diminished (Fig. 2b).
Slope had a positive effect on the probability of UF, indicating

that steeper areas were more likely to experience a fire confined
to the understorey than flat areas, though the magnitude of
change declined as MAP increased (Fig. 2c). The effect of

TOPOS remained unchanged by MAP, with gullies (i.e. high
TOPOS values) having a greater likelihood of UF than ridges.
This model had a very good discriminative ability (ROC

AUC¼ 0.851) and predictive accuracy (76.3%) when applied
to the test dataset.

Hierarchical partitioning revealed that for UF the relative

contribution of each variable to the model goodness of fit varied
withMAP (Fig. 3). TOPOS, slope and TSF accounted for,30%
of explained variance (12.3, 8.1 and 10.6%) at sites experiencing

‘low’ (#850mm) MAP, but less than 5% (1.3, 2.3 and 0.6%) at
sites experiencing ‘high’ (.850mm)MAP (Fig. 3). Conversely,
the relative contribution of weather and the spatially lagged
response variable (SLRV; i.e. the neighbourhood influence)

increased with increasing MAP, explaining,35% of explained
variance each under ‘low’ MAP and ,48% each under ‘high’
MAP (Fig. 3). However, R2 values from logistic regression

models fitted to each dataset indicate that a greater amount of
deviance in UF is explained under ‘low’ v. ‘high’MAP (0.624 v.
0.499). This suggests that only the relative contribution of

weather and the SLRV is altered byMAP, not the total deviance
explained.

The best CF model contained TOPOS, slope, TSF and an
interaction between weather and MAP (Table 5). There were

five plausible alternative models (i.e. DAIC ,2), which con-
tained the same core variables as the best model and an
additional variable. However, these models were dismissed as

theyweremore complex and had a lower goodness of fit than the
best model. CF was more likely to occur under EX than NEX
weather (Fig. 4). However, the likelihood of CF under NEX did

increase slightly with increasingMAP (Fig. 4). In general, areas
burning under NEX weather were unlikely to experience CF.
Hence, the influence of topography and TSF on CF occurrence

was only evident under EX weather conditions. TSF had a
positive effect on the probability of CF (Table 5), indicating
that under EX weather long unburnt areas were more likely to
experience CF than recently burnt areas. CF had a negative

relationship with slope (Table 5), indicating that flat areas are
more likely to experience CF. TOPOS had a positive effect on

Table 3. Summary of the data used for analysis

Sample sizes (n) and occurrence of different fire severity classes (UF, CF)

for predictor variables used in the analysis. Data have been divided into two

precipitation classes: (a) #850mm and (b) .850mm. A description of the

variables is contained in Table 2

Variable Level n UF CF

(a) #850 (mm)

WEATHER EX 419 102 109

NEX 235 194 3

ASPECT N (0–90) 350 154 59

S (91–180) 304 142 53

SLOPE 0–10 174 65 39

11–25 292 118 56

.25 188 113 17

TOPOS 0–50 259 87 72

51–100 161 73 26

.100 234 136 14

TSF 0–7 75 49 2

8–15 66 26 12

.15 513 221 98

(b) .850 (mm)

WEATHER EX 857 110 374

NEX 808 537 62

ASPECT N (0–90) 952 356 247

S (91–180) 713 291 189

SLOPE 0–10 776 260 240

11–25 672 280 169

.25 217 107 27

TOPOS 0–50 997 340 302

51–100 499 229 117

.100 169 78 17

TSF 0–7 95 39 14

8–15 488 154 126

.15 1082 454 296

Table 4. Model coefficients for the preferred understorey fire (UF)

model

EX is the reference category in WEATHER. A description of the model

terms is contained in Table 2

Model term Coefficient s.e. Z-value P-value

Intercept 5.921 1.738 3.407 0.001

SLRV 0.754 0.112 6.731 0.000

WEATHER (NEX) 5.075 0.827 6.133 0.000

TOPOS 0.009 0.001 6.850 0.000

SLOPE 0.125 0.034 3.645 0.000

TSF �3.780 0.627 �6.024 0.000

MAP �6.606 1.832 �3.605 0.000

MAP:WEATHER (NEX) �2.607 0.783 �3.331 0.001

MAP:SLOPE �0.092 0.035 �2.593 0.010

MAP:TSF 3.044 0.630 4.834 0.000
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CF (Table 5), whereby ridges are more likely to experience CF
than gullies. The ROC AUC and predictive accuracy of this

model were very good, being 0.878 and 82.9%.
Under ‘low’ MAP, the severity of neighbouring pixels

(i.e. SLRV) accounted for the majority (56.4%) of the explained

variance in CF, with TOPOS, weather, TSF and slope account-
ing for 20.0, 13.9, 6.2 and 3.5% (Fig. 5). The small effect of
weather at sites experiencing ‘low’MAP can be attributed to the

near absence of CF occurrence under NEX weather (Table 3).
This result highlights the importance of weather in determining
CF. Therefore, there was essentially no variance in CF under
NEX weather to which the model could be fitted. It is likely that

the effect ofweather in the ‘low’MAPdataset has been absorbed
by the SLRV (Fig. 5), as sample points that are in close spatial
proximity typically burnt under the same weather conditions.

Under ‘high’MAP, weather and the SLRV accounted for 81.5%

of explained variance (Fig. 5). The relative contribution of TSF
and slope remained relatively constant across both ‘low’ and

‘high’ MAP, whereas the contribution of TOPOS declined with
increasing MAP (Fig. 5). Model R2 values were greater for the
‘low’ MAP dataset (R2¼ 0.571) than the ‘high’ MAP dataset

(R2¼ 0.360).

Discussion

Fire severity patterns

The effects of weather, slope and fuel age on the occurrence of
potentially suppressible fire (i.e. UF) varied spatially with mean

annual precipitation across dry sclerophyll forests of the Sydney
region of south-easternAustralia.Weather, topography and time
since fire can influence patterns in fire behaviour by altering fuel

load and moisture, and hence the amount of fuel available to
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Fig. 2. Plots depicting the interactive effects of mean annual rainfall and (a) weather, (b) time since fire and (c) slope, on the predicted

probability of understorey fire (UF). Grey and black lines respectively depict non-extreme (NEX) and extreme (EX) fire weather. Variables

included in the preferred model (Table 4) but not shown in a plot were defined as TSF¼ 15, SLOPE¼ 15, TOPOS¼ 10, SLRV¼ 0.01.

Annual rainfall (RAIN) values have been converted to millimetres for ease of interpretation. Refer to Table 2 for a description of the

variables.
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burn (Catchpole 2002). The evidence suggested that in envir-
onments with high mean annual precipitation the inhibitory
effect of young fuel ages on severity, evident in drier environ-

ments, were greatly diminished. This is presumably due to more
rapid accumulation of fine fuels in wetter environments (Huston
2003). Although decomposition rates have been shown to
increase with precipitation (Austin 2002; Penman and York

2010), decreased decomposition rates in the first couple of years
following fire (Penman andYork 2010)may counterbalance this
effect. Drought in the months preceding the 2001–02 Sydney

fires ensured fuel across much of the study region was suffi-
ciently dry to burn (Chafer et al. 2004; Caccamo et al. 2012).
Thus, differences in fuelmoisture were unlikely to have affected

severity among the study sites at the time of the fires.
The varied effect of both weather and slope on UF across the

gradient of mean annual precipitation probably reflects changes
in fuel biomass and connectivity. The likelihood of fire being

confined to the understorey (i.e. UF) decreased with increasing
mean annual precipitation under NEX weather (Fig. 2a). It is

likely that greater fuel loads, including a well developed mid-
layer of sclerophyllous shrubs, associated with increased pre-
cipitation (Huston 2003; Keith 2004) are responsible for this
trend. Fire behaviour models for eucalypt forest predict that if

weather (i.e. FFDI) is held constant, fire intensity will be greater
under higher fuel loads (Gill et al. 1987), which supports our

Table 5. Model coefficients for the preferred crown fire (CF) model

EX is the reference category in WEATHER. A description of the model

terms is contained in Table 2

Model term Coefficient s.e. Z-value P-value

Intercept �3.386 0.652 �5.192 0.000

SLRV �0.757 0.120 �6.304 0.000

WEATHER (NEX) �3.799 0.962 �3.948 0.000

TOPOS �0.014 0.002 �6.768 0.000

SLOPE �0.023 0.009 �2.581 0.010

TSF 1.231 0.158 7.770 0.000

MAP 0.019 0.451 0.042 0.967

MAP:WEATHER (NEX) 1.706 0.824 2.070 0.038
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Fig. 4. Plots depicting the interactive effects of annual rainfall andweather

on the predicted probability of crown fire (CF). Variables included in the

preferred model (Table 5) but not shown in a plot were defined as TSF¼ 15,

SLOPE¼ 15, TOPOS¼ 10 and SLRV¼ 0.01. Annual rainfall (RAIN)

values have been converted to millimetres for ease of interpretation. Refer

to Table 2 for a description of the variables.
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explanation. Steep slopes were more likely to experience under-
storey fire than gentle slopes when mean annual precipitation
was low and weather was NEX. This is most likely due to

discontinuous fuels associated with rock outcropping on steep
slopes (Bradstock et al. 2010). However, the effect of slope
became more benign as annual precipitation increased (Fig. 2c),

presumably due to increased fuel continuity associated with
wetter areas.

Crown fires are strongly driven by fire weather (i.e. high

temperatures, low humidity, strong winds) (Luke andMcArthur
1978; Thompson and Spies 2009; Price and Bradstock 2012),
which may explain why mean annual precipitation had little
effect on the occurrence of these fires. Under NEXweather there

was a small increase in the likelihood of crown fire when going
from low to high mean annual precipitation (Fig. 4). This
probably reflects the influence that the vertical continuity of

fuels have on the incidence of CF (Luke and McArthur 1978;
Catchpole 2002; Sullivan et al. 2012). Tall shrubs and tree bark
(i.e. fibrous bark or long bark ribbons) provide vertical continu-

ity between litter and canopy fuels and therefore increase the
likelihood of CF (Sullivan et al. 2012). Forests within the wetter
regions of the study area typically have greater shrub cover than

those in the drier regions (Keith 2004). Bark and shrub fuels
(i.e. biomass and structure)may also take several decades to fully
develop this potential in dry sclerophyll forests and woodlands
(Fox et al. 1979; Department of Sustainability and Environment

2003). This would explain why there was a greater likelihood of
CF in long unburnt areas. Obligate seeders and basal resprouters,
which are species that are effectively returned to a juvenile phase

following fire, are a major component of the shrub layer within
dry sclerophyll forest communities of the Sydney region (Brad-
stock and Kenny 2003). Therefore, the post-fire recovery of

shrub fuel structure will be strongly time dependent, which may
help explain why mean annual precipitation had no effect on the
relationship between fuel age and CF occurrence.

Topographic position appeared to have a consistent effect on

fire severity across the region regardless of mean annual
precipitation (Table 4), whereby gullies typically experienced
fires confined to the understorey. Although the amount of

variance explained by topographic position was lower in areas
of ‘high’ v. ‘low’ mean annual precipitation (Fig. 3), this merely
reflects the tendency for coastal areas with high mean annual

precipitation to have lower topographic relief (Table 1). Ridges
typically experienced more severe fire, and CF generally only
occurred on long unburnt ridges under extreme fire weather.

Reduced fire severity and fire occurrence within gullies and
riparian areas is commonly reported in temperate forests (Taylor
and Skinner 1998; Beaty and Taylor 2001; Penman et al. 2007;
Wood et al. 2011), though variation in this trend may occur

across landscapes and fire events (see Dwire and Kauffman
2003). Greater fuel moisture and reduced wind exposure within
gullies are the most probable explanations for the patterns

observed in our study (Bradstock et al. 2010).
The amount of variation in fire severity explained by our

models will be inherently limited by the quality and availability

of explanatory data (e.g. fire history, fuel moisture), an issue
relevant to all studies of this nature. For example, the fire history
database used to calculate time since fire contained virtually no
information on fire severity and patchiness, which will directly

influence post-fire fuel accumulation rates. This will have
generated noise in the modelled relationships between time
since fire and fire severity. Similarly, we were unable to directly

measure and account for fuel moisture before the fires at an
appropriate spatial scale. Satellite imagery has the potential to
provide broad scale fuel load and fuel moisture information

(e.g. Chafer et al. 2004; Caccamo et al. 2012), though products
with both appropriate spatial resolution (e.g.,10m) and return
intervals (e.g. days) are not readily available. Fire suppression

activities (i.e. backburning, aerial water bombing, on-ground
fire fighting), whichmay influence patterns in fire severity, were
not accounted for in our analysis. However, the overall size of
the complex of fires burning at the time meant that suppression

resources were thinly spread. Therefore, the resultant chance of
sampling areas where severity may have been reduced by
suppression was probably low.

Management implications and climate change

The results of our study suggest that the time period over which

fuel reduction burning is effective (i.e. reduces fire intensity to
potentially suppressible levels) may vary across the dry scler-
ophyll forests of the study region. Following fire there may be a

0– 5 year window within which treated fuels are more likely to
reduce fire intensity to potentially suppressible levels (i.e. UF)
under extreme weather conditions. This supports the general
consensus that fine fuels will approach pre-fire levels 2–5 years

following fire in sclerophyll forests and woodlands of temperate
Australia (Fox et al. 1979; Morrison et al. 1996; Penman and
York 2010). However, this window of effectiveness appears to

shorten as mean annual precipitation increases (Fig. 2b), pre-
sumably in response to increased rates of fine fuel accumulation.
As time since fire included both wildfire and prescribed burns,

the former of which is generally associated with greater fuel
consumption, it is possible that the window of hazard reduction
burning effectiveness may be shorter than that stated here.
Regardless, fire management programs will need to be respon-

sive to such spatial variation in the effectiveness of fuel reduc-
tion (Schoennagel et al. 2004). For example, if hazard reduction
burning only reduces fire severity to potentially suppressible

levels within the first couple of years following fire in ‘mesic’
parts of the landscape, then the broad scale application of this
management technique will not be the most effective way to

manage fire risk.
The dominant effect of weather on fire severity further

emphasises that the effectiveness of fire risk management strate-

gies (e.g. fuel reduction, suppression) will be highly constrained
by fire weather conditions (McCarthy and Tolhurst 2001;
Fernandes and Botelho 2003; Price and Bradstock 2012). There
is some evidence from eucalypt forests in southern Australia that

areas recently burnt (i.e. ,5–10 years since fire) by prescribed
burns and wildfires will alter wildfire behaviour, even reducing
the occurrence of CF under very high to extreme weather

conditions (Fernandes and Botelho 2003; Bradstock et al.

2010). However, analysis of 114 fires by McCarthy and Tolhurst
(2001) has shown that the effectiveness of fuel reduction burning

(i.e. the capacity to assist suppression) is reduced with increasing
severity of fire weather, particularly with a FFDI of ,25–50.
Price and Bradstock (2012) revealed that time since fire had
negligible effect in terms of reducing fire severity to potentially
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suppressible levels under very high (mean FFDI¼ 36) and
catastrophic conditions (mean FFDI¼ 103) in eucalypt forest
during the 2009 fires in Victoria, Australia. Extreme weather

conditions pose the greatest threat to life and property (Luke and
McArthur 1978; Blanchi et al. 2010; Price and Bradstock 2012)
and consequently represent conditions when fire management

actions need to be effective (Fernandes and Botelho 2003).
Therefore, the identification of conditions that constrain the
effectiveness of fuel reduction burning will be crucial for

enhancing fire management strategies and fire fighter safety.
Climate change is predicted to increase fire occurrence in

temperate eucalypt forests of southern Australia, largely due to
an increased frequency of extreme fire weather events

(Bradstock 2010; Bradstock et al. 2012; Cary et al. 2012). Our
findings, and past research (e.g. Bradstock et al. 2010; King
et al. 2011; Bradstock et al. 2012; Price and Bradstock 2012),

suggest that increased occurrence of extreme weather events
may result in a shift towards fires of greater severity and
intensity in temperate eucalypt forests. Projected reductions in

annual precipitation (e.g. median decrease of 4–8% for Sydney
in 2070; CSIRO and Australian Bureau of Meteorology 2007)
and associated declines in fuel production under predicted future

climates may partially offset these changes to fire occurrence
(Bradstock 2010; Cary et al. 2012) and intensity (Fig. 2). As
discussed above, the window of fuel reduction burning effec-
tiveness may increase under drier conditions. Therefore, future

conditions of reduced precipitation are likely to enhance fuel
reduction burning efficacy. However, the short window of fuel
reduction burning effectiveness (i.e.,5 years) coupled with the

dominant effect of fire weather (Fig. 2), suggests that the
potential for broad scale fuel reduction burning to mitigate
enhanced fire risk under future climate is likely to remain

constrained in temperate dry sclerophyll forests.

Conclusions

The importance of precipitation regimes in determining the
relative influence fire weather, topography and fuel age have on
fire regimes has been highlighted across a range of ecosystems

globally (Schoennagel et al. 2004; Seydack et al. 2007;
Archibald et al. 2009; Bradstock 2010). Our study provides
further evidence of this phenomenon, revealing that precipita-
tion regimes can shape these relationships even within a

reasonably homogenous expanse of eucalypt forest, whereby
the relative effect fire weather, slope and fuel age had on the
occurrence of potentially suppressible understorey fire

decreased with increasing mean annual precipitation. Fuel
production rates, fuel accumulation and biomass are positively
related to annual precipitation across a range of fire prone eco-

systems (Austin 2002;Huston 2003; Govender et al. 2006; Pekin
et al. 2009), which suggests that our findings will have broader
generality. Consequently, fire management strategies will need

to be adaptable to spatial variation in mean annual precipitation
and in response to future changes in precipitation regimes, as has
been suggested for other ecosystems globally (Schoennagel
et al. 2004; Archibald et al. 2009; Bradstock 2010).
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