Supplementary Material

Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index

Colton W. Miller^{A,B,*}, Brian J. Harvey^A, Van R. Kane^A, L. Monika Moskal^A and Ernesto Alvarado^A

^ASchool of Environmental and Forest Sciences, College of the Environment, University of Washington, Box 352100, Seattle, WA 98195, USA

^BPresent address: Vibrant Planet, PBC, Pioneer Commerce Center 11025 Pioneer Trail, Suite 200a, Truckee, CA 96161, USA

*Correspondence to: Email: <u>cwm4@uw.edu</u>

Supplemental Information 1 for:

Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index

Colton W. Miller, Brian J. Harvey, Van R. Kane, L. Monika Moskal, and Ernesto Alvarado

International Journal of Wildland Fire

This supplementary information includes:

Supplementary tables S1-S7 Supplementary figures S1-S6 Supplementary references

Spectral region	Typical change after fire	Ecological cause	Studies
Red	Increases	Decrease in chlorophyll absorption	van Wagtendonk et al. (2004)
Near-infrared	Decreases	Consumption or damage of leaves	Epting et al. (2005), Key and Benson (2006), Miller and Thode (2007), van Wagtendonk et al. (2004)
		Reduction in leaf area index	Chuvieco et al. (2006)
Shortwave Infrared	Increases	Reduction of canopy shadow and moisture Canopy combustion, exposed ash and bare soil, charred large logs Drying of vegetation and soil, decreased vegetation density, increased exposed substrate, and presence of charred fuels	Epting et al. (2005), van Wagtendonk et al. (2004), White et al. (1996) Pereira et al. (1999), van Wagtendonk et al. (2004) Key and Benson (2006), Miller and Thode (2007)
Thermal	Increases	Decrease in transpirational cooling and exposure of lower emissivity soil	Cahoon Jr et al. (1994), García and Caselles (1991), Zheng et al. (2016)

Table S1. Typical post-fire change in spectral regions and their ecological causes.

Figure S1. Flow chart showing systematic review process to identify 62 citations to include for review. CAB: CAB Direct; ESC: Environmental Science Collection; WOS: Web of Science.

Table S2. Article-level in	nformation extracted from	m each included citation.
----------------------------	---------------------------	---------------------------

Field	Description and examples
Author(s)	study main authors
Year	year study published
Journal	journal where study published
Lat/Long	study latitude and longitude if provided
Location name	study location name, e.g. western North America
Ecosystem type	studied ecosystem type, e.g. Boreal forest
Sensor used	type of sensor, e.g. TM, ETM+, OLI
TOA or SR	whether top of atmosphere or surface reflectance imagery was used
Indices used	type of spectral indices used, e.g. dNBR, RdNBR
dNBR offset inclusion	whether study indicates offset was used in calculation of spectral indices (dNBR)
Single or bi-temporal imagery	whether single imagery or bitemporal imagery was used
Radiometric normalization	whether bitemporal imagery was radiometrically normalized before
	index calculation
Georeferencing/co-registration	
Smoothing	type of smoothing, if any, e.g. 3x3 mean, bilinear
Indices	indices used in analysis, e.g. dNBR, RdNBR
Absolute or relativized spectral indices	whether absolute or relativized indices were used
Field plot distribution (UB, L, M, H)	the distribution of field plots across severity classes, if given
Type of model/regression used	type of model/regression used, e.g. linear, quadratic
CBI predictor or response	whether CBI plots were used as a predictor or response variable in statistical analysis
Metric assessed	statistical metrics assessed, e.g. pearson correlation, R2, p
Comparison across strata	CBI strata assessed, e.g. overall, understory, overstory, both

Table S3. Fire-level information extracted from each included citation.

Field	Description and Examples
Fire name(s)	name(s) of fire(s)
Fire location(s)	fire location(s)
Fire date(s)	fire date(s) (month, year if available)
Fire type(s)	fire type(s), e.g. prescribed, wildland, wildland fire use
Fire size(s)	size of the fire(s)
Number of field plots	number of field plots used for each fire
Type of field plots	whether CBI, GeoCBI, or WCBI was used
Field plot size	size of the field plots
Field plot shape	circular or square
Field plot timing	timing of field plot collection (month, year if available)
Unburned field plots	whether unburned field plots were collected (yes/no)

Field	Description and Examples
Fire name(s)	name(s) of fire(s) studied
Fire location(s)	fire location(s)
Fire date(s)	fire date(s) (month, year if available)
Fire type(s)	fire type(s), e.g. prescribed, wildland, wildland fire use
Fire size(s)	size of the fire(s)
Number of field	number of field plots used for each fire
plots	
Type of field plots	whether CBI, GeoCBI, or WCBI was used
Field plot size	size of the field plots
Field plot shape	circular or square
Field plot timing	timing of field plot collection (month, year if available)
Pre-fire data	what sensor was used for pre-fire remotely sensed data e.g. TM/ETM+
Pre-fire timing	timing of pre-fire remotely sensed data collection (month, year if available)
Post-fire data	what sensor was used for post-fire remotely sensed data e.g. TM/ETM+
Post-fire timing	timing of post-fire remotely sensed data collection (month, year if available)
Spatial resolution	the spatial resolution of remotely sensed data

Table S4. Comparison-level information extracted from each included citation.

Figure S2. (a) Number of studies relating remotely sensed data to CBI as a continuous measure of burn severity by year (N = 62 studies). (b) Most common journals that published at least two studies in this review. RSE: *Remote Sensing of Environment*; IJWF: *International Journal of Wildland Fire*; RS: Remote Sensing; IJAEOG: *International Journal of Applied Earth Observation and Geoinformation*; IJRS: *International Journal of Remote Sensing*; RSL: *Remote Sensing Letters*. Eleven journals published one citation: *Arctic, Antarctic, and Alpine Research*; *Canadian Journal of Forest Research*; *Ecosphere*; *Environmental Management*; *Fire Ecology*; *Forests*; *GIScience and Remote Sensing*; Journal of Arid Environments; Natural Hazards; Photogrammetric Engineering and Remote Sensing; and Rangeland Ecology and Management.

Unburned	Low	Moderate	High	Studies
0.0-0.29	0.30-1.75	1.76-2.23	2.24-3.0	Boucher et al. (2017)
0-1.04	1.04-1.16	1.16-1.85	1.85-3.0	Chang et al. (2016)
NA	0.00-0.99	1.00-1.99	2.00-3.00	Chen et al. (2011)
Not given				Epting et al. (2005)
0.00-0.09	0.10-1.24	1.25-2.24	2.25-3.00	Fernandez-Manso and Quintano (2015)
0	0-1	1-2	2-3	Karau and Keane (2010)
0-0.1	0.1-1.24	1.25-2.24	2.25-3.0	Karau et al. (2014)
0-0.1	0.1-1.24	1.25-2.24	2.25-3.0	Miller and Thode (2007)
0-0.1	0.1-1.24	1.25-2.24	2.25-3.0	Musyimi et al. (2017)
0.00-0.09	0.10-1.24	1.25-2.24	2.25-3.00	Parker et al. (2015)
NA	1.25	1.26-2.25	>2.26	Stambaugh et al. (2015)
0	0.1-1.24	1.25-2.24	2.25-3	Quintano et al. (Quintano et al. 2015)
0	0< CBI <=1	1 <cbi <="2</td"><td>>2</td><td>Tanase et al. (2015a)</td></cbi>	>2	Tanase et al. (2015a)
0-0.1	0.1-1.24	1.25-2.24	2.25-3.0	Cansler and McKenzie (2012)
0-0.75	0.75-1.25	1.25-1.75; 1.75-2.25	2.25-3	Picotte and Robertson (2011)
<=1.25	<=1.25	1.25 <cbi<=2.25< td=""><td>>2.25</td><td>Parks et al. (2014)</td></cbi<=2.25<>	>2.25	Parks et al. (2014)
0	0.1-1.25	1.26-2.25	2.26-3.0	Mallinis et al. (2018)
Unchanged to	Unchanged to	1.26-2.25	2.26-3.0	Miller et al. (2009)
low 0-1.25	low 0-1.25			

Table S5. Thresholds for severity classification across studies where values were provided.

Table S6. Remote sensing technologies used in the studies reviewed and the number of studies in which they were included. Sensor refers to the specific instrument used to acquire data. Spectral range is the wavelengths of the electromagnetic spectrum that the sensor samples. Wavelengths is the general regions of the electromagnetic spectrum sampled (VIS: *visible*; NIR: *near infrared*; SWIR: *short wave infrared*; TIR: *thermal infrared*; RGB: *red*, *green*, blue) Number of bands is the number of raster bands captured over the spectral range. Spatial resolution is the pixel size of remotely sensed imagery. Temporal resolution is the revisit period of the sensor over the same location. Citations used is the number of studies that included the specified sensor.

Sensor	Spectral range (µm)	Wavelengths	Number of bands	Spatial resolution (m)	Temporal resolution (days)	Studies used
TM, ETM+	0.45 - 12.5	VIS, NIR, SWIR, TIR	7	30 (120 TIR)	16	60
OLI/TIRS	0.435 – 12.51	VIS, NIR, SWIR, TIR	10	30 (100 TIR)	16	8
Landsat (unspecified)		VIS, NIR, SWIR, TIR				5
AVIRIS	0.4 - 2.5	VIS, NIR, SWIR	224	20		4
MASTER	0.457 – 12.878	VIS, NIR, SWIR, TIR	50	5 – 50 (altitude dependent)		3
MODIS	Bands 1-19 from 0.405 to 2.155; Bands 20-36 from 3.66 to 14.28	VIS, NIR, SWIR, TIR	36	250 (bands 1-2) 500 (bands 3-7) 1000 (bands 8-36)	16	3
ALOS PALSAR	15-30 cm	Radio		10 and 100	42	2
Sentinel-2	0.4924 – 2.2024	VIS, NIR, SWIR		10, 20, 60 (band dependent)	10 days each for S2A and S2B (5 days combined)	2
APEX	0.38 - 2.5	VIS, NIR, SWIR	Up to 334 (default 114)	22.5 μm (VNIR) 30 μm (SWIR)		1
ASTER	0.52 - 11.65	VIS, NIR, SWIR, TIR	14	15 (VNIR) 30 (SWIR) 90 (TIR)	16	1
Deimos-1	0.52 - 0.90	VIS, NIR	3	22	1 – 3	1
QuickBird	0.45 - 0.90	VIS, NIR	4	2.62 m (nadir) to 2.90 m (20° off- nadir)	1 – 3.5	1
SPOT4	0.50 - 1.75	VIS, NIR, SWIR	4	10 (R) 20 (G, NIR, SWIR)	2-3	1
SPOT5	0.49 - 1.7	VIS, NIR, SWIR	4	10 (VNIR) 20 (SWIR)	2-3	1
WV-2	0.442 – 1.043	VIS, NIR	8	1.8	1.1 – 3.7	1
WV-3	0.40 - 2.365	VIS, NIR, SWIR	16	1.24 (VNIR) 3.70 (SWIR)	1-4.5	1
UAV*	RGB	VIS	3	~ 0.02		1

* UAV specifications given for imagery captured in study but platform highly adaptable to other sensors

a) Number of sensors used per study

b) Number of studies that used single-date data, bitemporal data, or both

Figure S3. (a) Number of sensors used in each study (N = 62 studies). All Landsat sensors (TM, ETM+, OLI) were combined before analysis. (b) Number of studies that used single-date data, bitemporal data, or both (N = 62 studies). The number of studies for each criteria is shown in parentheses.

Figure S4. Atmospheric correction methods used by studies (N = 62 studies). The number of studies for each method is shown in parentheses. SR: *surface reflectance*; TOA: *top-of-atmosphere*; COST: *cosine of the solar zenith angle correction*; 6S: *second simulation of the satellite signal in the solar*; IR-MAD: *iteratively re-weighted multivariate alteration detection*.

Index	Abbreviation	Temporal	Radiometric	Frequency	Key studies
% black or brown	%BlorBr	Single	Spectral	1	Vereverbeke and Hook
trees Burned area index	BAI	Single	Spectral	1	(2013) Chuvieco et al. (2002)
burned fraction	BF/BurnF	Single	Spectral	2	Veraverbeke et al. (2014)
Char fraction	CF/CHAR	Single	Spectral	3	Veraverbeke et al. (2014)
Char soil index	CSI	Single	Spectral	1	Smith et al. (2007)
Enhanced vegetation index	EVI	Single	Spectral	4	Liu and Huete (1995)
green crown veg	GCV	Single	Spectral	1	Fraser et al. (2017)
Global environmental monitoring index	GEMI	Single	Spectral	1	Pinty et al. (1992)
Neighborhood texture	GEOTEX	Single	Spectral	1	Chen et al. (2011)
Green fraction/Green tree fraction	GF/GV/GTF	Single	Spectral	2	Fraser et al. (2017); Tane et al. (2018)
Hue	Н	Single	Spectral	1	Koutsias et al. (2000)
Intensity	Ι	Single	Spectral	1	Koutsias et al. (2000)
Kauth-Thomas Brightness Transform	KTB	Single	Spectral	4	Kauth and Thomas (1976)
Kauth-Thomas Greenness Transform	KTG	Single	Spectral	4	Kauth and Thomas (1976)
Kauth-Thomas Wetness Transform	KTW	Single	Spectral	4	Kauth and Thomas (1976)
	LST/EVI	Single	Spectral	3	Zheng et al. (2016)
Mid-infrared burn index	MIRBI	Single	Spectral	2	Trigg and Flasse (2001)
modified soil- adjusted vegetation index	MSAVI	Single	Spectral	2	Qi et al. (1994)
modified soil- adjusted	MSAVI2	Single	Spectral	1	Qi et al. (1994)
Normalized burn	NBR	Single	Spectral	19	García and Lopez (1991)
Normalized difference SWIR index	NDSWIR	Single	Spectral	1	Gerard et al. (2003)
Normalized difference vegetation index	NDVI	Single	Spectral	12	Rouse et al. (1974)
Non- photosynthetic fraction of SMA	NPV	Single	Spectral	1	Tane et al. (2018)

Table S7. Indices used in studies with abbreviation, temporal and radiometric type, frequency in studies of this review, and key study reference.

Principle 1	PC1	Single	Spectral	1	Patterson and Yool (1998)
Principle	PC2	Single	Spectral	2	Patterson and Yool (1998)
component 2		8	~	_	
Principle	PC3	Single	Spectral	1	Patterson and Yool (1998)
component 2	D .: 4/5	0.1	G (1	2	
TM band 5	Katio 4/5	Single	Spectral	2	Malthus et al. (1993)
Ratio TM band 7 /	Ratio 7/4	Single	Spectral	2	Kushla and Ripple (1998)
TM band 4		U	1		
Ratio TM band 7 /	Ratio 7/5	Single	Spectral	2	Epting et al. (2005)
TM band 5	C	C ¹ 1.	Constant 1	1	V = (1, (2000)
Saturation	5	Single	Spectral	1	Koutsias et al. (2000)
Soil-adjusted	SAVI	Single	Spectral	5	Heuete et al. (1988)
SWIR-MIR index	SMI	Single	Spectral	3	Veraverbeke et al. (2012)
		Single	Spectral	3	Veraverbere et al. (2012)
Spectral reflectance of	SR_MODIS	Single	Spectral	1	
individual bands					
(MODIS)					
Spectral	SR_MASTER	Single	Spectral	1	
reflectance of					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Thematic Mapper	TM1	Single	Spectral	4	
band 1 reflectance		~8	~	-	
Thematic Mapper	TM2	Single	Spectral	4	
band 2 reflectance		0. 1	G (1	4	
I hematic Mapper	1M3	Single	Spectral	4	
Thematic Mapper	TM4	Single	Spectral	6	
band 4 reflectance		6			
Thematic Mapper	TM5	Single	Spectral	6	
band 5 reflectance		Circala	Crana stral	1	
hand 6 reflectance	1 1/10	Single	Spectral	1	
Thematic Mapper	TM7	Single	Spectral	5	
band 7 reflectance		U	1		
Internal texture	TXIT	Single	Spectral	1	Hultquist et al. (2014)
Vegetation index	VI3	Single	Spectral	1	Kaufman and Remer (1994)
3 Land autors	ICT	Single	Thermol	4	$\mathbf{Y}_{\mathbf{y}}$ at al. (2014)
temperature	LSI	Single	Thermal	4	r u et al. (2014)
LSE-enhanced	ENBRv1	Single	Mixed	1	Veraverbeke et al. (2011)
NBR version 1		C			
LSE-enhanced	ENBRv2	Single	Mixed	1	Veraverbeke et al. (2011)
NBR version 2	ENDVI.1	Single	Minad	1	Formándoz Monco and
NDVI version 1	ENDVIVI	Single	wiixeu	1	Ouintano (2015)
LSE-enhanced	ENDVIv2	Single	Mixed	1	Fernández-Manso and
NDVI version 2		-			Quintano (2015)
Ratio of LST to	LST/EVI	Single	Mixed	3	Zheng e tal. (2016)
EVI Normalized	NDVIT	Single	Mixed	1	Smith et al. (2007)
difference		Single	Mineu	1	Sinti et ul. (2007)

vegetation index - Thermal NIR-SWR- NIR-SWR						
NIR-SWIR- INR-SWIR- NIR-SWIR- NIR-SWIR- NIR-SWIR- NIR-SWIR- NIR-SWIR- NIR-SWIR- NIR-SWIR- NIR-SWIR- NIR-SWIR- NIR-	vegetaion index -					
Emmissivity version 1 NRE-SWIRE NSEv2 Single Spectral 1 Veraverbeke et al. (2011) emissivity version 2 Soil adjusted Veraverbeke et al. (2011) emissivity version 2 Solution index - Thermal pixel and object- based canopy loss pixel and object- based canopy loss pixel and object- based canopy loss SWIR I to NIR d7/4 Bi-temporal Spectral 1 Wu et al. (2015) based canopy loss SWIR I to NIR d7/4 Bi-temporal Spectral 1 Kushla and Ripple (1998) ratio difference child ofference child ofference child ofference d1EVI Bi-temporal Spectral 1 Kolden and Rogan (2013) scene components char Chiorophyll index dCIre1 Bi-temporal Spectral 1 Kolden and Rogan (2013) scene components char Chiorophyll index dCIre1 Bi-temporal Spectral 1 Gitelson et al. (2005) red edge differenced dEVI Bi-temporal Spectral 1 Gitelson et al. (2005) red edge differenced dEVI Bi-temporal Spectral 1 Mallinis et al. (2016) enhanced vegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) differenced differenced dIFI Bi-temporal Spectral 1 Mallinis et al. (2018) differenced differenced dEVI Bi-temporal Spectral 1 Huang et al. (2018) differenced differenced dEVI Bi-temporal Spectral 1 Huang et al. (2018) differenced dIFI Bi-temporal Spectral 1 Huang et al. (2018) differenced dIFI Bi-temporal Spectral 1 Huang et al. (2016); masted-cap Differenced dKTG Bi-temporal Spectral 1 Huang et al. (2016); masted-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); masted-cap Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) matio narrow differenced dNBR Bi-temporal Spectral 1 Datt (1999) matio narrow differenced dNBR Bi-temporal Spectral 1 Datt (1999) matio narrow differenced dNBR Bi-temporal Spectral 1 Datt (1999) matio narrow	NIR-SWIR-	NSEv1	Single	Mixed	2	Veraverbeke et al. (2011)
version 1 NR-SWR- NR-SWR- NR-SWR- NR-SWR- NR-SWR- NR-SWR- NR-SWR- NR-SWR- Soli adjusted SAVIT Single Single Spectral Niked Nike	Emmissivity	TOD T	Single	111110u	2	
NIR-SWIR- NSEv2 Single Spectral 1 Veraverbeke et al. (2011) emissivity version 2 Soil adjusted SAVIT Single Mixed 1 Smith et al. (2007) vegetation index - Thermal pixel and object CLpixel Bi-temporal Spectral 1 Wu et al. (2015) based canopy loss SWIR1 to NIR d7/4 Bi-temporal Spectral 1 Wu et al. (2015) based canopy loss SWIR1 to NIR d7/4 Bi-temporal Spectral 1 Kushla and Ripple (1998) ratio difference Difference dCHAR Bi-temporal Spectral 1 Kushla and Ripple (1998) ratio difference dCHAR Bi-temporal Spectral 1 Kolden and Rogan (2013) scene components char CLiorent Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge difference dEVI Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge difference dEVI Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge difference dEVI Bi-temporal Spectral 1 Gitelson et al. (2016) enhanced dEVI Bi-temporal Spectral 1 Kolden and Rogan (2013) scene components char CLiorophyli Index dCIre1 Bi-temporal Spectral 1 Gitelson et al. (2016) enhanced dEVI Bi-temporal Spectral 1 Kolden and Rogan (2013) fred-edge difference Spectral 1 Kolden and Rogan (2013) fred-edge difference dIFVI Bi-temporal Spectral 1 Kolden and Rogan (2013) fred-form for dGV Bi-temporal Spectral 1 Kolden and Rogan (2013) finterance difference dIFVI Bi-temporal Spectral 1 Kolden and Rogan (2013) finterance dIFI Bi-temporal Spectral 1 Kolden and Rogan (2013) finterance dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap McCarley et al. (2017) wetness McCarley et al. (2017) wetness McCarley et al. (2017) methores McCarley et al. (2016); tassled-cap McCarley et al. (2016); tassled-cap McCarley et al. (2017) methores McCarley et al. (2017) McCarley et al. (2017) McCarley et al. (2017) McCarley et al. (2017) McCarley et al. (2017) methores McCarley et al. (2016); tassled-cap McCarley et al. (2016); tassled-cap McCarley et al. (2016); tassled-cap McCarley et al. (2016); McCarley et al. (2017) McCarley et al. (2017) McCarley e	version 1					
cmissivity version2Soil adjusted vegetation index - ThermalSAVTTSingleMixedISmith et al. (2007)pixel and object based canopy lossCLobjectBi-temporalSpectral1Wu et al. (2015)pixel and object- based canopy lossCLpixelBi-temporalSpectral1Wu et al. (2015)SWIR2 to NIRd7/4Bi-temporalSpectral1Kushla and Ripple (1998)ratio difference DifferencedCHARBi-temporalSpectral1Vogelmann (1990)ratio difference chardCHARBi-temporalSpectral1Kolden and Rogan (2013)scene components chardCHarlBi-temporalSpectral1Gitelson et al. (2005)red-edge differenceddEV1Bi-temporalSpectral1Mallinis et al. (2016)enhanced vegetation index green normalized differenceddGNDVIBi-temporalSpectral1Mallinis et al. (2018)differenced index integrated forest indexdGVBi-temporalSpectral1Mallinis et al. (2018)Differenced integrated forest indexdIF1Bi-temporalSpectral1Mallinis et al. (2016); McCarley et al. (2017)Differenced integrated forest integrated	NIR-SWIR-	NSEv2	Single	Spectral	1	Veraverbeke et al. (2011)
2 Soil adjusted SAVIT Single Mixed 1 Smith et al. (2007) Vegetation index - Thermal 1 Wu et al. (2015) based canopy loss pixel and object- CLobject Bi-temporal Spectral 1 Wu et al. (2015) based canopy loss Site and object- CLpixel Bi-temporal Spectral 1 Kushla and Ripple (1998) ratio difference d7/4 Bi-temporal Spectral 1 Kushla and Ripple (1998) switext to NIR d7/5 Bi-temporal Spectral 1 Vogelmann (1990) ratio difference d7/4 Bi-temporal Spectral 1 Kolden and Rogan (2013) scence compony scence compony Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge difference dEV1 Bi-temporal Spectral 8 Zheng et al. (2016) enhanced vegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2016) fifterence dEV1 Bi-temporal Spectral 1 Kolden and Rogan (2013)	emissivity version					
Soli adjušted SAVI i Single Mixed i SAVI vegetation index - Thermal pixel and object - CLobject Bi-temporal Spectral 1 Wu et al. (2015) based canopy loss pixel and object - CLpixel Bi-temporal Spectral 1 Wu et al. (2015) solitared object solution of the	2		0	NC 1	1	Sec. (1. et al. (2007)
Termal pixel and object- based canopy lossCL objectBi-temporalSpectral1Wu et al. (2015)based canopy lossCL pixelBi-temporalSpectral1Wu et al. (2015)based canopy lossSWIR 1to NIRd7/4Bi-temporalSpectral1Kushla and Ripple (1998)ratio differenceSWIR 2to NIRd7/5Bi-temporalSpectral1Vogelmann (1990)ratio differencedCHARBi-temporalSpectral1Kolden and Rogan (2013)scene componentscharCChlorophyll indexdCIre1Bi-temporalSpectral1Gitelson et al. (2005)red-edgedEVIBi-temporalSpectral8Zheng et al. (2016)enhancedvegetation index green normalizeddGNDVIBi-temporalSpectral1Mallinis et al. (2018)differencedGVBi-temporalSpectral1Mallinis et al. (2018)differenceddIFIBi-temporalSpectral1Mallinis et al. (2016)change in GVdGVBi-temporalSpectral1Huang et al. (2016)differenceddKTBBi-temporalSpectral2Meddens et al. (2016);tassled-cap brightnessDifferenceddKTGBi-temporalSpectral2Meddens et al. (2016);tassled-cap worketsBi-temporalSpectral2Meddens et al. (2016);McCarley et al. (2017)DifferenceddKTWBi-temporalSpectral1Datt (1999)<	Soll adjusted	SAVII	Single	Mixed	1	Smith et al. (2007)
Initial object- based canopy loss Fixel and object- CLpixel Bi-temporal Spectral I Wu et al. (2015) based canopy loss SWIR1 to NIR d7/4 Bi-temporal Spectral I Wu et al. (2015) based canopy loss SWIR1 to NIR d7/4 Bi-temporal Spectral I Vogelmann (1990) ratio difference SWIR2 to NIR d7/5 Bi-temporal Spectral I Vogelmann (1990) ratio difference Difference in dCHAR Bi-temporal Spectral I Kolden and Rogan (2013) scene components char Chlorophyll index dCIre1 Bi-temporal Spectral I Gitelson et al. (2005) red-edge differenced dEVI Bi-temporal Spectral 8 Zheng et al. (2016) enhanced vegetation index green normalized dGNDVI Bi-temporal Spectral I Mallinis et al. (2018) difference vegetation index green normalized dGNDVI Bi-temporal Spectral I Mallinis et al. (2018) differenced dEVI Bi-temporal Spectral I Mallinis et al. (2018) differenced dGNDVI Bi-temporal Spectral I Huang et al. (2018) differenced dIFF Bi-temporal Spectral I Huang et al. (2016); massled-cap Differenced dKTB Bi-temporal Spectral I Huang et al. (2016); massled-cap Differenced dKTB Bi-temporal Spectral I Huang et al. (2016); massled-cap Differenced dKTB Bi-temporal Spectral I Huang et al. (2016); massled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); massled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); massled-cap Differenced dKTW Bi-temporal Spectral I Datt (1999) ratio red-edge martow differenced dNBR Bi-temporal Spectral I Mallinis et al. (2016); massled-cap martow differenced dNBR Bi-temporal Spectral I Datt (1999) ratio red-edge martow	Thermal					
based canopy loss pixel and object- based canopy loss SWIR1 to NIR d7/4 Bi-temporal Spectral I Wu et al. (2015) SWIR2 to NIR d7/5 Bi-temporal Spectral I Vogelmann (1990) ratio difference Difference in dCHAR Bi-temporal Spectral I Vogelmann (1990) ratio difference Charochieve dCHAR Bi-temporal Spectral I Kolden and Rogan (2013) scene components char Charochieve dEVI Bi-temporal Spectral I Gitelson et al. (2005) red-edge dEVI Bi-temporal Spectral 8 Zheng et al. (2016) red-edge dEVI Bi-temporal Spectral 1 Mallinis et al. (2018) difference vegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) difference dGV dGV Bi-temporal Spectral 1 Mallinis et al. (2018) difference dGV dGV Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Difference dKTB Bi-temporal Spectral 1 Huang et al. (2008) Differenced dKTB Bi-temporal Spectral 1 Huang et al. (2016); tassled-cap Difference dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Difference dKTG Bi-temporal Spectral 2 Meddens et al. (2017) bifference dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Difference dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Difference dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Difference dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap McCarley et al. (2017) methos N Differenced dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSR Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSR Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified burn ratio narrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2018) Normalized burn ratio narrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2018) Meddens	pixel and object-	CLobiect	Bi-temporal	Spectral	1	Wu et al. (2015)
pixel and object- based canopy lossCL pixelBi-temporalSpectral1Wu et al. (2015)based canopy loss based canopy loss7/4Bi-temporalSpectral1Kushla and Ripple (1998)ratio difference Difference in dCHARdT/5Bi-temporalSpectral1Vogelmann (1990)ratio difference chardCIre1Bi-temporalSpectral1Kolden and Rogan (2013)charchardCIre1Bi-temporalSpectral1Gitelson et al. (2005)chared-edge vegetation index green normalized differencedEV1Bi-temporalSpectral8Zheng et al. (2016)refa-edge vegetation index green normalized indexdGNDV1Bi-temporalSpectral1Mallinis et al. (2018)difference vegetation index green normalized indexdGVBi-temporalSpectral1Huang et al. (2018)differenced integrated forest indexdIF1Bi-temporalSpectral1Huang et al. (2016); McCarley et al. (2017)Differenced DifferenceddKTBBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced DifferenceddKTGBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced doftide simpledMSRre1Bi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)green normalized integrated forest indexdMSRre1Bi-temporalSpectral2Meddens et al. (20	based canopy loss	j	I I I	T T T		
based canopy loss SWIR1 to NIR d7/4 Bi-temporal Spectral 1 Kushla and Ripple (1998) artio difference SWIR2 to NIR d7/5 Bi-temporal Spectral 1 Vogelmann (1990) Tatio difference Difference in dCHAR Bi-temporal Spectral 1 Kolden and Rogan (2013) scene components Chara CIre I Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge differenced dEVI Bi-temporal Spectral 8 Zheng et al. (2016) enhanced vegetation index GGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) difference difference dIFI Bi-temporal Spectral 1 Mallinis et al. (2018) difference difference dIFI Bi-temporal Spectral 1 Mallinis et al. (2018) difference difference dKTB Bi-temporal Spectral 1 Mallinis et al. (2018) difference dKTB Bi-temporal Spectral 1 Huang et al. (2017) fraction difference dKTB Bi-temporal Spectral 1 Huang et al. (2016): mack Difference dKTB Bi-temporal Spectral 2 Meddens et al. (2017) recences Difference dKTB Bi-temporal Spectral 2 Meddens et al. (2017) fraction difference dKTB Bi-temporal Spectral 1 Huang et al. (2016): mack Difference dKTB Bi-temporal Spectral 2 Meddens et al. (2017) recences Difference dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge difference dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge difference dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge difference dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge difference dKTB Bi-temporal Spectral 1 Mallinis et al. (2016): mack difference dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge difference dKTB Bi-temporal Spectral 1 Mallinis et al. (2018) fraction difference dKTB Bi-temporal Spectral 1 Mallinis et al. (2016): mack difference dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge difference dKTB Bi-temporal Spectral 1 Mallinis et al. (2017) fraction difference dge difference dKTB Bi-temporal Spectral 1 Datt (1999) ratio red-edge difference dKTB Bi-temporal Spectral 1 Mallinis et al. (2018) fraction difference dKTB Bi-temporal Spectral 1 Datt (1999) fractio red-edge difference dKTB Bi-temporal Spectral 1 Datt (1999) fractio	pixel and object-	CLpixel	Bi-temporal	Spectral	1	Wu et al. (2015)
SWIR1 to NIR ratio differenced7/4Bi-temporalSpectral1Kushla and Ripple (1998)SWIR2 to NIR ratio differenced7/5Bi-temporalSpectral1Vogelmann (1990)Tatio differencedCHARBi-temporalSpectral1Kolden and Rogan (2013)Scene components charCherelBi-temporalSpectral1Gitelson et al. (2005)red-edgedEVIBi-temporalSpectral8Zheng et al. (2016)differenceddEVIBi-temporalSpectral1Mallinis et al. (2018)green normatic green normatics green normatics differenceGONDVIBi-temporalSpectral1Mallinis et al. (2018)differenceddGNDVIBi-temporalSpectral1Mallinis et al. (2018)(2013)differenceddGVBi-temporalSpectral1Huang et al. (2018)differenceddIFIBi-temporalSpectral1Huang et al. (2008)integrated forest indexDifferenceddKTBBi-temporalSpectral2Meddens et al. (2016);tassled-cap DifferenceddKTGBi-temporalSpectral2Meddens et al. (2016);tassled-cap UrgerennessBi-temporalSpectral2Meddens et al. (2016);tassled-cap UrgerennessBi-temporalSpectral2Meddens et al. (2016);tassled-cap UrgerennessBi-temporalSpectral1Datt (1999)ratio red-edge narrowdMSRre1Bi-	based canopy loss					
ratio difference SWIR2 to NIR d7/5 Bi-temporal Spectral 1 Vogelmann (1990) ratio difference Difference in dCHAR Bi-temporal Spectral 1 Kolden and Rogan (2013) scene components char Chlorophyll index dCIre1 Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge differenced dEVI Bi-temporal Spectral 8 Zheng et al. (2016) enhanced vegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) differenced dIFV Bi-temporal Spectral 1 Mallinis et al. (2018) differenced dIFV Bi-temporal Spectral 1 Kolden and Rogan (2013) fraction differenced dIFI Bi-temporal Spectral 1 Huang et al. (2018) differenced dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest Differenced dKTB Bi-temporal Spectral 1 Huang et al. (2008) integrated forest Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap McCarley et al. (2017) Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap McCarley et al. (2017) Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap McCarley et al. (2017) mercaness Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap McCarley et al. (2017) metrass Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1 Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index	SWIR1 to NIR	d7/4	Bi-temporal	Spectral	1	Kushla and Ripple (1998)
SMR2 10 NIK ratio difference Difference in dCHARBi-temporal Bi-temporalSpectral Spectral1Vogetmann (1990)Difference chardCHARBi-temporal Bi-temporalSpectral1Kolden and Rogan (2013)Chlorophyll index red-edgedCIre1Bi-temporal Bi-temporalSpectral1Gitelson et al. (2005)red-edge differenced regrean normalized differencedEVIBi-temporal Bi-temporalSpectral1Mallinis et al. (2016)enhanced vegetation index green normalized difference vegetation indexBi-temporal Bi-temporalSpectral1Mallinis et al. (2018)difference vegetation index green normalized differenceddGVBi-temporal Bi-temporalSpectral1Kolden and Rogan (2013)fraction differenced udexdGVBi-temporal Bi-temporalSpectral1Huang et al. (2018)integrated forest indexdIFIBi-temporal Bi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)brightnessDifferenced McCarleydKTGBi-temporal Bi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)brightnessDifferenced McCarleydKTWBi-temporal Bi-temporalSpectral1Datt (1999)Differenced differenceddKTWBi-temporal Bi-temporalSpectral1Datt (1999)ratio rad-edge Modified simpledMSRre1Bi-temporal Bi-temporalSpectral1Datt (1999)<	ratio difference	17/5	Di tama anal	Cara atual	1	$V_{\rm c}$ and $V_{\rm c}$ and $V_{\rm c}$
Labo unrelate Difference in dCHAR Bi-temporal Spectral 1 Kolden and Rogan (2013) scene components char Chlorophyll index dCIre1 Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge dEVI Bi-temporal Spectral 8 Zheng et al. (2016) enhanced vegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) differenced dGV Bi-temporal Spectral 1 Mallinis et al. (2018) differenced dIFT Bi-temporal Spectral 1 Kolden and Rogan (2013) fraction differenced dIFT Bi-temporal Spectral 1 Huang et al. (2008) integrated forest integrated forest integrated forest Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Medfine et al. (2017) greenness Differenced dKTW Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSR Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2018) NBR Bi-temporal Spectral 1 Mallinis et al. (2018)	SWIK2 to NIK	d7/5	B1-temporal	Spectral	1	vogelmann (1990)
Differenced officed cap bifferenceddefinition differencedDifferenced differenceddefinition differencedSpectral differenced1Forein and rogan (2013)Change in GV differenceddGVBi-temporal Bi-temporalSpectral Spectral1Mallinis et al. (2016)Change in GV differenceddGVBi-temporal Bi-temporalSpectral Spectral1Mallinis et al. (2018)Change in GV differenceddGVBi-temporal Bi-temporalSpectral Spectral1Kolden and Rogan (2013)fraction differenceddFI dGVBi-temporal Bi-temporalSpectral Spectral1Huang et al. (2008)integrated forest indexDifferenced dKTBBi-temporal Bi-temporalSpectral Spectral2Meddens et al. (2016); McCarley et al. (2017)Differenced differenceddKTG Bi-temporalSpectral Spectral2Meddens et al. (2016); McCarley et al. (2017)Differenced differenceddKTWBi-temporal Bi-temporalSpectral Spectral2Meddens et al. (2016); McCarley et al. (2017)greeness DifferenceddMSRre1nBi-temporal Bi-temporalSpectral1Datt (1999)ratio red-edge Modified simpledMSRre1nBi-temporal Bi-temporalSpectral1Datt (1999)ratio red-edge normalized burndNBRBi-temporal Bi-temporalSpectral1Datt (1999)ratio red-edge marrowdNBRnBi-temporal Bi-temporalSpectral1M	Difference in	dCHAR	Bi-temporal	Spectral	1	Kolden and Rogan (2013)
char Chlorophyll index dCIre I Bi-temporal Spectral 1 Gitelson et al. (2005) red-edge dEVI Bi-temporal Spectral 8 Zheng et al. (2016) enhanced vegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) difference vegetation index Green ormalized dGNV Bi-temporal Spectral 1 Kolden and Rogan (2013) fraction differenced dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2017) brightness Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2017) brightness Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Spectral 2 Meddens et al. (2017) prightness Differenced dKTG Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre 1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2016); tassled-cap Modified Simple dMSRre 1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2018) Normalized burn index	scene components	definite	Di temporta	Speedul	1	Rolden und Rogun (2015)
Chlorophyll index red-edgedCIre 1Bi-temporal Bi-temporalSpectral1Gitelson et al. (2005)differenced vegetation index green normalized difference vegetation indexBi-temporalSpectral8Zheng et al. (2016)green normalized difference vegetation indexGNDVIBi-temporalSpectral1Mallinis et al. (2018)Change in GV difference vegetation indexGGVBi-temporalSpectral1Kolden and Rogan (2013)Change in GV differenced uegetationdGVBi-temporalSpectral1Huang et al. (2008)differenced integrated forest indexdIF1Bi-temporalSpectral1Huang et al. (2016); McCarley et al. (2017)Differenced brightnessdKTBBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced orenessdKTGBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced uetossdKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced uetossdKSRre1Bi-temporalSpectral1Datt (1999)ratio red-edge narrowdMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edge narrowdMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edge narrowdMSRre1nBi-temporalSpectral50Key and Benson (2006)normalized bum indexdMSRnBi-te	char					
red-edge differenced dEVI Bi-temporal Spectral 8 Zheng et al. (2016) wegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) difference vegetation index Change in GV dGV Bi-temporal Spectral 1 Kolden and Rogan (2013) fraction differenced dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTW Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2016); tastel d-temporal Spectral 1 Mallinis et al. (2016) ratio ratio narrow	Chlorophyll index	dCIre1	Bi-temporal	Spectral	1	Gitelson et al. (2005)
differenced vegetation index green normalized dGNDVIBi-temporal Bi-temporalSpectral8Zheng et al. (2016)wegetation index vegetation index change in GV differencedGNDVIBi-temporal Bi-temporalSpectral1Mallinis et al. (2018)Change in GV vegetation index differenceddGVBi-temporal Bi-temporalSpectral1Kolden and Rogan (2013)fraction differenceddIFIBi-temporal Bi-temporalSpectral1Huang et al. (2008)integrated forest indexdKTBBi-temporal Bi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)brightnessDifferenced greennessdKTGBi-temporal Bi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced utassled-capdKTWBi-temporal Bi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced utassled-capdKTWBi-temporal Bi-temporalSpectral1Datt (1909)ratio red-edge narrowdMSRre1nBi-temporal Bi-temporalSpectral1Datt (1999)ratio red-edge narrowdMBRnBi-temporal Bi-temporalSpectral1Datt (1999)ratio red-edge narrowdNBRnBi-temporal Bi-temporalSpectral1Mallinis et al. (2016); McCarley et al. (2016); McCarley et al. (2017)modified simple normalized burn indexdNBRnBi-temporal Bi-temporalSpectral1Datt (1999) <t< td=""><td>red-edge</td><td></td><td></td><td></td><td></td><td></td></t<>	red-edge					
enhanced vegetation index green normalized dGNDVI Bi-temporal Spectral 1 Mallinis et al. (2018) difference vegetation index Change in GV dGV Bi-temporal Spectral 1 Kolden and Rogan (2013) fraction differenced dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Moddified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2016); mormalized burn index differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2016)	differenced	dEVI	Bi-temporal	Spectral	8	Zheng et al. (2016)
vegetation index green normalizeddGNDVIBi-temporalSpectral1Mallinis et al. (2018)difference vegetation indexChange in GVdGVBi-temporalSpectral1Kolden and Rogan (2013)fraction differenceddGVBi-temporalSpectral1Huang et al. (2008)integrated forest indexdIFIBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)DifferenceddKTBBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)brighnessDifferenceddKTGBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)DifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)DifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)wetnessDifferenceddKTWBi-temporalSpectral1Datt (1999)ratio red-edgemarrowIDatt (1999)IImarrowdifferenceddNBRBi-temporalSpectral1Datt (1999)ratio red-edgemarrowISpectral50Key and Benson (2006)normalized burnindexindexIMallinis et al. (2018)normalized burnindexIIMallinis et al. (2018)	enhanced					
gitch hormanized dolve via brechipolal spectral 1 Maining et al. (2013) difference vegetation index Change in GV dGV Bi-temporal Spectral 1 Kolden and Rogan (2013) fraction dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Bi-temporal Spectral 2 Meddens et al. (2017) brightness Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Meddens et al. (2017) greenness Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Meddens et al. (2016); tassled-cap Meddens et al. (2017) greenness Differenced dKTW Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge marrow differenced dNBR Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge marrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2016); normalized burn index differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2018)	green normalized	dGNDVI	Bi temporal	Spectral	1	Mallinis et al. (2018)
vegetation index Change in GV dGV Bi-temporal Spectral 1 Kolden and Rogan (2013) fraction differenced dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Meddens et al. (2017) greenness Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); marrow Meddens et al. (2016); Mathematical Meddens et al. (2017) Meddens et al. (2016); Mathematical Meddens et al. (2016); Mathematical Meddens et al. (2016); Mathematical Meddens et al. (2017) Meddens et al. (2016); Mathematical Meddens et al. (2016); Mathematical Meddens et al. (2016); Mathematical Meddens et al. (2017) Meddens et al. (2017) Meddens et al. (2017) Meddens et al. (2017) Meddens et al. (2018) Meddens et al. (2018)	difference		Di-temporar	Spectral	1	Mannis et al. (2018)
Change in GV fractiondGVBi-temporalSpectral1Kolden and Rogan (2013)differenced integrated forest indexdIFIBi-temporalSpectral1Huang et al. (2008)Differenced offerenceddKTBBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced offerenceddKTGBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced offerenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)greennessDifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)greennessModified simpledMSRre1Bi-temporalSpectral1Datt (1999)ratio red-edgedMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edgedNBRBi-temporalSpectral50Key and Benson (2006)normalized burn indexdNBRnBi-temporalSpectral1Mallinis et al. (2018)	vegetation index					
fraction differenced dIFI Bi-temporal Spectral 1 Huang et al. (2008) integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap brightness Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap greenness Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap greenness Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap greenness Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap wetness Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018)	Change in GV	dGV	Bi-temporal	Spectral	1	Kolden and Rogan (2013)
differenced integrated forest indexdIFIBi-temporalSpectral1Huang et al. (2008)Differenced tassled-cap brightnessdKTBBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced brightnessdKTGBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced greennessdKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Differenced greennessdKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)Modified simple ratio red-edge narrowdMSRre1Bi-temporalSpectral1Datt (1999)differenced dtferenceddNBRBi-temporalSpectral1Datt (1999)ratio red-edge narrowdNBRBi-temporalSpectral50Key and Benson (2006)normalized burn indexmormalized burn indexMallinis et al. (2018)1Mallinis et al. (2018)	fraction					
integrated forest index Differenced dKTB Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap brightness Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2017) greenness Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap wetness Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2016) normalized burn index	differenced	dIFI	Bi-temporal	Spectral	1	Huang et al. (2008)
IndexDifferenceddKTBBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)tassled-capbrightnessBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)greennessgreennessBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)DifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)greennessJifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)wetnessModified simpledMSRre1Bi-temporalSpectral1Datt (1999)ratio red-edgeModified simpledMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edgeImage: Spectral spectral1Datt (1999)Image: Spectral spectral spectral1Datt (1999)ratio red-edgeImage: Spectral sp	integrated forest					
DifferenceddNRRBi-temporalSpectral2Mcduchs et al. (2010), McCarley et al. (2017)tassled-cap greennessMcCarley et al. (2016); McCarley et al. (2017)McCarley et al. (2016); McCarley et al. (2017)greennessDifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)brightnessMcCarley et al. (2017)McCarley et al. (2017)McCarley et al. (2017)greennessModified simpledKSRre1Bi-temporalSpectral1Datt (1999)ratio red-edgeModified simpledMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edgeModified simpledMSR Bi-temporalSpectral1Datt (1999)ratio red-edgeMcGarley et al. (2016); McCarley et al. (2017)McCarley et al. (2017)differenceddNBRBi-temporalSpectral50Key and Benson (2006)normalized burn indexMRNBi-temporalSpectral1Mallinis et al. (2018)normalized burn ratio narrowMcCarley et al. (2018)McCarley et al. (2018)McCarley et al. (2018)	Differenced	AKTB	Ri temporal	Spectral	2	Meddens et al. (2016):
brightness Differenced dKTG Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap Meddens et al. (2017) greenness Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2017) wetness Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBR Bi-temporal Spectral 1 Mallinis et al. (2018)	tassled-cap	uitib	DI-temporar	Spectral	2	McCarlev et al. (2010) ,
Differenced tassled-cap greennessdKTGBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)greennessDifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)tassled-cap wetnessBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)wetnessModified simpledMSRre1Bi-temporalSpectral1Datt (1999)ratio red-edgeModified simpledMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edgeImage: spectral spectral1Datt (1999)Image: spectral spectral spectral1Datt (1999)ratio red-edgeImage: spectral spectral spectral spectral1Datt (1999)Image: spectral sp	brightness					
tassled-cap greennessMcCarley et al. (2017)Differenced tassled-capdKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)wetnessBi-temporalSpectral1Datt (1999)ratio red-edgeBi-temporalSpectral1Datt (1999)ratio red-edge </td <td>Differenced</td> <td>dKTG</td> <td>Bi-temporal</td> <td>Spectral</td> <td>2</td> <td>Meddens et al. (2016);</td>	Differenced	dKTG	Bi-temporal	Spectral	2	Meddens et al. (2016);
greennessJifferenceddKTWBi-temporalSpectral2Meddens et al. (2016); McCarley et al. (2017)tassled-cap	tassled-cap					McCarley et al. (2017)
Differenced dKTW Bi-temporal Spectral 2 Meddens et al. (2016); tassled-cap McCarley et al. (2017) wetness Modified simple dMSRre1 Bi-temporal Spectral 1 Datt (1999) ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018) normalized burn ratio narrow	greenness	11775337	D. 1	G . 1	2	
tassied-capMcCarley et al. (2017)wetnessModified simpledMSRre1Bi-temporalSpectral1Datt (1999)ratio red-edgeModified simpledMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edgenarrowImage: Spectral simple1Datt (1999)Image: Spectral simpleDatt (1999)ratio red-edgeImage: Spectral simpleSpectral simple50Key and Benson (2006)normalized burnImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindexImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindexImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindexImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindexImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindexImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindexImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindexImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleImage: Spectral simpleindex <td>Differenced</td> <td>dKTW</td> <td>B1-temporal</td> <td>Spectral</td> <td>2</td> <td>Meddens et al. (2016);</td>	Differenced	dKTW	B1-temporal	Spectral	2	Meddens et al. (2016);
WorkingsModified simpledMSRre1Bi-temporalSpectral1Datt (1999)ratio red-edgeModified simpledMSRre1nBi-temporalSpectral1Datt (1999)ratio red-edgenarrow1Datt (1999)Datt (1999)ratio red-edgenarrow50Key and Benson (2006)normalized burnindex50Key and Benson (2006)index1Bi-temporalSpectral1differenceddNBRnBi-temporalSpectral1normalized burnindex1Mallinis et al. (2018)normalized burnratio narrow1Mallinis et al. (2018)	wetness					McCarley et al. (2017)
ratio red-edge Modified simple dMSRre1n Bi-temporal Spectral 1 Datt (1999) ratio red-edge narrow differenced dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018) normalized burn ratio narrow	Modified simple	dMSRre1	Bi-temporal	Spectral	1	Datt (1999)
Modified simple ratio red-edge narrowdMSRre1nBi-temporalSpectral1Datt (1999)differenced normalized burn indexdNBRBi-temporalSpectral50Key and Benson (2006)normalized burn indexdNBRnBi-temporalSpectral1Mallinis et al. (2018)normalized burn ratio narrowratio narrow1Mallinis et al. (2018)	ratio red-edge		Dittinport	Special	-	2 (1777)
ratio red-edge narrow differenced dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018) normalized burn ratio narrow	Modified simple	dMSRre1n	Bi-temporal	Spectral	1	Datt (1999)
narrow differenced dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018) normalized burn ratio narrow	ratio red-edge					
differenced dNBR Bi-temporal Spectral 50 Key and Benson (2006) normalized burn index differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018) normalized burn ratio narrow Image: Constraint of the second secon	narrow		~	~ .		
normalized burn index differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018) normalized burn ratio narrow	differenced	dNBR	Bi-temporal	Spectral	50	Key and Benson (2006)
differenced dNBRn Bi-temporal Spectral 1 Mallinis et al. (2018) normalized burn ratio narrow	normalized burn					
normalized burn ratio narrow	differenced	dNBRn	Bi-temporal	Spectral	1	Mallinis et al. (2018)
ratio narrow	normalized burn		21 component	~recum	-	(2010)
	ratio narrow					

differenced	dNDMI	Bi-temporal	Spectral	3	Meddens et al. (2016);
difference					McCarley et al. (2017)
moisture index					
Normalized	dNDSWIR	Bi-temporal	Spectral	1	Gerard et al. (2003)
difference SWIR		Dittemportur	Speeda	-	
index					
differenced	dNDVI	Bi-temporal	Spectral	18	Xiao et al. (2002)
normalized		-	-		
difference					
vegetation index					
normalized	dNDVIre1	Bi-temporal	Spectral	1	Gitelson and Merzlyak
difference					(1994)
vegetation index					
red edge1	dNDVIro1n	Di tomporal	Spectral	1	Citalson and Marzhvak
difference	undvitetii	Di-temporar	spectral	1	(1994)
vegetation index					(1994)
red edge1 narrow					
Change in NPV	dNPV	Bi-temporal	Spectral	1	Kolden and Rogan (2013)
fraction		1	1		
differences of	dSR	Bi-temporal	Spectral	1	McCarley et al. (2017)
pixel to pixel in					
each band (TM1-					
7)		.	~ .		
ratios of pixel to	ımage	B1-temporal	Spectral	1	Nelson (1983)
differenced L ST	ratioing	Di tammanal	Thomsol	2	C_{orb} (1) Lamos et al. (2010)
uniferenceu LST	uls I	Di-temporar	Therman	3	Garcia-Liamas et al. (2019)
Differenced ratio of LST to EVI	d(LST/EVI)	Bi-temporal	Mixed	2	Zheng et al. (2016)
Radar Burn Ratio	Radar Burn	Bi-temporal	Radar	2	Tanase et al. (2015b)
	Ratio (RBR)	ratio			
Relative burn	RBR	Relativized	Spectral	7	Parks et al. (2014)
ratio					
Relative	RdNBR	Relativized	Spectral	25	Miller and Thode (2007)
differenced					
normalized burn					
Polotivized	DANDMI	Polotivized	Spectral	1	Varavarbaka at al. (2011)
differenced	KuNDMI	Kelativized	Spectral	1	Veraverbere et al. (2011)
normalized					
differenced					
moisture index					
Relativized	RdNDVI	Relativized	Spectral	1	Veraverbeke et al. (2011)
differenced					
normalized					
differenced					
vegetation index					

Number of evaluation metrics considered

Figure S5. Number of evaluation metrics considered by each study (N = 62 studies). The number of studies that used each number of metrics is shown in parentheses.

Figure S6. Use of models based on a single-fire, multiple fires or combination (N = 62 studies). The number of studies that used each type of model is shown in parentheses.

Supplementary references

- Boucher J, Beaudoin A, Hébert C, Guindon L, Bauce É, Hebert C, Guindon L, Bauce E (2017)
 'Assessing the potential of the differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests.' *International Journal of Wildland Fire* 26, 32–45. doi:10.1071/WF15122
- Cahoon Jr DR, Stocks BJ, Levine JS, Cofer III WR, Pierson JM (1994) 'Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia' *Journal of Geophysical Research: Atmospheres* **99**, 18627–18638.
- Cansler CA, McKenzie D (2012) 'How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods' *Remote sensing* **4**, 456–483.
- Chang Y, Zhu Z, Feng Y, Li Y, Bu R, Hu Y (2016) 'The spatial variation in forest burn severity in Heilongjiang Province, China' *Natural Hazards* **81**, 981–1001. doi:http://dx.doi.org/10.1007/s11069-015-2116-9
- Chen G, Hay GJ, Castilla G, St-Onge B, Powers R (2011) 'A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery' *International Journal of Geographical Information Science* **25**, 877–893.
- Chen XX, Vogelmann JE, Rollins M, Ohlen D, Key CH, Yang LM, Huang CQ, Shi H (2011) 'Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest.' *International Journal of Remote Sensing* **32**, 7905–7927. doi:10.1080/01431161.2010.524678
- Chuvieco E, Martin MP, Palacios A (2002) 'Assessment of different spectral indices in the rednear-infrared spectral domain for burned land discrimination' *International Journal of Remote Sensing* 23, 5103–5110.
- Chuvieco E, Riaño D, Danson FM, Martin P (2006) 'Use of a radiative transfer model to simulate the postfire spectral response to burn severity' *Journal of Geophysical Research: Biogeosciences* **111**,.
- Datt B (1999) 'A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves' *Journal of Plant Physiology* **154**, 30–36.
- Epting J, Verbyla D, Sorbel B (2005) 'Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+' *Remote Sensing of Environment* **96**, 328–339.
- Fernández-Manso A, Quintano C, Fernandez-Manso A, Quintano C (2015) 'Evaluating Landsat ETM+ emissivity-enhanced spectral indices for burn severity discrimination in Mediterranean forest ecosystems.' *Remote Sensing Letters* 6, 302–310. doi:10.1080/2150704X.2015.1029093
- Fraser RH, Sluijs J Vander, Hall RJ (2017) 'Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a Burned Boreal Forest in NWT, Canada' *Remote Sensing* **9**, 279. doi:http://dx.doi.org/10.3390/rs9030279
- Garcia-Llamas P, Suarez-Seoane S, Manuel Fernandez-Guisuraga J, Fernandez-Garcia V, Fernandez-Manso A, Quintano C, Taboada A, Marcos E, Calvo L (2019) 'Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems' *International Journal of Applied Earth Observation and Geoinformation* 80, 137–144. doi:10.1016/j.jag.2019.04.006
- García MJL, Caselles V (1991) 'Mapping burns and natural reforestation using Thematic

Mapper data' Geocarto International 6, 31–37.

- Gerard F, Plummer S, Wadsworth R, Sanfeliu AF, Iliffe L, Balzter H, Wyatt B (2003) 'Forest fire scar detection in the boreal forest with multitemporal SPOT-VEGETATION data' *IEEE Transactions on Geoscience and Remote Sensing* **41**, 2575–2585.
- Gitelson A, Merzlyak MN (1994) 'Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation' *Journal of plant physiology* **143**, 286–292.
- Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) 'Remote estimation of canopy chlorophyll content in crops' *Geophysical Research Letters* **32**,.
- Huang C, Song K, Kim S, Townshend JRG, Davis P, Masek JG, Goward SN (2008) 'Use of a dark object concept and support vector machines to automate forest cover change analysis' *Remote sensing of environment* **112**, 970–985.
- Huete AR (1988) 'A soil-adjusted vegetation index (SAVI)' *Remote sensing of environment* 25, 295–309.
- Hultquist C, Chen G, Zhao K (2014) 'A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests' *Remote sensing letters* **5**, 723–732.
- Karau EC, Keane RE (2010) 'Burn severity mapping using simulation modelling and satellite imagery super(A)' *International Journal of Wildland Fire* **19**, 710–724. doi:10.1071/WF09018
- Karau EC, Sikkink PG, Keane RE, Dillon GK (2014) 'Integrating Satellite Imagery with Simulation Modeling to Improve Burn Severity Mapping' *Environmental Management* 54, 98–111. doi:http://dx.doi.org/10.1007/s00267-014-0279-x
- Kaufman YJ, Remer LA (1994) 'Detection of forests using mid-IR reflectance: an application for aerosol studies' *IEEE transactions on geoscience and remote sensing* **32**, 672–683.
- Kauth RJ, Thomas GS (1976) The tasselled cap--a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In 'LARS Symp.', 159
- Key CH, Benson NC (2006) 'Landscape assessment (LA)' FIREMON: Fire effects monitoring and inventory system Gen Tech Rep RMRS-GTR-164-CD, Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
- Kolden CA, Rogan J (2013) 'Mapping wildfire burn severity in the Arctic tundra from downsampled MODIS data' *Arctic, Antarctic, and Alpine Research* **45**, 64–76.
- Koutsias N, Karteris M, Chuvico E (2000) 'The use of intensity-hue-saturation transformation of Landsat-5 Thematic Mapper data for burned land mapping' *Photogrammetric Engineering and Remote Sensing* **66**, 829–840.
- Kushla JD, Ripple WJ (1998) 'Assessing wildfire effects with Landsat thematic mapper data' *International Journal of Remote Sensing* **19**, 2493–2507.
- Liu HQ, Huete A (1995) 'A feedback based modification of the NDVI to minimize canopy background and atmospheric noise' *IEEE transactions on geoscience and remote sensing* **33**, 457–465.
- Mallinis G, Mitsopoulos I, Chrysafi I (2018) 'Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece' *Giscience & Remote Sensing* **55**, 1–18. doi:10.1080/15481603.2017.1354803
- Malthus TJ, Andrieu B, Danson FM, Jaggard KW, Steven MD (1993) 'Candidate high spectral resolution infrared indices for crop cover' *Remote Sensing of Environment* **46**, 204–212.

- McCarley TR, Kolden CA, Valliant NM, Hudak AT, Smith AMS, Kreitler J (2017) 'Landscapescale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest' *Forest Ecology and Management* **391**, 164–175. doi:10.1016/j.foreco.2017.02.015
- Meddens AJH, Kolden CA, Lutz JA (2016) 'Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States' *Remote Sensing of Environment* **186**, 275–285.
- Miller JD, Knapp EE, Key CH, Skinner CN, Isbell CJ, Creasy RM, Sherlock JW (2009) 'Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA' *Remote Sensing of Environment* **113**, 645–656.
- Miller JD, Thode AE (2007) 'Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)' *Remote Sensing of Environment* **109**, 66–80.
- Musyimi Z, Said MY, Zida D, Rosenstock TS, Udelhoven T, Savadogo P, Leeuw J de, Aynekulu E, de Leeuw J, Aynekulu E (2017) 'Evaluating fire severity in Sudanian ecosystems of Burkina Faso using Landsat 8 satellite images' *Journal of Arid Environments* 139, 95–109. doi:10.1016/j.jaridenv.2016.11.005
- Nelson RF (1983) 'Detecting forest canopy change due to insect activity using Landsat MSS' *Photogrammetric Engineering and Remote Sensing* **49**, 1303–1314.
- Parker BM, Lewis T, Srivastava SK (2015) 'Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors' *Remote Sensing of Environment* **170**, 340–349. doi:http://dx.doi.org/10.1016/j.rse.2015.09.014
- Parks SA, Dillon GK, Miller C (2014) 'A new metric for quantifying burn severity: the Relativized Burn Ratio' *Remote Sensing* **6**, 1827–1844.
- Patterson MW, Yool SR (1998) 'Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transformation techniques' *Remote Sensing* of Environment **65**, 132–142.
- Pereira JMC, Sá ACL, Sousa AMO, Silva JMN, Santos TN, Carreiras JMB (1999) Spectral characterisation and discrimination of burnt areas. In 'Remote Sens. large wildfires'. pp. 123–138. (Springer)
- Picotte JJ, Robertson KM (2011) 'Validation of remote sensing of burn severity in south-eastern US ecosystems' *International Journal of Wildland Fire* **20**, 453–464. doi:http://dx.doi.org/10.1071/WF10013
- Pinty B, Verstraete MM (1992) 'GEMI: a non-linear index to monitor global vegetation from satellites' *Vegetatio* **101**, 15–20.
- Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) 'A modified soil adjusted vegetation index' *Remote sensing of environment* **48**, 119–126.
- Quintano C, Fernandez-Manso A, Calvo L, Marcos E, Valbuena L, Fernández-Manso A, Calvo L, Marcos E, Valbuena L (2015) 'Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems.' *International Journal of Applied Earth Observation and Geoinformation* **36**, 1–12. doi:10.1016/j.jag.2014.10.015
- Rouse Jr J, Haas RH, Schell JA, Deering DW (1974) 'Monitoring vegetation systems in the Great Plains with ERTS'
- Smith AMS, Drake NA, Wooster MJ, Hudak AT, Holden ZA, Gibbons CJ (2007) 'Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs:

comparison of methods and application to MODIS' *International Journal of Remote Sensing* **28**, 2753–2775.

- Stambaugh MC, Hammer LD, Godfrey R (2015) 'Performance of Burn-Severity Metrics and Classification in Oak Woodlands and Grasslands' *Remote Sensing* 7, 10501–10522. doi:http://dx.doi.org/10.3390/rs70810501
- Tanase MA, Kennedy R, Aponte C (2015a) 'Fire severity estimation from space: a comparison of active and passive sensors and their synergy for different forest types' *International Journal of Wildland Fire* **24**, 1062–1075. doi:10.1071/WF15059
- Tanase MA, Kennedy R, Aponte C (2015b) 'Radar burn ratio for fire severity estimation at canopy level: an example for temperate forests.' *Remote Sensing of Environment* 170, 14– 31. doi:10.1016/j.rse.2015.08.025
- Tane Z, Roberts D, Veraverbeke S, Casas A, Ramirez C, Ustin S (2018) 'Evaluating Endmember and Band Selection Techniques for Multiple Endmember Spectral Mixture Analysis using Post-Fire Imaging Spectroscopy' *Remote Sensing* 10, 389. doi:10.3390/rs10030389
- Trigg S, Flasse S (2001) 'An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah' *International Journal of Remote Sensing* **22**, 2641–2647.
- Veraverbeke S, Harris S, Hook S (2011) 'Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data' *Remote Sensing* of Environment 115, 2702–2709.
- Veraverbeke S, Hook SJ (2013) 'Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions' *International Journal of Wildland Fire* 22, 707–720. doi:http://dx.doi.org/10.1071/WF12168
- Veraverbeke S, Hook S, Hulley G (2012) 'An alternative spectral index for rapid fire severity assessments' *Remote Sensing of Environment* **123**, 72–80. doi:10.1016/j.rse.2012.02.025
- Veraverbeke S, Lhermitte S, Verstraeten WW, Goossens R (2011) 'Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with Landsat Thematic Mapper' *International Journal of Remote Sensing* **32**, 3521–3537.
- Veraverbeke S, Stavros En, Hook SJ (2014) 'Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities' *Remote Sensing of Environment* **154**, 153–163. doi:10.1016/j.rse.2014.08.019
- Vogelmann JE (1990) 'Comparison between two vegetation indices for measuring different types of forest damage in the north-eastern United States' *Remote Sensing* **11**, 2281–2297.
- van Wagtendonk JW, Root RR, Key CH, Wagtendonk JW van, Root RR, Key CH (2004) 'Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity' *Remote Sensing of Environment* **92**, 397–408. doi:10.1016/j.rse.2003.12.015
- White JD, Ryan KC, Key CC, Running SW (1996) 'Remote sensing of forest fire severity and vegetation recovery' *International Journal of Wildland Fire* **6**, 125–136.
- Wu Z, Middleton B, Hetzler R, Vogel J, Dye D (2015) 'Vegetation burn severity mapping using Landsat-8 and WorldView-2' *Photogrammetric Engineering & Remote Sensing* 81, 143– 154.
- Xiao X, Boles S, Liu J, Zhuang D, Liu M (2002) 'Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data' *Remote Sensing of Environment* **82**, 335–348.
- Yu X, Guo X, Wu Z (2014) 'Land surface temperature retrieval from Landsat 8 TIRS— Comparison between radiative transfer equation-based method, split window algorithm and

single channel method' *Remote sensing* 6, 9829–9852.

Zheng Z, Zeng Y, Li S, Huang W, Zhong Z, YongNian Z, SongNian L, Wei H (2016) 'A new burn severity index based on land surface temperature and enhanced vegetation index' *International Journal of Applied Earth Observation and Geoinformation* 45, 84–94. doi:10.1016/j.jag.2015.11.002

Supplemental Information 2 for:

Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index

Colton W. Miller, Brian J. Harvey, Van R. Kane, L. Monika Moskal, and Ernesto Alvarado

International Journal of Wildland Fire

This supplementary information includes:

Citations included in this study for review as well as the number of comparisons of field observations and remotely sensed data extracted for analysis. Further information regarding the data that support this study will be shared upon reasonable request to the corresponding author.

Citation	Number of
	comparisons
Allen, J. L., & Sorbel, B. (2008). Assessing the differenced Normalized Burn Ratio's ability to map burn severity in the boreal forest and	
tundra ecosystems of Alaska's national parks. International Journal of Wildland Fire, 17(4), 463–475.	11
Boucher, J., Beaudoin, A., Hébert, C., Guindon, L., Bauce, É., Hebert, C., Guindon, L., & Bauce, E. (2017). Assessing the potential of the	
differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. International Journal of	
Wildland Fire, 26(1), 32–45. https://doi.org/10.1071/WF15122	10
Cansler, C. A., & McKenzie, D. (2012). How robust are burn severity indices when applied in a new region? Evaluation of alternate field-	
based and remote-sensing methods. Remote Sensing, 4(2), 456–483.	4
Chang, Y., Zhu, Z., Feng, Y., Li, Y., Bu, R., & Hu, Y. (2016). The spatial variation in forest burn severity in Heilongjiang Province, China.	
Natural Hazards, 81(2), 981–1001. https://doi.org/http://dx.doi.org/10.1007/s11069-015-2116-9	16
Chen, G., Metz, M. R., Rizzo, D. M., & Meentemeyer, R. K. (2015). Mapping burn severity in a disease-impacted forest landscape using	
Landsat and MASTER imagery. International Journal of Applied Earth Observation and Geoinformation, 40, 91–99.	
https://doi.org/10.1016/j.jag.2015.04.005	2
Chen, X. X., Vogelmann, J. E., Rollins, M., Ohlen, D., Key, C. H., Yang, L. M., Huang, C. Q., & Shi, H. (2011). Detecting post-fire burn	
severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a	
ponderosa pine forest. International Journal of Remote Sensing, 32(23), 7905–7927. https://doi.org/10.1080/01431161.2010.524678	5
Cocke, A. E., Fulé, P. Z., & Crouse, J. E. (2005). Comparison of burn severity assessments using Differenced Normalized Burn Ratio and	
ground data. International Journal of Wildland Fire, 14(2), 189–198.	2
De Santis, A., & Chuvieco, E. (2007). Burn severity estimation from remotely sensed data: Performance of simulation versus empirical	
models. Remote Sensing of Environment, 108(4), 422–435.	1

De Santis, A., & Chuvieco, E. (2009). GeoCBI: a modified version of the Composite Burn Index for the initial assessment of the short-term	2
De Santis, A., Asner, G. P., Vaughan, P. J., & Knapp, D. E. (2010). Mapping burn severity and burning efficiency in California using	3
simulation models and Landsat imagery. Remote Sensing of Environment, 114(7), 1535–1545. https://doi.org/10.1016/j.rse.2010.02.008	1
Epting, J., Verbyla, D., & Sorbel, B. (2005). Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using	
Landsat TM and ETM+. Remote Sensing of Environment, 96(3–4), 328–339.	4
Fang, L., & Yang, J. (2014). Atmospheric effects on the performance and threshold extrapolation of multi-temporal Landsat derived dNBR	
for burn severity assessment. International Journal of Applied Earth Observation and Geoinformation, 33, 10–20.	1
https://doi.org/10.1010/J.Jag.2014.04.017 Fernández-García V. Quintano C. Taboada A. Marcos F. Calvo I. & Fernández-Manso A. (2018). Remote sensing applied to the study	1
of fire regime attributes and their influence on post-fire greenness recovery in pine ecosystems. Remote Sensing 10(5), 733	
https://doi.org/10.3390/rs10050733	4
Fernández-Manso, A., Quintano, C., Fernandez-Manso, A., & Quintano, C. (2015). Evaluating Landsat ETM+ emissivity-enhanced spectral	
indices for burn severity discrimination in Mediterranean forest ecosystems. Remote Sensing Letters, 6(4), 302–310.	
https://doi.org/10.1080/2150704X.2015.1029093	1
Fraser, R. H., Sluijs, J. Vander, & Hall, R. J. (2017). Calibrating Satellite-Based Indices of Burn Severity from UAV-Derived Metrics of a	
Burned Boreal Forest in NWT, Canada. Remote Sensing, 9(3), 279. https://doi.org/http://dx.doi.org/10.3390/rs9030279	2
Garcia-Llamas, P., Suarez-Seoane, S., Manuel Fernandez-Guisuraga, J., Fernandez-Garcia, V., Fernandez-Manso, A., Quintano, C., Taboada,	
A., Marcos, E., & Calvo, L. (2019). Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for	
assessing burn severity in Mediterranean fire-prone ecosystems. International Journal of Applied Earth Observation and Geoinformation,	2
60, 15/-144. https://doi.org/10.1010/J.jag.2019.04.000 Hall P. J. Freehurn J. T. De Groot W. J. Pritchard J. M. Lynham T. J. & Landry P. (2008). Remote sensing of hurn severity:	5
experience from western Canada horeal fires. International Journal of Wildland Fire. 17(4), 476–489	4
Holden, Z. A., & Evans, J. S. (2010). Using fuzzy C-means and local autocorrelation to cluster satellite-inferred burn severity classes.	
International Journal of Wildland Fire, 19(7), 853–860. https://doi.org/10.1071/WF08126	3
Holden, Z. A., Morgan, P., Smith, A. M. S., & Vierling, L. (2010). Beyond Landsat: a comparison of four satellite sensors for detecting burn	
severity in ponderosa pine forests of the Gila Wilderness, NM, USA. International Journal of Wildland Fire, 19(4), 449-458.	
https://doi.org/10.1071/WF07106	5
Hoy, E. E., French, N. H. F., Turetsky, M. R., Trigg, S. N., & Kasischke, E. S. (2008). Evaluating the potential of Landsat TM/ETM+	
imagery for assessing fire severity in Alaskan black spruce forests. International Journal of Wildland Fire, 17(4), 500–514.	2
Hultquist, C., Chen, G., & Zhao, K. (2014). A comparison of Gaussian process regression, random forests and support vector regression for	1
burn severity assessment in diseased forests. Remote Sensing Letters, $5(8)$, $725-732$.	1
of Wildland Fire 19(6), 710, 724, https://doi.org/10.1071/WE00018	1
Karau, E. C., Sikkink, P. G., Keane, R. E., & Dillon, G. K. (2014). Integrating Satellite Imagery with Simulation Modeling to Improve Burn	-
Severity Mapping. Environmental Management, 54(1), 98–111, https://doi.org/http://dx.doi.org/10.1007/s00267-014-0279-x	15
Kolden, C. A., & Rogan, J. (2013). Mapping wildfire burn severity in the Arctic tundra from downsampled MODIS data. Arctic, Antarctic,	-
and Alpine Research, 45(1), 64–76.	6
Kurbanov, E., Vorobyev, O., Leznin, S., Polevshikova, Y., & Demisheva, E. (2017). Assessment of burn severity in Middle Povozhje with	
Landsat multitemporal data. International Journal of Wildland Fire, 26(9), 772-782. https://doi.org/10.1071/WF16141	1

boda, T. V, French, N. H. F., Hight-Harf, C., Jenkins, L., & Miller, M. E. (2013). Mapping fire extent and burn severity in Alaskan tussock	
tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sensing of Environment, 134, 194–209.	105
allinis, G., Mitsopoulos, I., & Chrysafi, I. (2018). Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI)	
spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. Giscience & Remote Sensing, 55(1), 1–18.	
https://doi.org/10.1080/15481603.2017.1354803	2
leng, Q., & Meentemeyer, R. K. (2011). Modeling of multi-strata forest fire severity using Landsat TM Data. International Journal of	
Applied Earth Observation and Geoinformation, 13(1), 120–126.	1
liller, J. D., & Quayle, B. (2015). Calibration and validation of immediate post-fire satellite-derived data to three severity metrics. Fire	
Ecology, 11(2), 12–30. http://fireecologyjournal.org/docs/Journal/pdf/Volume11/Issue02/012.pdf	8
liller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized	
Burn Ratio (dNBR). Remote Sensing of Environment, 109(1), 66–80.	13
liller, J. D., Knapp, E. E., Key, C. H., Skinner, C. N., Isbell, C. J., Creasy, R. M., & Sherlock, J. W. (2009). Calibration and validation of the	
relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains,	
California, USA. Remote Sensing of Environment, 113(3), 645–656.	26
urphy, K. A., Reynolds, J. H., & Koltun, J. M. (2008). Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict	
ecologically significant burn severity in Alaskan boreal forests. International Journal of Wildland Fire, 17(4), 490–499.	12
lusyimi, Z., Said, M. Y., Zida, D., Rosenstock, T. S., Udelhoven, T., Savadogo, P., Leeuw, J. de, Aynekulu, E., de Leeuw, J., & Aynekulu,	
E. (2017). Evaluating fire severity in Sudanian ecosystems of Burkina Faso using Landsat 8 satellite images. Journal of Arid	
Environments, 139, 95–109. https://doi.org/10.1016/j.jaridenv.2016.11.005	8
arker, B. M., Lewis, T., & Srivastava, S. K. (2015). Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors.	
Remote Sensing of Environment, 170, 340-349. https://doi.org/http://dx.doi.org/10.1016/j.rse.2015.09.014	1
arks, S. A., Dillon, G. K., & Miller, C. (2014). A new metric for quantifying burn severity: the Relativized Burn Ratio. Remote Sensing,	
6(3), 1827–1844.	18
arks, S. A., Holsinger, L. M., Koontz, M. J., Collins, L., Whitman, E., Parisien, MA., Loehman, R. A., Barnes, J. L., Bourdon, JF.,	
Boucher, J., Boucher, Y., Caprio, A. C., Collingwood, A., Hall, R. J., Park, J., Saperstein, L. B., Smetanka, C., Smith, R. J., & Soverel, N.	
(2019). Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sensing, 11(14),	
1735. https://doi.org/10.3390/rs11141735	256
arks, S. A., Holsinger, L. M., Voss, M. A., Loehman, R. A., & Robinson, N. P. (2018). Mean Composite Fire Severity Metrics Computed	
with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential. Remote Sensing, 10(6), 879.	
https://doi.org/10.3390/rs10060879	18
cotte, J. J., & Robertson, K. M. (2011). Validation of remote sensing of burn severity in south-eastern US ecosystems. International Journal	
of Wildland Fire, 20(3), 453–464. https://doi.org/http://dx.doi.org/10.1071/WF10013	27
uintano, C., Fernandez-Manso, A., Calvo, L., Marcos, E., Valbuena, L., Fernández-Manso, A., Calvo, L., Marcos, E., & Valbuena, L.	
(2015). Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems. International Journal of	
Applied Earth Observation and Geoinformation, 36, 1–12. https://doi.org/10.1016/j.jag.2014.10.015	6
chepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Borre, J. Vanden, & Goossens, R. (2014). Burned Area Detection and Burn Severity	
Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sensing, 6(3), 1803–1826.	
https://doi.org/http://dx.doi.org/10.3390/rs6031803	1
overel, N. O., Perrakis, D. D. B., & Coops, N. C. (2010). Estimating burn severity from Landsat dNBR and RdNBR indices across western	
	-

Stambaugh, M. C., Hammer, Grasslands. Remote Sens Strand F. K. Bunting S. C.	L. D., & Godfrey, R. (2015). Performance of Burn-Severity Metrics and Classification in Oak Woodlands and ing, 7(8), 10501–10522. https://doi.org/http://dx.doi.org/10.3390/rs70810501 & Keefe R. F. (2013). Influence of Wildland Fire Along a Successional Gradient in Sagebrush Steppe and	3
Western Juniper Woodla	nds. Rangeland Ecology and Management. 66(6), 667–679	
https://search.proquest.co	pm/docview/1468524215?accountid=14784	3
Tanase, M. A., Kennedy, R.,	& Aponte, C. (2015). Fire severity estimation from space: a comparison of active and passive sensors and their	5
synergy for different fore	st types. International Journal of Wildland Fire, 24(8), 1062–1075, https://doi.org/10.1071/WF15059	14
Tanase, M. A., Kennedy, R.,	& Aponte, C. (2015). Radar burn ratio for fire severity estimation at canopy level: an example for temperate	
forests. Remote Sensing	of Environment, 170, 14–31. https://doi.org/10.1016/j.rse.2015.08.025	10
Tanase, M., de la Riva, J., Pé	rez-Cabello, F., Riva, J. de la, & Pérez-Cabello, F. (2011). Estimating burn severity at the regional level using	
optically based indices. C	Canadian Journal of Forest Research, 41(4), 863. https://doi.org/10.1139/x11-011	5
Tane, Z., Roberts, D., Verave	rbeke, S., Casas, Á., Ramirez, C., & Ustin, S. (2018). Evaluating endmember and band selection techniques for	
Multiple Endmember Sp	ectral Mixture Analysis using post-fire imaging spectroscopy. Remote Sensing, 10(3), 389.	
https://doi.org/10.3390/rs	10030389	1
van Wagtendonk, J. W., Root	, R. R., Key, C. H., Wagtendonk, J. W. van, Root, R. R., & Key, C. H. (2004). Comparison of AVIRIS and	
Landsat ETM+ detection	capabilities for burn severity. Remote Sensing of Environment, 92(3), 397–408.	_
https://doi.org/10.1016/j.	rse.2003.12.015	2
Veraverbeke, S., & Hook, S.	J. (2013). Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion	
completeness and carbon	emissions. International Journal of Wildland Fire, $22(5)$, $707-720$.	1
https://doi.org/http://dx.d	01.0rg/10.10/1/WF12108 & Horris S. (2012) Supergy of VSWIP (0.4.2.5 µM) and MTIP (2.5.12.5 µM) data for post fire assessments	1
Pomoto Sonsing of Envir	α Harris, S. (2012). Synergy of VSWIR (0.4-2.5 μ W) and W11R (5.5-12.5 μ W) data for post-life assessments.	1
Veraverbeke S Hook S &	Hulley, G. (2012) An alternative spectral index for rapid fire severity assessments. Remote Sensing of	1
Environment 123 72–8() https://doi.org/10.1016/i.rse.2012.02.025	2
Veraverbeke S Lhermitte S	Verstraeten W W & Goossens R (2010) The temporal dimension of differenced Normalized Burn Ratio	2
(dNBR) fire/burn severit	y studies: The case of the large 2007 Peloponnese wildfires in Greece. Remote Sensing of Environment, 114(11).	
2548–2563. https://doi.or	g/http://dx.doi.org/10.1016/i.rse.2010.05.029	2
Veraverbeke, S., Lhermitte, S	S., Verstraeten, W. W., & Goossens, R. (2011). Evaluation of pre/post-fire differenced spectral indices for	
assessing burn severity in	a Mediterranean environment with Landsat Thematic Mapper. International Journal of Remote Sensing, 32(12),	
3521–3537.		1
Veraverbeke, S., Stavros, E.	N., & Hook, S. J. (2014). Assessing fire severity using imaging spectroscopy data from the Airborne	
Visible/Infrared Imaging	Spectrometer (AVIRIS) and comparison with multispectral capabilities. Remote Sensing of Environment, 154,	
153-163. https://doi.org/	10.1016/j.rse.2014.08.019	2
Veraverbeke, S., Verstraeten,	W. W., Lhermitte, S., & Goossens, R. (2010). Evaluating Landsat Thematic Mapper spectral indices for	
estimating burn severity	of the 2007 Peloponnese wildfires in Greece. International Journal of Wildland Fire, 19(5), 558–569.	
https://doi.org/10.1071/V	/F09069	1
Warner, T. A., Skowronski, N	N. S., & Gallagher, M. R. (2017). High spatial resolution burn severity mapping of the New Jersey Pine Barrens	
with WorldView-3 near-	ntrared and shortwave infrared imagery. International Journal of Remote Sensing, 38(2), 598–616.	4
https://doi.org/10.1080/0	1431101.2010.1208/39	1
Whitman, E., Parisien, MA.	, Thompson, D. K., Hall, R. J., Skakun, R. S., & Flannigan, M. D. (2018). Variability and drivers of burn	6

severity in the northwestern Canadian boreal forest. Ecosphere, 9(2), e02128. https://doi.org/10.1002/ecs2.2128	
Wimberly, M. C., & Reilly, M. J. (2007). Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM	
and ETM+ imagery. Remote Sensing of Environment, 108(2), 189–197. https://doi.org/10.1016/j.rse.2006.03.019	1
Wu, Z., Middleton, B., Hetzler, R., Vogel, J., & Dye, D. (2015). Vegetation burn severity mapping using Landsat-8 and WorldView-2.	
Photogrammetric Engineering & Remote Sensing, 81(2), 143–154.	2
Zheng, Z., Zeng, Y., Li, S., & Huang, W. (2018). Mapping Burn Severity of Forest Fires in Small Sample Size Scenarios. Forests, 9(10), 608.	
https://doi.org/10.3390/f9100608	4
Zheng, Z., Zeng, Y., Li, S., Huang, W., Zhong, Z., YongNian, Z., SongNian, L., & Wei, H. (2016). A new burn severity index based on land	
surface temperature and enhanced vegetation index. International Journal of Applied Earth Observation and Geoinformation, 45(Part A),	
84–94. https://doi.org/10.1016/j.jag.2015.11.002	4