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Abstract. A complex combination of environmental, biological, chemical, and physical properties and processes
determine soil biodiversity and its relationship to biogeochemical functions and ecosystem services. Vegetation, land-use,
and land management, in turn, influence diversity and function in the soil ecosystem. The objective of this review was to
assess how different land-use systems (crop production, animal production, and planted forest) affect soil biodiversity,
and how consequent changes in soil biodiversity influence energy (carbon) and nutrient dynamics. Deficiencies in
understanding relationships between soil biodiversity and biogeochemical function in managed ecosystems are
highlighted, along with the need to investigate how diversity influences specific processes across different functional
groups and trophic levels. The continued development and application of molecular techniques and data informatics with
descriptive approaches will contribute to advancing our understanding of soil biodiversity and function in managed
agricultural and forest ecosystems.
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Introduction

Soils have a key role in food security by producing 95% of the
global food supply (FAO 2015). As the global population rises,
there is mounting pressure on land resources to provide food
and fibre, either through more extensive (expanding the land-
base) or intensive agriculture, horticulture, and forestry.
However, productive land per person is predicted to decline
to one-fourth of the level of the 1960s unless new practices are
adopted (FAO 2015). In a time when we are seeking to optimise
productivity in managed ecosystems in order to meet the
demands of a global population for food and fibre, we are
also experiencing climate variability and increasing public
awareness of the environmental and socio-cultural impacts of
land-use change and intensification at local, catchment,
regional, to global scales. In order to understand and manage
opportunities and trade-offs between managed and natural
ecosystems, we need to fully appreciate the drivers of

biogeochemical cycles that support soil ecosystem services,
such as nutrient cycling, greenhouse gas emissions, regulation
of hydraulic processes, soil stability, security of production, and
sustaining biodiversity.

The aesthetic and functional benefits of biodiversity derive
from the presence of many different plant and animal species in
an environment. Soil biodiversity similarly encompasses a vast
variety and numbers of organisms that spend all or most of their
life cycle in the soil. Biodiversity ‘hotspots’ such as tropical
rainforests support an abundance of plant and animal diversity,
which includes up to 80 000 plant, 50 000 insect, 1500 bird, and
2000 mammal and amphibian described species (Myers et al.
2000). The corresponding level of biodiversity present in the
underlying soil environment is much greater, yet is clearly less
understood. Described species of soil bacteria and fungi exceed
15 000 and 97 000, respectively, compared with 20 000–25 000
species of nematodes, 21 000 species of protists (protozoa,

Journal compilation � CSIRO 2020 Open Access CC BY-NC-ND www.publish.csiro.au/journals/sr

CSIRO PUBLISHING

Soil Research, 2020, 58, 1–20
Review

https://doi.org/10.1071/SR19067

https://orcid.org/0000-0003-0708-1299
https://orcid.org/0000-0002-3082-994X
mailto:leo.condron@lincoln.ac.nz
http://creativecommons.org/licenses/by-nc-nd/4.0/


protophyta, and moulds), and 40 000 species of mites (Orgiazzi
et al. 2016). However, the ‘true’ identity of much of the soil
biota remains unknown, as those identified to date are estimated
to represent only 1.5–6.5% of soil bacteria and fungi diversity,
compared with 0.2–2.5%, 0.03–0.3%, and 55% for nematodes,
protists, and mites, respectively (Orgiazzi et al. 2016). In
addition to the high level of biodiversity found in soil, the
numbers of individual species present and their combined mass
is large. A single gram of soil typically contains up to 1 billion
bacteria and 10 m of fungal hyphae, while the total topsoil
biomass can be up to 1.5 kg per square metre or 15 tonnes per
hectare (http://globalsoilweek.org/soilatlas-2015).

Given the extent of soil biodiversity, it is important to
understand how this biodiversity relates to key functions that
determine the ecosystem productivity such as organic matter
and nutrient dynamics (Fitter et al. 2005; Bahram et al. 2018;
Crowther et al. 2019), which in turn influence soil quality and
health (Brussaard et al. 2004; Ferris and Tuomisto 2015). It has
been proposed that the collective actions of soil biota drive
aboveground biodiversity and productivity, which then
determines overall ecosystem stability (Yang et al. 2018). In
manipulated systems, high soil biodiversity has been shown to
increase plant productivity by enhancing nutrient uptake and
reducing nutrient loss (Wagg et al. 2014; Bender and Van der
Heijden 2015). However, during long-term ecosystem
development no relationship was observed between soil
biodiversity and plant diversity, which were mainly driven
by changes in plant cover and soil pH (Delgado-Baquerizo
et al. 2019).

The biodiversity and function of biota in soil are primarily
influenced through a combination of environmental
(temperature and rainfall), biological (plant species, growth-
turnover, root exudates, and herbivory) and physico-chemical
(soil structure, nutrient availability, soil pH, and mineralogy)
properties and processes (Bahram et al. 2018; Delgado-
Baquerizo et al. 2019). Changes in the overall expression of
these variables and ecosystem disturbance shape the habitat of
biodiversity present and the biophysical space and conditions
in which soil functions can be supported. All ecosystems are
subject to spatial and temporal disturbance but the nature,
complexity, and severity of disturbance will differ in managed
ecosystems (agriculture, horticulture, and tree plantations)
compared with native forest and unmanaged grassland.
Increasing demands on land for agricultural purposes has
resulted in continued large-scale conversion of natural
ecosystems to managed ecosystems (MEA 2005; Jackson et al.
2009). Anthropogenic activities, intensification, and land-use
change can significantly influence soil biodiversity with
consequent impacts on functional processes such as nutrient
bioavailability and cycling (Mäder et al. 2002; de Vries et al.
2013; Orgiazzi et al. 2016).

In this review we specifically focus on a range of different
managed ecosystems: crop production, animal production, and
planted forest systems. The main objective was to assess how
various land-use and management systems and practices
influence soil biodiversity, and how consequent changes in
soil biodiversity may affect soil carbon (C) flows and
nutrient dynamics, and the provision of other key ecosystem
services in the respective systems.

Crop production systems

Soil organisms play a vital role in many important ecosystem
functions that influence soil and crop productivity and system
sustainability. Microbial communities are the main drivers of
biogeochemical cycles, therefore changes in their abundance,
activity, and community structure may affect nutrient flows in
soil (Schmidt et al. 2011; Markussen et al. 2018). This includes
direct processes such as crop decomposition, nutrient
mineralisation and mobilisation, denitrification, and nitrogen
(N) fixation, in addition to cascades of impacts (C and nutrient
flow) throughout the soil food web (Fig. 1).

Various studies have indicated that the taxonomic diversity
of soil microbial communities is intrinsically linked to the
quality of crop residue returned to soil (Pascault et al. 2013).
Both land-use change and intensification have similarly been
shown to have impacts on belowground organisms and
associated functions (Postma-Blaauw et al. 2010; Tsiafouli
et al. 2015). Under intensive land-use, Tsiafouli et al. (2015)
reported simplified soil food web diversity, with a shift towards
smaller organisms and potential implications for function,
where the effects of agricultural intensification were more
severe for larger soil biota (lower taxonomic richness) than
smaller organisms (Postma-Blaauw et al. 2010).

Agro-ecosystem resilience refers to a cropping system’s
ability to maintain yields when challenged by environmental
stress (Gaudin et al. 2015). It has been suggested that complex
agroecosystems that closely mimic diverse natural ecosystems
are more resilient and environmentally sustainable (Lin 2011).
Systems with low biodiversity are often highly productive, but
have increased vulnerability to system perturbation, including
effects of climate change and extreme weather events (Gaudin
et al. 2015). Soil ecosystem resilience is the capacity to
maintain soil function and its resistance and recovery from
disturbance and, as such, plays a key role in agro-ecosystem
stability (Peterson et al. 2018). Resilience in soil ecosystems is
commonly linked to the microbial biodiversity present,
particularly within and across key functional groups (Grandy
et al. 2012). Poor land-management practices that result in
declines in soil biodiversity in turn are widely suggested
to impede delivery of soil ecosystem services, such as
C sequestration, climate and gas regulation, and nutrient
cycling (de Vries et al. 2012).

Changes in biogeochemical pathways, soil structure, and
microbial ecology resulting from agricultural management
practices may subsequently impact plant growth, soil health,
and ecosystem sustainability. Agricultural soils provide a
unique system because they can be managed to facilitate the
conservation of soil biodiversity and the functions and services
they provide. Some specific examples of the impacts of
common agriculture practices (e.g. tillage and crop rotations)
on soil biota are discussed below, along with how sustainable
farming practices aim to promote diverse and active soil
biological communities in order to enhance soil fertility and
maintain soil C while sustaining crop yields (Hartman et al.
2018; Knapp and van der Heijden 2018). Although other
practices may impact soil biology and functions (e.g.
chemical fumigation, plastic mulching, and biological
amendments), the practices of tillage, nutrient amendment,
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and crop rotations are commonly the foundation of global
agroecosystems – with the majority of studies focusing on
these practices.

Tillage

Tillage involves the mechanical disruption of soil for
preparation of the seed bed, soil aeration, and weed control
(Lal et al. 2007). However, continual disturbance of agricultural
soil has been shown to be a major contributor to soil degradation
by impacting soil structure (Young and Ritz 2000), increasing
erosion, diminishing soil organic matter (SOM) and nutrients,
and changing water holding capacity (Lal 1993; Lal et al. 2007).
The effects of tillage on soil biota have been reported
extensively, with several reviews outlining the effects on soil
ecology (Kladivko 2001; Roger-Estrade et al. 2010), functional
diversity of soil biota (van Capelle et al. 2012), microbial
habitat space and function (Young and Ritz 2000), and the
abundance and biomass of earthworms (Briones and Schmidt
2017).

The effects of tillage on soil biota are both direct (death,
injury, and exposure to predation) and indirect (disruption of
habitat) (Kladivko 2001; Roger-Estrade et al. 2010), with
different responses reported for different groups. A majority
of studies demonstrate higher soil microbial biomass under no-
till versus conventional tillage systems (Wardle 1995; D’Hose
et al. 2018). Soils under reduced or no-till systems also exhibit
altered microbial communities in comparison to conventional
tillage (Helgason et al. 2009; Kuntz et al. 2013; Smith et al.
2016). These shifts in microbial diversity can change the

functional capacity of the communities (Mangalassery et al.
2015; Nivelle et al. 2016). For example, Smith et al. (2010)
showed that tillage changed microbial community structure and
diversity of nitrifier and denitrifier populations. The results
indicated that under no-till management practices there was
decreased seasonal nitrous oxide (N2O) emissions from soil.
The diversity of the arbuscular mycorrhizal community was
similarly altered according to level of soil disturbance (Mirás-
Avalos et al. 2011). A higher number of functional gene
sequences related to N-cycling processes was observed in a
maize (Zea mays)–soybean (Glycine max) rotation under no-till
compared with conventional tillage, which was attributed to
changes in the nutrient resources between the systems (Smith
et al. 2016). Due to lack of soil disturbance, long-term no-till
management also results in stratification of organic C and N
(Edwards and Cresser 1992; Zibilske et al. 2002; Gál et al.
2007), which can shift microbial community composition.
In a maize-based rotation, after 30 years under no-till versus
conventional till (mouldboard plough) management, significant
effects of depth on bacterial ammonia-oxidiser abundance and
gene expression were observed, whereby no-till supported
higher abundances of total archaea and ammonia-oxidising
archaea than the conventional till system across the growing
season (Munroe et al. 2016).

In general, practices that contribute to greater topsoil organic
matter have a positive effect on soil biodiversity. Conservation
tillage is defined by having more than 30% of the crop residue
remaining on the soil surface (Triplett and Dick 2008). This
results in increased potential for C and nutrients to be returned
to the upper horizon only, with subsequent influence on the
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detritus food web (Hendrix et al. 1986). In conjunction with
this, the abundances of mites, collembola, ground beetles,
spiders, and earthworms all showed significant increase. The
nematode communities were also influenced by tillage
treatment, with an increase in fungivores and herbivores but
a decrease in bacterivores (Hendrix et al. 1986). Other studies
also found positive effects of no-till practices on earthworm
populations (Jordan et al. 1997; Briones and Schmidt 2017)
whereas, in contrast, combined effects of chemical herbicides
and pesticides used in reduced till systems may negate some of
the observed positive effects (Bai et al. 2018). Positive effects
of reduced tillage on bacterial, fungal, nematode, collembolan,
and earthworm communities have however been widely
reported (Fu et al. 2000; Sánchez-Moreno et al. 2006; Zheng
et al. 2008; van Capelle et al. 2012; Kuntz et al. 2013; D’Hose
et al. 2018). By contrast, enchytraeid worms have shown to
have higher numbers under conventional tillage (House and
Parmelee 1985; Hendrix et al. 1986; Wardle 1995). Meta-
analysis by Spurgeon et al. (2013) showed a consistent trend
of increased fungal and earthworm abundance and community
complexity in response to conversion to a lower intensity
system, such as in the case of implementing reduced tillage
management. The combination of non-inversion tillage and
organic amendments resulted in increases in abundance of
earthworms, abundance of bacterivorous nematodes, bacterial
biomass, and microbial biomass C when assessed over 60
European multi-year field trials (D’Hose et al. 2018).

Despite the potential negative effects of tillage on SOM and
biological communities, it continues to be an important practice
in many agricultural systems for seed bed preparation, weed
control, and to suppress soil-borne diseases (Hobbs et al. 2008).
Response of soil biota to tillage may be confounded by other
management decisions including crop rotation. In a 12-year
study of intensive cropping in Mexico, nematode numbers
increased in maize under no-tillage but there was no effect
of tillage in the wheat phase (Govaerts et al. 2007). When no-till
was combined with continuous cropping, Sánchez-Moreno
et al. (2006) reported an increase in fungal and plant-
parasitic nematodes. When practiced alone, no-till resulted in
a decrease in bacterial, fungal, and plant feeders, while
predatory nematodes were more affected by the crop rotation
than tillage. Crop rotation, tillage, and residue management can
result in changes to the resource base (especially C flow into
soil), thereby initiating important multi-trophic effects where
not all nematode functional groups or species react in the same
way (Yeates et al. 1999). Collembola density and species
richness were 3–4 times higher in systems implementing
residue retention compared with conventional cultivation
after four years of rotation with five different agricultural
treatments in France (Coulibaly et al. 2017). Optimising
tillage management should consider the entire soil system
including soil C management; soil ecology and ecological
models should reciprocally include soil management
parameters (Roger-Estrade et al. 2010).

Crop rotation

Crop rotation is extensively used to suppress disease caused by
pests and pathogens and to maintain soil fertility, especially

where legumes are integrative to the rotation (Liebman and
Davis 2000). Rotations that are more diverse have generally
been found to increase total yield and yield stability across a
wide range of soil types and climatic conditions (Raimbault and
Vyn 1991; Légère et al. 2011; Munkholm et al. 2013; Gaudin
et al. 2015). Soils under crop rotation tend to contain higher
organic matter, have increased structural stability, and show
increased quantities of microbial biomass and activities
(Munkholm et al. 2013), along with enhanced soil enzyme
activities (Dick 1992). Belowground communities are tightly
linked to aboveground communities through trophic interactions
andplant–soil feedbacks (Fig. 1). In agroecosystemswhere single
plant species are commonly grown over large spatial areas, the
crop rotation sequence and lengthcanhave an important influence
on soil biodiversity.

The rhizosphere is the plant–soil interface, where the
diversity and activity of the microbial community are
strongly influenced by the plant through root exudates and
specific chemical signalling (Raaijmakers et al. 2009;
Philippot et al. 2013; Lareen et al. 2016). Up to 40% of total
plant C is typically allocated belowground, with some 5–20% of
the photosynthetic C being reported to be returned directly to
soil through either root (rhizo) deposition or by release of root
exudates (Jones et al. 2009). As a result, the rhizosphere
supports a marked proliferation and enrichment of specific
microorganisms (Jones et al. 2009). Beneficial microorganisms
associated with plant roots can play an important role in nutrient
uptake and plant growth (Gaiero et al. 2013), disease suppression
(Peralta et al. 2018), reducing damage from pests (Elhady et al.
2018), and resilience during periodsof stress (Gaudin et al. 2015).
The advent of molecular techniques has facilitated a more
comprehensive investigation of biodiversity and function at the
root surface. Recent focus has been directed on factors that
mediate the composition of the rhizosphere microbiome,
realising that changing the biodiversity of the community
associated with the roots of plants may have beneficial effects
on plant growth and health (Berg and Smalla 2009; Berendsen
et al. 2012; Quiza et al. 2015; Bender et al. 2016; Dessaux et al.
2016; Wallenstein 2017).

Although intensively managed systems are often reported to
have less diversity than natural systems (Tsiafouli et al. 2015),
the direct link to specific functions and plant growth can be
difficult to isolate. The concept of ‘microbiome engineering’
attempts to use knowledge gained from biodiversity studies and
potential for promotingbeneficial communities in the rhizosphere
to increase yields by promoting plant and soil health. Efforts to
consolidate global datasets on soil communities combined with
soil chemical data have highlighted the importance of soil
organisms and their influence on biogeochemistry at a global
scale (Crowther et al. 2019), where trends have been more
difficult to confirm at local scales. Understanding these
processes are imperative in predicting and adapting to future
scenarios under climate change.

The inclusion of legumes in rotation such as red clover
(Trifolium pratense) contribute N to the soil system and to the N
requirements of the succeeding crop (Gaudin et al. 2013), and
also support diverse organisms and functions. Legumes form
symbiotic associations with various genera of rhizobia bacteria,
enabling them to fix atmospheric N, thereby reducing N
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fertiliser requirements when incorporated in a crop rotation.
There is strong evidence that pea (Pisum sativum) hosts a
unique microbial consortia in general in addition to rhizobia
alone (Turner et al. 2013). Although the rhizospheres of pea, oat
(Avena sativa), and wheat all showed high abundances of
nematodes and bacterivorous protozoa, the pea rhizosphere
contained a higher proportion of fungi to bacteria (Turner
et al. 2013). The influence of legumes on soil biology may
be dependent on the specific plant or cultivar; however,
increased frequency of legumes (pea, lentil (Lens culinaris),
and chickpea (Cicer arietinum)) in a wheat-based cropping
system has also been shown to shift bacterial diversity and
function in the rhizosphere of the subsequent wheat crop, where
the response was partially attributed to biological N-fixation in
the legume phase of the rotation (Hamel et al. 2018). Including
legumes in crop rotation influences other N-cycling functional
genes. In a 30-year field study, a diversified maize-based
rotation that included wheat and red clover in the rotation
had higher bacterial ammonia-oxidiser abundance compared
with a monoculture (Munroe et al. 2016). Distinct N-cycling
bacterial communities were also associated with an alfalfa
(Medicago sativa)-based hay crop versus annual crops, and
this was associated with lower N2O emissions in the perennial
system (Thompson et al. 2018). In addition to being important
rotational crops, legumes can also be included in agricultural
systems as cover crops.

A strategy to mimic natural ecosystems, by integrating cover
crops or intercrops into annual cropping systems has been
shown to ‘protect’ soil because it is never left fallow, and to
diversify annual crop rotations (Scherr and McNeely 2008).
Cover crop mixtures have the potential to contribute to
sustainable agroecosystems by supporting aboveground and
belowground diversity, building SOM, retaining nutrients,
stabilising soil between crops, as well as influencing soil
biota (Fageria et al. 2005; Snapp et al. 2005; Fernandez
et al. 2016). Cover crop systems supply a variety of biomass
inputs (crop residues and root exudates) providing a greater
range of C substrates to support microbial diversity and growth.
In a 15-year rotation study by Schmidt et al. (2018), cover crops
were shown to increase the abundance of bacteria and shifted
bacterial community composition to organisms with more
diverse metabolic capacities and moderate rates of growth
(Schmidt et al. 2018). A meta-analysis from 37 different
sites showed significant increases in soil organic C when
cover crops were included in the rotation over the control
crop only system (Poeplau and Don 2015). Incorporation of
mixed-species cover crops showed changes in abundance of
several nematode taxa, supporting the notion that nematode
communities can provide sensitive indicators of soil food
web dynamics (DuPont et al. 2009). Higher abundances of
facultative plant parasitic, bacterial feeding, and predatory
nematodes have also been reported with inclusion of a
legume cover crop in a maize rotation system, in addition to
higher densities of termites, earthworms, millipedes, and
centipedes (Blanchart et al. 2006).

Crop diversification may not translate into a more diverse
soil ecosystem. For example, Peralta et al. (2018) reported a
decrease in bacterial diversity in soils under a more diverse crop
rotation when comparing from one to five species and a bare

fallow treatment. However, disease suppression potential was
highest in the rotation with the highest diversity and diminished
in soils with no plants (Peralta et al. 2018). This highlights
potential uncoupling between diversity and function, although
the study did not include information on fungal communities or
other groups of soil biota that may have benefited from a
diversified rotation.

Nutrient inputs

Nutrient inputs to agriculture include mineral fertilisers, organic
amendments (e.g. cover crops, animal manure, sludge, and
various other waste products) and crop residues. Direct
impacts of mineral fertiliser are spatially limited, but may
strongly affect soil microbial biomass and microbial
community composition and function, and abiotic properties
such as pH (Ryan et al. 2009). The addition of mineral fertilisers
to either crop or pasture systems can have significant effects
on the structure of microbial communities. In the tillage
experiment by Bissett et al. (2013) there was strong
interaction between seasonal application of mineral N and
tillage practice that was not manifest across all sampling
times, indicating a strong responsiveness of the community
and interaction with environment and management. Bacterial
and fungal community responses to pasture management were
investigated byWakelin et al. (2009), who showed large effects
in response to lime application and time of sampling, which also
had significant and positive effects on key N-cycling genes
including nifH and amoA gene abundance. Structure of microbial
communities also responded to long-term fertilisation with
phosphorus (P), whereby strong seasonal effects were similarly
evident, with fungal communities in particular being most
responsive to levels of soil P fertility in terms of both
community structure and richness. A 28-year field experiment
under continuous maize, comparing no nutrient inputs to annual
inputs of mineral N, animal manure, or a combination, showed
that mineral N without P inputs decreased organic P cycling and
shifted microbial communities containing key P-cycling gene
phoD (Chen et al. 2019). Organic amendments generally have
greater impact on soil microbial biomass, activity, and diversity,
and can have disease suppression effects (Hallmann et al. 1999;
Bailey and Lazarovits 2003; Fu et al. 2017), depending on the
biological properties of the added material (Bonanomi et al.
2010). Type and rate of organic amendment can also impact
N-cycling communities, whereby bacterial and archaeal
ammonia-oxidising communities and abundance differed in
soils that received straw versus peat amendments (Wessén
et al. 2010). Animal manures similarly have significant
impacts on community structure and function associated with
N cycling, which is discussed below in relation to animal
production systems.

Agronomic management systems designed to increase
organic matter, including C-rich fertilisers and organic
amendments, may diversify nematode populations and other
soil biota, thus improving the resilience of arable cropping
systems. For example, the application of organic fertiliser
resulted in fundamentally different protist community
structure and function compared with mineral fertiliser, with
an increase in bacterivorous and omnivorous protists, and a
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decrease in plant pathogens (Xiong et al. 2018). Soil microbial
biomass increased in treatments amended with organic fertiliser
for 27 years (cattle manure, biodynamic), where no negative
effects of N fertiliser application were observed on collembola
density and an increase in species richness occurred in response
to mineral fertiliser application (Coulibaly et al. 2017). A meta-
analysis by Liu et al. (2016) examined crop systems with
different fertiliser regimes (unfertilised, inorganic N only,
inorganic N, P, potassium (K), organic fertiliser, organic and
inorganic N, P, and K), and where organic fertilisers were
categorised as animal manure, cover crop, straw compost,
straw, sludge (sewage or sugarcane), and waste products
(food, paper, or bio-solids). In this analysis, high inorganic
N resulted in a more simplified nematode community structure
with higher abundance and richness in organic compared with
inorganic fertiliser treatments. Bacterivores, fungivores, and
omnivores showed the greatest response to C inputs, and N-rich
animal manures appeared to control plant-parasitic nematodes
(Liu et al. 2016).

Management practices in organic farming systems aim to
tighten nutrient cycles, in which plant residues or manure
from livestock are applied to land, along with greater use of
perennial and leguminous plants. In addition, neither synthetic
fertilisers nor agro-chemicals are applied (Lori et al. 2017).
Bacteria and fungi play a key role in nutrient cycling in these
systems through decomposition of organic matter, and
transformation of important soil nutrients like N and P
(Knapp and van der Heijden 2018). Kallenbach et al. (2015)
used in situ 13C isotopic tracing to demonstrate increased
microbial growth rates and higher microbial C use-efficiency
in an organic verses a conventional system, which resulted in
higher retention of C inputs and increased abundance of
microbial-derived SOM (Kallenbach et al. 2015). A meta-
analysis of 56 studies revealed that organic farming had a
positive effect on total abundance and activity of soil
microbial communities on a global scale, for example
through intensified N mineralisation capacity, as indicated
by greater dehydrogenase, protease, and urease activities in
organic systems (Lori et al. 2017).

The Glenlea long-term crop rotation experiment (Winnipeg,
Manitoba) is Canada’s longest running trial comparing organic
and conventional systems. Higher alkaline phosphatase enzyme
activity, higher abundance of bacteria containing the alkaline
phosphatase (phoD) gene, and a shift in the composition of
the active phoD-containing bacterial communities occurred in
response to lower concentrations of labile P in the organically
managed soils (Fraser et al. 2015a, 2015b). Similarly, the Swiss
DOK experiment (established in 1978) has compared the
long-term effects of organic and conventional management
on ecosystem properties (Raupp et al. 2006). The organic
system increased richness, decreased evenness, and
shifted the structure of soil microbiota compared with
conventionally managed soils using mineral fertilisation. This
effect was largely attributed to the use and quality of the organic
amendments (Hartmann et al. 2015). Microbial co-occurrence
networks of bacterial and fungal rRNA gene sequences
indicated the presence of unique microbial hubs in the
organic versus the conventional systems (van der Heijden
and Hartmann 2016).

Animal production systems

Animal production systems occupy and impact a significant
proportion of agricultural land globally. Animals can be
permanently or seasonally grazed on pasture, or housed
indoors for various times at different levels of intensity. In
either system, most of the organic matter and nutrients
consumed by livestock are excreted in urine and dung and
most often returned to soils, albeit disproportionally. Grazed
animals excrete organic matter and nutrients directly onto the
soil surface in randomly distributed discrete urine and dung
deposits (Haynes and Williams 1993). However, excreta from
housed animals is collected (often stored) and returned to soil as
liquid slurries, bedding materials (straw and sawdust), or as
manures or composts (farmyard manure and composted
manure) (Sims and Maguire 2005; He et al. 2016). These
represent direct and indirect pathways of organic matter and
nutrient addition to soil, which influence the magnitude and
trajectory of the impacts on soil biodiversity and function.

Urine and dung returned through grazing

Grazing animals excrete 75–95% of the N they consume in feed
as urine and dung, resulting in patches of soil with extremely
high N concentrations (Haynes and Williams 1993). The large
amount of excreta N in relatively small patches usually exceeds
the immediate plant requirements, so excreta patches are
considered ‘hotspots’ for N transformation and loss. The
transfer of N within and out of the soils requires interactions
between various microorganisms that carry out nitrification
(conversion of ammonia or ammonium to nitrate) and
denitrification (reduction of nitrate to gaseous forms of N).
Application of sheep and cattle urine has been shown to alter the
microbial pathways for N2O emissions, whereby urine
significantly promoted N2O production by denitrification and
nitrifier denitrification in both field and incubation experiments
(Mahmood and Prosser 2006; Di et al. 2009; Pan et al. 2018).
Various studies have shown that urine application increased the
abundance of ammonia-oxidising bacteria, amoA, and nirK
genes, and changed community structure which coincided
with production of N2O. In contrast, there was no consistent
impact on community structure and abundance of N-cycling
genes in ammonia-oxidising archaea, amoA and nirK genes, and
other denitrification functional genes (nirS, nosZ, and rpoB)
(Mahmood and Prosser 2006; Di et al. 2009, 2010; Orwin et al.
2009; O’Callaghan et al. 2010; Morales et al. 2015; Pan et al.
2018; Yao et al. 2018). Most studies have found that urine
application had little impact on numbers or estimated biomass
of bacteria and fungi based on different methods (Williams et al.
2000; Nunan et al. 2006; Singh et al. 2009). Moreover,
community composition and traits of key species or groups
and their relative abundance and complementarities have been
shown to be influenced by urine patches in soil, rather than an
overall change in species richness. By comparison, using high-
throughput sequencing, Morales et al. (2015) recently found
that urine application decreased bacteria richness, while the
community structure was consistently stable.

Studies that have investigated the impact of dung on soil
microorganisms and soil microflora are more limited. Dung is
rich in organic C and N, and the deposition of dung on the soil
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surface provides a continuous supply of nutrients for microbial
growth and metabolism (Cardenas et al. 2016). Most studies
associated with dung patches have focused on greenhouse gas
emission (e.g. N2O), while changes in microorganism
community structure in relation to nutrient cycling have
received less attention. In a typical steppe grassland,
denitrification was responsible for most of the N2O emissions
in dung-treated soils, with significant increase in the bacterial
amoA gene abundance, but therewas no difference in the archaeal
amoA gene abundance (Pan et al. 2018). The impacts of such
shifts in functional genes or community composition as a
significant driver of soil processes and function in relation to N
hotspots in dung and urine remain to be more fully investigated.

Soil fauna have also been found to have a consistent positive
effect on litter decomposition including interaction with urine
and dung. Species richness and community structure of soil
fauna has in particular focused on interaction with nematodes
and earthworms in grazed pasture ecosystems (Bardgett et al.
1998; Mikola et al. 2009; Villenave et al. 2011; Hu et al. 2015).
For example, the abundance of fungivorous nematodes and
Aporrectodea earthworms showed significant increases in
grazed pasture, but decreased the abundance of detritivorous
enchytraeids and Lumbricus earthworms (Mikola et al. 2009).
Other studies have also found positive effects of urine or dung
on nematode community structure and showed positive
correlations with microbial C and N (Bardgett et al. 1998;
Wang et al. 2006; Hu et al. 2015). However, the study of urine
and dung patch impacts on other soil fauna diversity and
community has received less attention largely because of
difficulties in collection of soil samples from patches and
methodological challenges concerning soil fauna distribution
(André et al. 2002). Nonetheless diversity of other fauna such as
springtails, nematodes, earthworms, and arthropods have been
assessed (Waite et al. 2003; Hogg and Hebert 2004; Griffiths
et al. 2006; Read et al. 2006; Bienert et al. 2012; Porco et al.
2013; Oliverio et al. 2018). However, the relationship between
soil fauna diversity and functional interactions in grazed
ecosystems remains poorly understood.

Animal manures

Animal excreta in the form of slurry, farmyard manure, and
composted manure is widely used to add organic C and nutrients
(e.g. N and P) to soil in both organic-based and conventional
farming systems (Francioli et al. 2016). Various studies have
shown that organic fertilisers stimulated bacterial and fungal
biomass in soil, increased the abundance of organisms, and
induced marked change in bacterial and fungal community
structures (Birkhofer et al. 2008; Hartmann et al. 2015;
Wang et al. 2015; Francioli et al. 2016; van der Bom et al.
2018), whereas other studies with cattle slurry have
demonstrated little difference (De Goede et al. 2003; de
Vries et al. 2006). This indicates that the impacts of manure-
based inputs depend on multiple factors including form,
addition rate, soil type, and environmental conditions
(Bünemann et al. 2006). For example, farmyard manure
increased bacterial diversity, and stimulated specific
microbial groups known to prefer nutrient-rich environments
(e.g. Firmicutes and Proteobacteria), which are also involved

in the degradation of complex organic compounds (Francioli
et al. 2016).

Microbial-based functions in soil have been shown to
respond to organic fertiliser application. For example,
repeated inputs of excreta and consequent increases in SOM
have resulted in major change to N-cycling rates with enhanced
nitrification and denitrification (Wang et al. 2014, 2015; Liu
et al. 2018). In terms of nitrification, bacteria had a more
significant role in ammonia oxidation following long-term
slurry or composted manure application with greater
ammonia or ammonium concentrations and potentially higher
nitrification rates (Wang et al. 2014, 2015). In contrast, Zhou
et al. (2015) observed that ammonia-oxidising archaea in a
permanent grassland soil was increased by 44 years of cattle
slurry amendment. This was also observed in response to long-
term manure application to rice paddy soils (Liu et al. 2018),
where both ammonia-oxidising archaea and nitrite-oxidising
community structures were more sensitive to long-term manure
application. This suggests that ammonia-oxidising archaea are
better adapted to growth at low pH and low substrate
availability.

Organic fertiliser application has been shown to influence
the overall abundance and diversity patterns of a range of other
N-cycling functional groups, including denitrifiers. For
example, Pereg et al. (2018) reported that sheep manure
application promoted denitrification in grapevine soils, which
was accompanied with higher abundance of denitrifiers (based
on nirK, nirS, and nosZ gene quantification), resulting in a
potential reduction in N2O emissions. Higher abundance of
denitrifiers in response to organic fertiliser application has
been reported in other studies (Hai et al. 2009; Hallin et al.
2009; Clark et al. 2012). However, changes in community
composition and measured abundance of genes only reflects
the potential for enhanced function and without associated rate
measurements does not necessarily translate to actual turnover
of nutrients in soils. With the exception of phoD, few studies
have investigated the effects of animal excreta on functional
groups and genes involved in P cycling (Fraser et al. 2015b;
Chen et al. 2017).

Shifts in soil fauna species due to animal excreta application
to soil and resulting effects on decomposition and nutrient
cycling are becoming widely recognised (Koch et al. 2013).
Murchie et al. (2015) found that earthworm genera respond to
cattle slurry in a successional pattern, with L. rubellus feeding
on fresh slurry and Allolobophora chlorotica benefiting
subsequently, resulting in enhanced decomposition. Several
studies have shown that inputs of manure, slurry, and
compost significantly affect earthworm biomass, numbers,
and density (Whalen et al. 1998; Leroy et al. 2007, 2008;
Birkhofer et al. 2008; van Eekeren et al. 2009; Koblenz et al.
2015; Guo et al. 2016; Zavattaro et al. 2017). Cattle slurry and
farmyard manure application similarly shifted the structure
of nematode populations with increased numbers of
bacterivorous nematodes, but decreased numbers of plant-
parasitic nematodes. The relative abundance of different
species of collembola, however, was more negatively
affected by application of cattle slurry. Similar increased
biomass or numbers in response to manure applications have
been observed for protozoa (Griffiths et al. 1998), nematodes
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(Opperman et al. 1993; Griffiths et al. 1998; De Goede et al.
2003; Birkhofer et al. 2008; Leroy et al. 2009; van Eekeren
et al. 2009), and various arthropods (Pfiffner and Niggli 1996).
Overall, the responses of soil fauna and community interactions
in soil are complex and may be related to differences in excreta
types, soil properties, and management systems. More studies
focusing on interactions among diversity of soil fauna and
nutrient cycling are needed to elucidate how inputs of animal
excreta affect soil function.

Planted forest systems

Forested ecosystems cover 4 billion ha (Keenan et al. 2015),
which is ~30% of the total ice-free land area, and are thus key
regulators of global biogeochemical processes. Approximately
60% of terrestrial C is held in forests, with nearly half of that in
forest ecosystem soils (Pan et al. 2011). In addition to nutrient
cycling, forests support a broad range of other ecosystem
services such as watershed protection, arresting soil erosion,
and maintaining global biodiversity. Broad diversity in forest
ecosystems include boreal, temperate, and tropical systems.
Within each of these there is a continuum from primary
through to modified natural, semi-natural, and plantations
grown for productive or protective uses, through to ‘trees
outside of forests’, such as those in urban environments
(Evans 2009; FAO 2012). Planted (production) forests
represent ~7% of the total forest area, which is increasing
with greater demand for ecosystem services they provide and
the associated opportunity for sequestration of C (Payn et al.
2015). A further important but underappreciated ecosystem
service provided by plantation forestry is protection of native
(sensu primary) forests from direct harvest of timber. Plantation
forests therefore play a further role in supporting global
biodiversity (Buongiorno and Zhu 2014). The majority of
planted forests globally are represented by Pinus and
Eucalyptus spp. (68% cover), with the remainder comprising
acacia (6%), teak (5%), and various other soft- and hard-woods
(Indufor 2012). Given this, much of the available literature on
the biology and functioning of forest systems soils comes from
planted Pinus and Eucalyptus forests.

Nutrient and energy flow

Unlike intensively managed agricultural systems, nutrient
cycling within forest systems is relatively closed
(Mahendrappa et al. 1986; Attiwill and Adams 1993). While
the ‘closed and nested’ nature of forest nutrient cycling is
generally beneficial to long-term sustainability of production,
provision of exogenous nutrients are required where soil
nutrient resources are poor, or where multiple forest rotations
and extraction of system resources (wood and other materials)
occur resulting in nutrient depletion (Akselsson et al. 2007;
Zabowski et al. 2007; Smaill and Garrett 2016). However,
these fertiliser inputs are generally highly targeted and
limited in their use.

Central to recycling of nutrients within forest ecosystems is
the return and recycling of plant-derived biomass through
microbial and faunal decomposition (Gosz et al. 1973;
Harmon et al. 1986). The rates and dynamics of
decomposition are important as they drive energy flow

within the ecosystem and regulate the release of nutrients
(Odum et al. 1962; Harmon et al. 1986). As the demand for
nutrients by trees varies greatly over time, the supply of energy
(originally from plant photosynthate) within the ecosystem
supports microbial and faunal function. This is both
expressed belowground with continuous inputs from root
exudation, root turnover, and mycorrhizal C allocations, and
aboveground with large but episodic inputs from leaf-fall and
biomass turnover, which includes pruning, thinning, and debris
derived from harvesting operations. The SOM pool, and the
living microbial biomass as the active component of this,
comprise the dynamic interface that integrates organic inputs
with nutrient inputs from belowground through the weathering
of soil minerals. Collectively, this active pool can hold over
90% of the soils’ total N and sulfur (S), and 50% of the P across
terrestrial biomes (Condron et al. 2010), and similarly within
forest ecosystems provides a dynamic supply of nutrients.

The microbial decomposition of woody debris and leaf
material in various forest systems is well described. Indeed,
characterising the cascade of microorganisms from a
phylogenetic and functional perspective (e.g. lignolytic and
cellulolytic) has been the subject of previous studies. Major
fungi involved in lignocellulosic conversion have been
identified within the Ascomycetes, Deuteromycetes, and
Basidiomycetes (Krishna 2007), with many thousands of
individual species recognised (Horwath 2007; Tedersoo et al.
2014). In addition to microorganisms, numerous studies have
also demonstrated importance of microfauna and macrofauna in
enhancing litter decomposition (Frouz et al. 2015). Within
forests, 20–100% of the litter fall can be initially processed
through interaction and decomposition activity of the fauna
within the litter layer (Frouz et al. 2015). As the leaf and litter
material is initially decomposed, key nutrients are lost with a
change in the bioenergetic content of the remaining
C. Decomposition of altered C, such as macrofauna faeces
(frass), or faunal necromass and detritus is lower than that of
the original litter (Filser et al. 2016). These interactions
demonstrate the importance of energy cascades (energy
content of the organic matter) and nutrient depletion
(C : nutrient stoichiometry) in affecting decomposition
kinetics. Sequential transformations of the original plant-
derived C also influences the longer-term recalcitrance or
persistence of the SOM generated (Fox et al. 2006), often by
reducing energy density (Williams and Plante 2018). That is, the
translation of the plant C through microbial and faunal activity
into necromass and other forms is a key driver for generation
and persistence of C in soils (Schmidt et al. 2011; Clemmensen
et al. 2013; Lehmann and Kleber 2015). Structure of microbial
and faunal communities in forest ecosystems thus have a strong
influence on the long-term dynamics and retention of SOM in
forest soils (Schmidt et al. 2011). Indeed the role of soil biota is
generally overlooked in SOM modelling studies, effectively
reducing their power to predict gross primary productivity or
global soil C (Luo et al. 2015; Filser et al. 2016). The inclusion
of faunal and microbial elements into new C-models is seen as
essential to better predict the net balance and dynamics of SOM
stocks (Fox et al. 2006; Filser et al. 2016; Grandy et al. 2016).
This is particularly important as environments change from
relatively quasi semi-state conditions into increasingly
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‘changeable’ and disrupted ecosystems. For forest systems, this
applies at a lesser scale than in agricultural systems.

For planted forest systems the contributions of pollen and
root exudates to nutrient cycling and microbial processes are
often overlooked. Pine pollen, for example, is deposited in
forests over a relatively short period (Lee et al. 1996) and
although its contribution as compared with leaf or litter fall may
be small, pollen still returns significant amounts of N, P, S, and
cations into the forest at specific times (Cho et al. 2003). Such
small but highly episodic deposition may have a trigger or
stimulatory effect on fungi and litter decomposition, thus
impacting wider ecosystem nutrient dynamics (Stark 1972).
Similarly, exudation of low molecular weight organic
compounds (LMWOCs) into soils by tree species (compared
with annual agricultural plants) is poorly understood in terms of
absolute quantity, proportion of total plant photosynthate that is
delivered belowground, and the role that the C has on microbial
dynamics and ecosystem processes. As in other ecosystems,
difficulty in addressing these questions extends from the high
turnover of these molecules in the rhizosphere, with half-lives
of 1–5 h in soil typically being reported. Thus, while point-in-
time quantifications of LMWOCs demonstrate significant
concentrations of these in soils (as a percentage of total
dissolved C), their gross efflux over time is often
underestimated (Jones 1998; Jones et al. 2003). It is evident
that tree roots such as Pinus radiata exude a diverse range of
LMOWCs into soil that affect the structure and function of the
root microbiome (Shi et al. 2012). As such these exudates may
have a disproportionally large role on nutrient cycling and
plant–microbial interactions.

Nitrogen

In planted forest ecosystems, N availability is a key driver of net
primary productivity (Magnani et al. 2007; Johnson and Turner
2014). In addition, N has an important role in SOM cycling and
decomposer activity, thereby having further influence on the
availability of other nutrients (Hobbie 2008). The general
limitation of plant-available N extends from the relatively
small pool of available N in the soil, slow turnover of N
within SOM and high plant demand, particularly while the
canopy is established (Johnson and Turner 2014).

Nitrogen inputs from fertiliser application, or deposition
from the atmosphere, enrich the N status of managed
ecosystems globally, including planted forests (Johnson and
Turner 2014). Particularly in the northern hemisphere, external
inputs can in some cases result in N-saturation, moving N
cycling from a closed or internal system to a more open
state (Magnani et al. 2007) with elevated levels of soil
ammonia or ammonium, nitrate, or nitrite (Galloway et al.
2003). These forms of N can result in losses of N through
volatilisation (e.g. ammonia), denitrification resulting in
formation of nitrous oxides (nitric oxide and N2O) and N2,
or leaching of nitrate-N into groundwater or rivers (Galloway
et al. 2003, 2004). Within these reactions a diverse range of
biogeochemical transformations occur with process rates
mediated by availability of key substrates (forms of N),
supply of energy (labile C), microsite redox conditions, and
soil pH, temperature, and moisture (Bateman and Baggs 2005;

Baggs et al. 2010; Cuhel et al. 2010; Harrison-Kirk et al. 2013;
Cui et al. 2016). Associated with this is a vast array of different
consortia of microbial taxa and soil fauna (Schloss and
Handelsman 2006) that are dependent on the soil habitat
(Wakelin et al. 2008), the aboveground community
composition (Marschner et al. 2001; Garbeva et al. 2004),
and the soil compartment (e.g. horizon and depth) (Pereira
et al. 2017). As many of the N transformation processes,
particularly those associated with N reduction or denitrification,
are undertaken by a range of taxa, the microbiology linked
with these ecosystem functions changes over space and time
(Nelson et al. 2016; Albright et al. 2018). In this instance,
the use of environmental RNA based characterisation (i.e.
N-cycling functional-gene expression via environmental
meta-transcriptomics) provides a more useful approach in
establishing the links between soil biology and N-cycling
function than the more widespread use of DNA-based analyses
that are directed at potential function only (Albright et al. 2018).

Given the high dependency on internal nutrient cycling in
forest ecosystems, nitrification plays an important role in N
dynamics through the coupling of SOM decomposition with
supply of mineral N to plants and other organisms (Ivarson and
Sowden 1959; Galloway et al. 2003). As previously discussed,
the oxidation of ammonia or ammonium to nitrate by ammonia-
oxidising bacteria and archaea is a rate-limiting step in
nitrification. These domain kingdoms differ markedly in
ecophysiology, with the latter tending to be more abundant
in low N systems. Regardless, both groups can be qualitatively
and quantitatively assessed through detection of their respective
ammonia monooxygenase genes (amoA) (Rotthauwe et al.
1997; Stephen et al. 1999; Tourna et al. 2008).
Unlike diazotrophic function (nifH), nitrification is restricted
to a narrow phylogenetic range of taxa, and their
activities are closely connected to ammonia oxidation
(chemolithoautotrophy). Accordingly, the assessment of these
genes provides a relatively robust link to actual or potential
process rates occurring in the environment (Wakelin et al.
2014), and remains a highly useful tool for assessment of
this important soil function (Kowalchuk and Stephen 2001).

In the absence of direct N inputs, non-symbiotic (free-living)
N-fixing microorganisms (diazotrophs) may play an important
role in supply of N inputs and therefore ecosystem productivity
(Binkley et al. 2000). However, compared with the quantifiable
inputs of N that occur through biological N-fixation in legume
species (e.g. Acacia and legume crops used in agriculture), the
extent of N fixation that can be accounted for by diazotrophic
activity is poorly understood (in both forest and agricultural
systems). It is most often masked by inputs of the more readily
identifiable sources of N (e.g. fertiliser, bird and animal waste,
and rainfall), or as otherwise estimated values derived from the
d-N in whole-system N budgets (Johnson and Turner 2014).
Binkley et al. (2000), for example, found little evidence to
support significant inputs of N from diazotrophic activity across
a range of forest systems. However, difficulty in determining
this empirically is not surprising with rates as low as 1–3 kg N
ha–1 year–1 being typically reported (Cleveland et al. 1999; Son
2001). Other work, however, has suggested more significant
inputs of diazotrophic N across different forest systems,
with the magnitude varying strongly on a site-by-site basis
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(Jurgensen et al. 1990). Nonetheless, while input rates may
be small they could still offset a significant portion of N lost
during harvesting, particularly when inputs are aggregated over
periods of long rotation (Burgoyne and Deluca 2009). Certainly,
there remains a research gap to fully define the importance and
therefore potential of free-living N-fixing microorganisms as a
contributor to the fertility and productivity of managed
ecosystems.

The ability to fix atmospheric N into plant available (mineral
N) forms is widely distributed through the bacterial and archaeal
kingdoms (Raymond et al. 2004). In forest soils (pine, spruce,
and other tree species), functional genes associated with
N-fixation ability (nifH genes) have been widely detected
across at least 11 phyla with strong associations within the
a- and g-Proteobacteria, Actinobacteria, and Acidobacteria
(Rösch and Bothe 2009). A similar predominance of a- and
g-Proteobacteria type nifH genes has been found in hardwood
forest (maple and oak) soils, albeit with vast difference in the
presence of total diversity of N-fixing taxa (Izquierdo and
Nüsslein 2015). Under Eucalyptus spp. plantations,
Bradyrhizobium (a genus within the a-Proteobacteria) and
Burkholderia (b-Proteobacteria) were the most dominant
genera, although nifH genotypes were associated with at
least 25 further genera (da Silva et al. 2014). Given that
nifH is broadly distributed across the bacterial kingdom, it is
possible that the distribution in abundance and diversity of this
function is related to general shifts in the total bacteria
population across different habitats. Indeed, there appears to
be a large disparity between the active and ‘potentially’ active
diazotrophic community (da Silva et al. 2016). Consequently,
such nifH gene abundance may not relate to diazotrophic
activity, but rather provide a view of total potential activity
(or capacity factor) which is unlikely to be realised.
Nonetheless, the actual value of diazotrophs in providing N
in forest ecosystems as compared with that provided by
leguminous species warrants further investigation.

Mineral weathering

Importantly for forestry, which by its very nature is managed
over long-term (decadal) periods, the weathering of rocks and
soil minerals play an important part in the overall ecosystem
nutrient budgets, especially in subsoils (Morford et al. 2016).
These processes are interconnected and integrated through
biogeochemical interactions of microorganisms that release
N, P, and other nutrients from soil minerals (Jongmans et al.
1997). Plant roots, particularly those of long-lived tree species,
penetrate deep into soil (Canadell et al. 1996) and so have a
major influence on the weathering of the regolith through
physical interactions and release of exudates that include
protons and organic anions (Pierret et al. 2016). Soil
microbial processes related to the weathering of rock
(geogenic N inputs) may thus provide a significant input of
plant-available N (and P) into forest ecosystems (Morford et al.
2016; Houlton et al. 2018). While igneous rock has relatively
low N content, sedimentary materials typically hold ~500 mg N
kg–1 rock material (Johnson and Goldblatt 2015). Indeed,
discrepancies in global N fluxes can be resolved by
considering traditional and geochemical (rock and sediment)

fluxes together (Houlton et al. 2018). However, the extent of
microbiological processes in mineral weathering and N-release
remain unquantified.

Mycorrhizal fungi as well as various groups of saprotrophic
fungi (e.g. Penicillium spp.) and mineral-solubilising bacteria
(e.g. Pseudomonas spp.) have been shown to be actively
involved in soil weathering processes and mobilisation of
nutrients (especially P) from soil minerals (Blum et al. 2002;
Glowa et al. 2003; Watmough and Dillon 2003). However, the
extent of this function and its quantification within whole soil
ecosystems, and particularly the species and mechanisms
involved in subsoils and deeper remains relatively
unexplored (Pierret et al. 2016). Despite this, these processes
are of critical importance to long-term functioning of forest
ecosystems; for example, as shown in temperate forests on
acidic soils (Zabowski et al. 2007; Uroz et al. 2009). Given that
the microbiology and functioning of the topsoil is poorly
described relative to its importance (Wakelin 2018), then
describing and quantifying the many biogeochemical processes
and associated microbiology in the subsoil represents a new
frontier.

Mycorrhizal associations

While mycorrhizal associations are of questionable value to net
primary production in highly intensive agricultural ecosystems
(Guppy and Mclaughlin 2009), they are of major importance in
both natural and managed forest ecosystems. In areas lacking
suitable mycorrhizal symbionts, pine and other plantation trees
neither effectively establish nor grow without inoculation
(Reinhart and Callaway 2006; Nuñez et al. 2009) or
provision of appropriately treated nursery stock (Smaill and
Walbert 2013; Chen et al. 2014). The main mycorrhizal
associations with planted forest trees are generally
ectomycorrhizal (Pampolina et al. 2002; Smith and Read
2010). However, some important plantation species, such as
Eucalyptus, Salix, and Populus spp. form both arbuscular and
ectomycorrhizal associations (Lodge 1989; Adams et al. 2006).
This ability to dual-associate may provide benefits for
establishment of trees on new sites or on poor resource
quality soils (Adjoud-Sadadou and Halli-Hargas 2017).

Trees invest considerable energy to supporting mycorrhizal
symbiosis. For example, as much as 30% of all
photosynthetically fixed C is supplied to mycorrhizal fungi
(Hobbie 2006); such that in forest soils, mycorrhizal mycelia
can comprise up to one-third of the total microbial biomass
(Högberg and Högberg 2002). The extent of the mycorrhizal
biomass in forest soils, and the interaction between mycorrhizae
and host-tree supply of phytosynthate means that these fungi
have a key role in ecosystem-level C budgets (Hasselquist et al.
2012), mediating C persistence in soil (Gadgil and Gadgil 1971;
Rygiewicz and Andersen 1994; Chapela et al. 2001), and the
wider nutrient economy in forests (Phillips et al. 2013). Thus,
small changes at the plant–microbiome level, can have major
influence on total ecosystem functioning and the global cycling
of C. There is need therefore that mycorrhizae should be more
explicitly modelled in global C-models (Meyer et al. 2012).

The primary benefits of mycorrhizal association are
generally attributed to provision of P for plant growth (Smith
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and Read 2010). The large surface area of mycorrhizal mycelia
in soil confers an ability to explore and acquire P, water, and
other nutrients that far exceeds the capacity of the host-tree root
system alone (Smith and Read 2010). In addition to the
acquisition of inorganic and organic P from soil, mycorrhizal
symbioses have increasingly been identified as important to the
wider nutrition of the host plant, including amino acids, sugars,
N, S, K, and various other macro- and micro-elements such as
zinc (Casieri et al. 2013). Given this, the beneficial role of
mycorrhizal symbioses is increasingly recognised as being of
wider importance to nutrient cycling in forest ecosystems than
the supply of inorganic P either with or without fertilisation.
Furthermore, in addition to nutrient provision, mycorrhizal
fungi support other important ecosystem services associated
with improved soil structure and aggregation, water infiltration
and purification (Simard and Austin 2010), along with
enhancing host-tree resistance to abiotic stress, pests, and
diseases (Branzanti et al. 1999; Reivant Munters 2014).

While over 90% of the P requirement of trees can be met
through mycorrhizal symbioses, variation in the physiology of
the fungi–soil and fungi–plant interfaces can alter the uptake of
P from soils, resulting in variation in the efficacy of mycorrhizal
associations (Plassard and Dell 2010). These interactions are
likely to similarly extend to other symbiosis outcomes (e.g.
protection of the host from disease) and also other ecosystem
services provided by mycorrhizae, including adaptation to

climate change (Rillig et al. 2001; Simard and Austin 2010).
As such, there is significant interest and potential to manage or
direct outcomes of mycorrhizal associations that extend well
beyond lifting the productive capacity of tree growth alone.

In forest ecosystemsmycorrhizal fungal mycelia that link the
roots of plants in a network are ubiquitous (Van der Heijden and
Horton 2009). Thus, as well as providing a pathway for nutrient
flow, they also comprise a network for signalling and
communication within the forest ecosystem (Brownlee et al.
1983; Simard and Durall 2004). A future and potentially
important role of mycorrhizal fungi may be to provide forest
ecosystems with greater resilience to environmental stress,
particularly as a result of climatic change (Simard and
Austin 2010; Gorzelak et al. 2015; Simard 2018). However,
there is need to develop molecular-based tools to more
effectively characterise mycorrhizae field populations
coupled with better understanding of the ecology of the
symbiosis in forest soils and the services they provide in
both plantation and natural forest ecosystems.

Conclusions

The findings of this review highlight our relatively poor
understanding of plant–soil-biota interactions and
relationships between soil biodiversity and biogeochemical
function across a range of managed ecosystems (Fig. 2).

Planted forests

Compaction

Inorganic
inputs

Biological
inoculants Plant

residue

Pesticides

Tillage

Organic
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Animal production Crop production

Manure
(ungrazed)

Diverse MonocultureUrine and
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Fig. 2. Main inputs (rectangles) and disturbance (circles) identified in managed ecosystems (planted forests,
animal production, and crop production) that influence microbial diversity and function. The generalised impact
on soil biodiversity by each is depicted by green (positive), blue (neutral/unknown), and red (negative) arrows.
Drawing is not to scale.
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Most reported research has focused on describing and
quantifying the impact of land-use management practices on
the taxonomic diversity of bacteria and fungi, but few studies
have investigated how diversity influences specific functions
across different groups and trophic levels. There is a need to
improve understanding across trophic levels and to further
investigate interactions between community members. In
particular, it is essential that descriptive approaches
are linked with analysis of both functional genes and
functional groups, and more importantly, to associate this
with measured actual and potential process rates that operate
under realistic environmental conditions. Nutrient dynamics
and microbe–plant interactions are most often driven by
small continual or episodic resource inputs (organic C and
nutrients), seasonal factors, and a wide range of edaphic
environmental factors, whereby the functional consequences
of these interactions require more detailed investigation. The
capacity to predict and model the effects of system perturbation
and anthropogenic interventions on structure and function
of microbial communities in soil environments will be
important. When linked with system process outcomes, the
continued development and application of metagenomic
and metatranscriptomic techniques and approaches in
environmental metabolomics have the potential to further our
understanding of the impacts of land-use, land management,
and climate change on multi-trophic diversity, interactions, and
biogeochemical functions in soil ecosystems (Bouchez et al.
2016; Wakelin et al. 2016; Bahram et al. 2018; Crowther et al.
2019)
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