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Abstract. As a significant user of nitrogen (N) fertilisers, the Australian cotton industry is a major source of soil-derived
nitrous oxide (N2O) emissions. A country-specific (Tier 2) fertiliser-induced emission factor (EF) can be used in national
greenhouse gas inventories or in the development of N2O emissions offset methodologies provided the EFs are evidence
based. A meta-analysis was performed using eight individual N2O emission studies from Australian cotton studies to
estimate EFs. Annual N2O emissions from cotton grown on Vertosols ranged from 0.59 kgN ha–1 in a 0N control to
1.94 kgN ha–1 in a treatment receiving 270 kgNha–1. Seasonal N2O estimates ranged from 0.51 kgN ha–1 in a 0N control
to 10.64 kgN ha–1 in response to the addition of 320 kgNha–1. A two-component (linear + exponential) statistical model,
namely EF (%) = 0.29 + 0.007(e0.037N – 1)/N, capped at 300 kgN ha–1 describes the N2O emissions from lower N rates
better than an exponential model and aligns with an EF of 0.55% using a traditional linear regression model.
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Introduction

Nitrous oxide (N2O) is a greenhouse gas with a global
warming potential 298-fold higher than that of carbon dioxide
(Intergovernment Panel on Climate Change (IPCC) 2013).
Agriculture produces approximately 60% of global N2O
emissions, predominantly from emissions after application of
nitrogen (N) fertilisers to soils (Reay et al. 2012). The rate of N
fertiliser applied is the best single predictor of N2O emissions
from agricultural soils (Shcherbak et al. 2014).

The current global mean value for fertiliser-induced N2O
emissions as determined by the IPCC in its Tier 1 (default)
calculations (IPCC 2006) for national inventories is 1% of the
applied N after correction for background (0N) emissions. For
example, for every 100 kg of N input as fertiliser, 1.0 kg of N in
the form of N2O is estimated to be emitted directly from soil.
A 1% emission factor (EF) assumes a linear relationship
between N input and N2O emissions that is indifferent to
biological thresholds that may occur; for example, when the
availability of soil inorganic N exceeds crop N demands.
Country-specific (Tier 2) EFs can be used in national
greenhouse gas inventories or in the development of emissions
offset methodologies (e.g. Millar et al. 2010) provided the EFs
are evidence based.

As a significant user of N fertilisers, the Australian cotton
industry is a major source of N2O emissions from soils.
Changes in cotton farming systems from 2004 to 2011 have
occurred, with N application rates increasing under irrigation
and decreasing under dryland systems (Braunack 2013). The

average annual N application to irrigated cotton is currently
243 kgNha–1, with as much as 370 kgN ha–1 being applied
(Roth Rural 2013) over several applications. Dryland
application rates are one-third of those under irrigation.

Irrigated cotton is grown in eastern Australia on alkaline grey
and black clay soils known as Vertosols (Isbell 2002). These
soils are typically described as inefficient with regard to N usage
due largely to significant losses of gaseous N2O and N2 via
denitrification. Chen et al. (1994) reported that 72–84% of N
applied before sowing cotton was lost.

Rochester (2011) found that 79% of the 82 commercial
cotton crops surveyed applied 50 kgN ha–1 in excess of the
optimum N fertiliser required. The most recent current practices
survey (Roth Rural 2013) also reports that only 13% of irrigated
growers are in the optimum range of N use efficiency
recommended by researchers. The main reason for excess
application of N fertiliser is to ensure maximum crop yield is
achieved if the right climate conditions and water storages
are available. More N is applied to compensate for what are
significant gaseous losses of N, particularly in irrigated cotton.

The original Tier 2 EF for cotton production in Australia
is 0.5% (Galbally et al. 2005), based on a limited dataset
collected by Grace et al. (2004). The inclusion of new datasets
would enable a more accurate estimation of emissions in both
the National Greenhouse Accounts and in relevant offset
methodologies that may be developed under the Emissions
Reduction Fund (Department of Environment 2015), a
voluntary scheme that provides incentives to adopt new
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practices and technologies to reduce emissions. For projects
with an excess of N, a variable EF (in response to N applied)
would potentially provide greater incentive to reduce excess N
fertiliser applications, driving greater abatement of greenhouse
gases.

Results from a growing number of non-Australian field
experiments with multiple N fertiliser rates indicate that
emissions of N2O respond non-linearly to increasing N inputs
across a range of fertiliser formulations, climates and soil types
(e.g. McSwiney and Robertson 2005; Ma et al. 2010; Hoben
et al. 2011; Kim et al. 2013; Signor et al. 2013), suggesting that
EFs are not constant but increase with N additions. Shcherbak
et al. (2014) demonstrated that an increasing EF with N fertiliser
additions is a global phenomenon largely independent of
climate, soil type, crop and management factors.

The present study describes the development of both linear
and non-linear N2O emissions response models to N fertiliser
additions and EFs based on an analysis of peer-reviewed data
from eight field experiments from Australia’s cotton industry.

Materials and methods

Data collection and analysis

Seasonal estimates of N2O emissions from cotton soils of
Australia in response to N fertiliser applications were
determined. Daily estimates of N2O emissions from high
temporal frequency automated measuring systems (e.g. Scheer
et al. 2013) or regular manual gas sampling (e.g. Scheer et al.
2016) were integrated over defined measurement periods.
Because the EF is essentially a fertiliser-induced estimate of
N2O emissions (as a proportion of total N applied), the mean
seasonal backgroundN2Oemissions (with noN fertiliser applied)
were also determined for each of the three sites located in
major cotton-growing regions of eastern Australia (Narrabri,
Kingsthorpe and Dalby) used in our analysis. Narrabri is
located in the Namoi Valley in the state of New South Wales,
500 km north-west of Sydney, with an annual precipitation of
646mm and a mean annual temperature of 198C. Kingsthorpe
and Dalby are both located on the Darling Downs in the state
of Queensland, and 150 km and 200 km west of Brisbane
respectively. Kingsthorpe has a mean annual precipitation of
684mm andmean annual temperature of 188C.Dalby has amean
annual precipitation of 676mm and mean annual temperature
of 198C.

Where no field specific data for background emissions were
available, a site average was estimated based on existing data
collected at the same site from similar experiments with similar
histories. In the absence of any site data, because most of the
N2O from fertiliser is emitted within a month after application,
after which emissions decline to a background level (Bouwman
1996), we assumed the background emissions to be equivalent
to the lowest emissions consistently recorded during periods that
were at least 2 months after fertilisation.

For Narrabri, two of the three datasets had a 0N treatment and
we used the site average of 1.01 kgNha–1 for the third dataset;
for the two Kingsthorpe datasets, we used the observed site
background average of 0.59 kgN ha–1; for the three Dalby
datasets on a commercial farm, 0N treatments did not exist,
but all the N2O measurements were from the same or adjacent

fields with similar histories and we estimated the background
emission at 0.33 kgN ha–1 using the method outlined above.

EFs were obtained by subtracting the annual or seasonal N2O
background emissions (ERsite,0) from each annual or seasonal
N2O emission estimate at a non-zero N application rate (ERsite,N)
for each respective site and divided it by fertiliser application
rate (N), as follows:

EFsite;N ð%Þ ¼ ðERsite;N � ERsite;0Þ=N � 100

Nitrous oxide emission rates (ERN), EFs and 95% confidence
bounds for both linear and exponential models were calculated
using both mean and replicate seasonal emission measurements
from across the three sites. The common emissions model is:

ERN ¼ ER0 þ EF� N

A non-linear (exponential) model of N2O emissions from N
application was approximated by a curve of the form:

EFNð%Þ ¼ aðebN � 1Þ=N
where EFN is EF obtained by the above procedure, N is
fertiliser application rate (kgN ha–1) and a and b are
constants. EF models (and respective confidence bounds)
combining both linear and exponential components using
replicate data from each site were also developed. Analysis
was performed using Mathematica 9.0.1 (Wolfram Research).

Experiments

Narrabri (2002–03)
Nitrous oxide emissions were measured in an existing

long-term cotton rotation experiment at the Australian Cotton
Research Institute (ACRI) comprising three rotation treatments
with multiple levels of N fertiliser management (Grace et al.
2004). The soil was a grey Vertosol with a soil organic carbon
(OC) content (0–30 cm) of 1.1% and pHW of 8.2. Of the 10
treatments, nine were from the original factorial design (i.e.
rotation�N rate: continuous cotton including a winter fallow
(CC), wheat–summer fallow–vetch–cotton (WVC) and wheat–
summer fallow–cotton (WC)� 0, 100 and 200 kgN ha–1 urea
applied as a single application). The 10th treatment was WVC
receiving an industry high rate of 300 kgNha–1. Manual gas
sampling began after N application on 18 September 2002 and
finished at harvest on 6 December 2002. This is the original
dataset used by Galbally et al. (2005) in developing the original
EF for cotton in the National Greenhouse Accounts of 0.5%.
We reanalysed this dataset using the same interpolation method
between temporal sampling points to be consistent with other
studies listed herein.

Narrabri (2004–05)
Automated gas sampling was undertaken on an existing

long-term experiment at ACRI (Grace et al. 2006). The soil
was a grey Vertosol with an OC content (0–30 cm) of 1.07% and
pHW of 8.2. The CC treatment received 140 kgNha–1 on 10
September 2003 as anhydrous NH3 and the crop was sown on
23 September 2004. Gas sampling on three replicate treatments
commenced in early October 2004 and finished in mid-February
2005 before harvest.
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Narrabri (2011–12)
The aim of this experiment at the ACRI was to examine

the effect of N fertiliser rate on N2O emissions through a
complete summer–winter rotation within an irrigated cotton–
faba bean–fallow cropping system (Macdonald et al. 2015).
Nitrogen fertiliser treatments were applied on 20 September
2011, before sowing cotton (11 October 2011) on a grey
Vertosol with a soil OC content (0–30 cm) of 1.1% and pHW

of 8.3. Three replicate automated gas sampling chambers were
installed in each of four subplots after they had received N
fertiliser application at rates of 0, 120, 200 and 320 kgN ha–1.
Gas sampling ceased on 1 April 2012, before harvest of the
cotton crop.

Kingsthorpe (2009–10)
Automated gas sampling for N2O was conducted at the Agri-

Science Queensland, Department of Employment, Economic
Development & Innovation (DEEDI) Kingsthorpe research
station on the Darling Downs near Toowoomba (Qld). The
experiment was after a winter wheat crop on a black Vertosol
with a OC content (0–10 cm) of 1.6% and pHW of 7.3 with three
irrigation scheduling treatments and three replications (Scheer
et al. 2013). The irrigation treatments were designated Low,
Medium and High based on the relative depletion of plant-
available water. All treatments received a total N application of
200 kgN ha–1 applied as urea in three split applications of 100,
50 and 50 kgN ha–1 on 17 November 2009, 28 December 2009
and 28 February 2010 respectively. Nitrous oxide fluxes were
measured during the entire cotton growing season from 17
November 2009 to 20 May 2010.

Kingsthorpe (2010–11)
In October 2010, a second irrigated cotton experiment was

initiated at the Kingsthorpe site to mimic the 2009–10
experiment and to investigate the effect of different rates of
N fertiliser on N2O emissions (Scheer et al. 2016). The three
replicate plots of the Medium irrigation treatment (i.e. irrigation
was only applied when 60% of plant-available water capacity
(PAWC) was depleted) were divided into four subplots for an
N fertiliser response trial with the following treatments: 0, 90,
180 and 270 kgN ha–1. Nitrous oxide fluxes were measured
over an entire year using manually sampled static chambers
including the cotton cropping season from 5 November 2010
to 9 June 2011 and the following fallow phase from 9 June to 15
November 2011.

Dalby (2005–06)
This was the first of three automated greenhouse gas

monitoring studies (Grace et al. 2006, 2010) undertaken on
the Crothers farm at Nandi, west of Dalby (Qld) on a black
Vertosol with an average soil OC content (0–10 cm) of 1.0% and
a pHW of 8.5. The field had been under continuous cotton (with
winter fallow) for 10 years. Urea was banded on 10 and 30
August 2005, at 92 and 70 kgN ha–1 respectively. Cotton was
sown on 2 November 2005 and 30 kgN ha–1 NH3

+ applied with
irrigation water on 26 January 2006, with an additional
15 kgN ha–1 water run urea applied on 24 February 2006.
Three chambers were assigned to a single bed and three to an

adjacent furrow after skipping two rows. Gas sampling was
undertaken from 9 October 2005 to 23 March 2006, and the
average daily N2O emission of the bed and furrow treatments
was used in the present analysis.

Dalby (2006–07)
This is the second of three summer experiments performed

at the Crothers farm near Dalby (Grace et al. 2007). Because
there was little residual N in the soil profile after the previous
crop, the grower applied 200 kgN ha–1 in August 2006 and
planted in late October 2006, but much of this N may have been
lost over the 3-month period before sowing. Two N fertiliser
treatments were initiated in early November 2006, with three
automated gas sampling chambers on each. Treatment A
received 60 kgN ha–1 and Treatment B received 120 kgN ha–1

equivalent. The grower applied 23 and 46 kgNha–1 as urea in
the irrigation water, 98 and 135 days after the start of the
experiment; in total, Treatments A and B received 129 and
189 kgNha–1 respectively. Nitrous oxide emissions were
monitored from 2 November 2006 until 30 March 2007.

Dalby 2007–08
This was the third experiment on the Crothers farm near

Dalby (Grace et al. 2008). On 20 August 2007, 92 kgN ha–1 was
uniformly applied across the experimental field. On 28
December 2007, before irrigation, 40 kgNha–1 as urea was
added to three automated chambers (low N treatment) and
80 kgN ha–1 urea added to an adjacent chambers (high N
treatment). An additional 23 kgNha–1 was applied to all
chambers on 12 January 2008, with a total of 155 and
195 kgNha–1 applied to the respective treatments. Daily N2O
emissions were monitored with an automated system from 17
September 2007 until 17 April 2007.

Results and discussion

In all, 27 individual fertiliser treatments were used to develop a
Tier 2 fertiliser-induced EF for N2O emissions from Australia’s
cotton industry. Annual N2O emissions (including the post-
season fallow) ranged from 0.59 kgN ha–1 in a 0N control
to 1.94 kgN ha–1 in a treatment receiving 270 kgN ha–1 at
Kingsthorpe (Scheer et al. 2016). Seasonal N2O estimates
ranged from 0.51 kgN ha–1 in a 0N control to 10.64 kgN ha–1

in response to the addition of 320 kgNha–1 at Narrabri
(Macdonald et al. 2015). The latter value is at the upper level
of N2O emissions from the limited amount of data available
for irrigated cotton reported from other countries (Mahmood
et al. 2008; Scheer et al. 2008; Liu et al. 2010; Watts et al.
2015) and of a similar magnitude to that reported by Grace
et al. (2004) at the same site. Scheer et al. (2008) reported a
comparable response to N in irrigated cotton in Uzbekistan
(6.5 kg N2O-N ha–1) after application of 250 kgN ha–1. The
Australian cotton studies were all undertaken on alkaline
heavy black clays that rapidly become anaerobic, producing
ideal conditions for prolonged periods of denitrification
(Rochester 2003) compared with the relatively free-draining
sandy loams and loams studied in other countries.

The magnitude of seasonal N2O emissions in response to
high N fertiliser inputs in Australian cotton systems is only
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surpassed by those from sugar cane (Wang et al. 2016), even
though the latter normally receives significantly lower N
inputs compared with cotton. The large amount of fresh
residues retained in cane systems reduces evaporative losses
and supplies carbon to fuel denitrification on low pH soils,
which increases the proportion of N2O emitted (Rochester
2003). This is in direct contrast with the conditions and soils
under which cotton is grown in Australia.

EFs ranged from –0.26% to 3.15% across the 22 treatments
receiving N inputs. Using replicate data for all treatments
increased the variance in both linear and exponential models,
with an EF of 0.55% for the linear model (r2 = 0.33) and an EF
for the statistically superior exponential model (r2 = 0.85) of
EF (%) = 0.65(e0.023N – 1)/N (Fig. 1). In addition, every
experiment with more than two N fertiliser input rates
available (Table 1) shows a faster-than-linear N2O emission
growth with N fertiliser additions. This finding is consistent
with a recent meta-analysis by Shcherbak et al. (2014), who
demonstrated the non-linear response to N application to be a
global phenomenon.

The best fit of the complete dataset using replicate data for
each treatment is a two-component model with linear and
exponential elements (r2 = 0.9) that yields a variable EF in
response to N inputs (Fig. 2), namely:

EF ð%Þ ¼ 0:29þ 0:007ðe0:037N� 1Þ=N

This EF is very low for modest N application rates (e.g.
0.29% at 100 kgN ha–1 and 0.58% at the current average N
application rate for the cotton industry of 250 kgN ha–1). The EF
rapidly increases for higher N application rates, reaching
1.08% at 280 kgN ha–1, 1.83% at 300 kgN ha–1 and 3.32% at
the highest observed N input level of 320 kgN ha–1, past which
it becomes an extrapolation and is unlikely to be very reliable.
The sharp increase in EF above 280 kgN ha–1 is driven by
relatively consistent observations at 300 kgNha–1, but lesser

Table 1. Mean (� s.e.m.) N2O emissions and associated fertiliser-induced emission factors (EFs) in response
to N applications to cotton in Australia

Reference Location Rotation N rate
(kg ha–1)

N2O-N
(kg ha–1)

EF
(%)

Grace et al. (2004) Narrabri, NSW Cotton 0 1.07 ± 0.06 –

100 1.10 ± 0.07 0.03
200 1.53 ± 0.18 0.23

Cotton–wheat–vetch 0 1.54 ± 0.26 –

100 1.92 ± 0.21 0.38
200 2.34 ± 0.32 0.40
300 8.33 ± 3.08 2.27

Cotton–wheat 0 0.69 ± 0.09 –

100 0.79 ± 0.07 0.10
200 1.21 ± 0.24 0.26

Grace et al. (2006) Narrabri, NSW Cotton 140 0.64 ± 0.03 –0.26
Macdonald et al. (2015) Narrabri, NSW Cotton–faba 0 0.51 ± 0.37 –

120 0.95 ± 0.49 0.35
200 0.78 ± 0.04 0.12
320 10.62 ± 8.34 3.15

Scheer et al. (2013) Kingsthorpe, Qld Cotton–wheat 200 0.77 ± 0.11 0.09
200 0.96 ± 0.15 0.19
200 0.78 ± 0.05 0.10

Scheer et al. (2016) Kingsthorpe, Qld Cotton 0 0.59 ± 0.14 –

90 0.72 ± 0.15 0.09
180 1.11 ± 0.10 0.29
270 1.94 ± 0.33 0.50

Grace et al. (2006) Dalby, Qld Cotton 207 1.17 ± 0.30 0.41
Grace et al. (2007) Dalby, Qld Cotton 129 1.69 ± 0.26 1.05

189 1.16 ± 0.14 0.44
Grace et al. (2008) Dalby, Qld Cotton 155 1.83 ± 0.11 0.97

195 1.33 ± 0.18 0.51

4

3

2

1

0
0 50 100 150

N fertiliser (kg N ha–1)

200 250 300

N
2O

 E
F

 (
%

)

EFlin = 0.55%, r 2 = 0.33

EFexp = %, r 2 = 0.85
N

0.65 (e0.023N –1)

Fig. 1. Linear (EFlin) and exponential (EFexp) models (including 95%
confidence intervals) describing N2O emission factors (EFs) versus N
fertiliser application to cotton in Australia using replicated field data from
sites outlined in Table 1. One (x, y) data point (300, 4.79) is not shown.
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so at 320 kgN ha–1. An extensive multiyear study by Rochester
(2011) found the average seasonal N uptake by high-yielding
irrigated cotton to be 247 kgN ha–1, which supports the
hypothesis that the non-linear increase in N2O emissions after
250 kgN ha–1 is sourced from mineral N in the soil profile that is
excess to crop demand.

A comparison of EFs for the three models at various N rates
using the replicated treatment data is presented in Fig. 3.

Conclusion

Globally, the majority of datasets relevant to N2O emissions
from cotton cropping are from Australia. Based on eight studies
with 27 individual treatments across the cotton industry of
Australia, a two-component (linear + exponential) statistical
model describes fertiliser-induced N2O emissions at the lower
N rates better than an exponential model, and aligns with the EF
using a traditional linear regression model. Where variable N
rate information is explicitly available (e.g. farm or regional
emissions reduction methodology or regional inventory data) the
two-component (linear + exponential) model is recommended
but should be capped at an EF of 1.83% until additional

observational data are available for rates in excess of
300 kgNha–1.
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