Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Effect of livestock on soil structure and chemistry in the coastal marshes of the central Gulf Coast of Mexico

Karla Rodríguez-Medina A and Patricia Moreno-Casasola A B
+ Author Affiliations
- Author Affiliations

A Red de Ecología Funcional, Instituto de Ecología, A.C., Carretera antigua a Coatepec No. 351 El Haya, Xalapa 91070, Veracruz, México.

B Corresponding author. Email: patricia.moreno@inecol.edu.mx

Soil Research 51(4) 341-349 https://doi.org/10.1071/SR13037
Submitted: 30 January 2013  Accepted: 17 June 2013   Published: 2 September 2013

Abstract

Wetlands are among the most productive ecosystems on earth because of their high ecological and economic value. On the central Gulf Coast of Mexico, there are numerous coastal wetlands, although 58% of their area has been lost or degraded due to management activities, among them raising livestock. Globally, little is known about the effect of this activity on hydromorphic soils of herbaceous wetlands, and in Mexico, there is even less knowledge. This study assessed the degree of impact of livestock on soil physicochemical properties of the coastal marshes of Alvarado, in the south of Veracruz. In four sampling sites (two organic and two with mineral soils) with different levels of impact, soil samples were taken during one year to obtain data on variables such as bulk density, total porosity, organic matter, pH, and nutrients. At sites where the stocking was low, cattle were rotated once a year and the hydrology was unaltered, and soil hydromorphic intrinsic properties were preserved. The results of this study should be considered in the development of strategies for the management and conservation of these tropical ecosystems, as a means to achieve sustainable livestock farming in wetlands.

Additional keywords: bulk density, cattle, compaction, herbaceous wetlands, hydromorphic soils, hydroperiod.


References

Archer S, Smeins FE (1991) Ecosystem-level processes. In ‘Grazing management: An ecological perspective’. (Eds RK Heitschmidt, JW Stuth) pp. 109–140. (Timber Press: Portland, OR)

Bantilan-Smith M, Bruland GL, MacKenzie RA, Henry AR, Ryder CR (2009) A comparison of the vegetation and soils of natural, restored, and created coastal lowland wetlands in Hawaii. Wetlands 29, 1023–1035.
A comparison of the vegetation and soils of natural, restored, and created coastal lowland wetlands in Hawaii.Crossref | GoogleScholarGoogle Scholar |

Baron VS, Mapfumo E, Dick AC, Naeth MA, Okine EK, Chanasyk DS (2002) Grazing intensity impacts on pasture carbon and nitrogen flow. Journal of Range Management 55, 535–541.
Grazing intensity impacts on pasture carbon and nitrogen flow.Crossref | GoogleScholarGoogle Scholar |

Blanch S, Brock MA (1994) Effects of grazing and depth on two wetland plant species. Australian Journal of Marine and Freshwater Research 45, 1387–1394.
Effects of grazing and depth on two wetland plant species.Crossref | GoogleScholarGoogle Scholar |

Chanasyk D, Naeth A (1995) Grazing impacts on bulk density and soil strength in the foothills fescue grasslands of Alberta, Canada. Canadian Journal of Soil Science 75, 551–557.
Grazing impacts on bulk density and soil strength in the foothills fescue grasslands of Alberta, Canada.Crossref | GoogleScholarGoogle Scholar |

Coffin DP, Lauenroth WK (1988) The effects of disturbance size and frequency on a shortgrass plant community. Ecology 69, 1609–1617.
The effects of disturbance size and frequency on a shortgrass plant community.Crossref | GoogleScholarGoogle Scholar |

Coles-Ritchie MC, Roberts DW, Kershner JL, Henderson RC (2007) A wetland index for evaluating riparian vegetation. Journal of the American Water Resources Association 43, 731–743.
A wetland index for evaluating riparian vegetation.Crossref | GoogleScholarGoogle Scholar |

Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745–747.
Modulation of diversity by grazing and mowing in native tallgrass prairie.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVyhtLc%3D&md5=47ebc3a702d6fb7466987503e5e629ceCAS | 9563952PubMed |

Crawley MJ (2007) ‘The R Book.’ (John Wiley & Sons Ltd: Chichester, UK)

Delgaard P (2002) ‘Introductory statistics with R.’ (Springer-Verlag: New York)

Drewry JJ, Cameron KC, Buchan GD (2008) Pasture yield and soil physical property responses to soil compaction from trading and grazing—a review. Australian Journal of Soil Research 46, 237–256.
Pasture yield and soil physical property responses to soil compaction from trading and grazing—a review.Crossref | GoogleScholarGoogle Scholar |

Fassbender HW, Bornemisza E (1987) Soil chemistry: with emphasis on Latin American soils. Química de suelos con énfasis en suelos de América Latina. IICA, Libros y Materiales Educativos, No. 81.

Fernández PL, Alvarez CR, Taboada MA (2011) Assessment of topsoil properties in integrated crop–livestock and continuous cropping systems under zero tillage. Australian Journal of Soil Research 49, 143–151.
Assessment of topsoil properties in integrated crop–livestock and continuous cropping systems under zero tillage.Crossref | GoogleScholarGoogle Scholar |

Greenwood KL, MacLeod DA, Scott JM, Hutchinson KJ (1997) Long-term stocking rate effects on soil physical properties. Australian Journal of Experimental Agriculture 37, 413–419.
Long-term stocking rate effects on soil physical properties.Crossref | GoogleScholarGoogle Scholar |

Harrison SB, Inouye D, Safford HD (2003) Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conservation Biology 17, 837–845.
Ecological heterogeneity in the effects of grazing and fire on grassland diversity.Crossref | GoogleScholarGoogle Scholar |

INEGI (2005) ‘Principales resultados por localidad 2005 (ITER).’ (Instituto Nacional de Estadística y Geografía: México, DF)

INEGI (2007) ‘Censo ejidal Veracruz. Total de ejidos y comunidades según tipo de actividad agropecuaria o forestal.’ (Instituto Nacional de Estadística y Geografía: México, DF)

Infante MD, Moreno-Casasola P, Madero Vega C, Castillo-Campos G, Warner BG (2011) Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the coastal plain of the Gulf of Mexico. Forest Ecology and Management 262, 1514–1531.
Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the coastal plain of the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

IUSS Working Group WRB (2006) ‘World Reference Base for Soil Resources 2006: a framework for international classification, correlation and communication.’ 2nd edn. World Soil Resources Report No. 103. (Food and Agriculture Organization of the United Nations (FAO): Rome)

Jansen A, Healey M (2003) Frog communities and wetland condition: relationships with grazing by domestic livestock along an Australian floodplain river. Biological Conservation 109, 207–219.
Frog communities and wetland condition: relationships with grazing by domestic livestock along an Australian floodplain river.Crossref | GoogleScholarGoogle Scholar |

Jansen A, Robertson AI (2001) Relationships between livestock management and the ecological condition of riparian habitats along an Australian floodplain river. Journal of Applied Ecology 38, 63–75.
Relationships between livestock management and the ecological condition of riparian habitats along an Australian floodplain river.Crossref | GoogleScholarGoogle Scholar |

Junk WJ, Nunes Da Cunha C (2012) Pasture clearing from invasive woody plants in the Pantanal: a tool for sustainable management or environmental destruction? Wetlands Ecology and Management 20, 111–122.
Pasture clearing from invasive woody plants in the Pantanal: a tool for sustainable management or environmental destruction?Crossref | GoogleScholarGoogle Scholar |

Kovach WL (1999) ‘MVSP—A multivariate statistical package for Windows, ver. 3.1.’ (Kovach Computing Services: Pentraeth, Wales)

Kozlowski TT (1984) Plant responses to flooding of soil. Bioscience 34, 162–167.
Plant responses to flooding of soil.Crossref | GoogleScholarGoogle Scholar |

Landgrave R, Moreno-Casasola P (2012) Cuantificación de la pérdida de humedales en México. Investigación Ambiental 4, 35–51.

Mapfumo E, Chanasyk DS, Naeth MA, Baron VS (1999) Soil compaction under grazing of annual and perennial forages. Canadian Journal of Soil Science 79, 191–199.
Soil compaction under grazing of annual and perennial forages.Crossref | GoogleScholarGoogle Scholar |

Martínez LJ, Zinck JA (2004) Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil & Tillage Research 75, 3–18.
Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia.Crossref | GoogleScholarGoogle Scholar |

Micheli E, Schad P, Spaargaren O, Dent D, Nachtergale F (2006) ‘World Reference Base for Soil Resources 2006’. World Soil Resources Report No. 103. pp. 82–83. (FAO: Rome)

Miranda F, Hernández-X E (1963) Los tipos de vegetación de México y su clasificación. Boletín de la Sociedad Botánica de México 28, 29–72.

Mitsch WJ, Gosselink JG (2007) ‘Wetlands.’ (John Wiley & Sons Inc.: New York)

Mitsch WJ, Gosselink JG, Zhang L, Anderson CJ (2009) ‘Wetland ecosystems.’ (John Wiley & Sons Inc.: New York)

Moreno-Casasola P (2004) Mangroves, an area of conflict between cattle ranchers and fishermen. In ‘Mangrove management and conservation: Present and future’. (Ed. M Vannucci) pp. 181–191. (Renouf: San Diego, CA)

Moreno-Casasola P, Warner B (2009) ‘Brevario para describir, observar y manejar humedales.’ Serie Costa Sustentable No. 1. (RAMSAR, Instituto de Ecología A.C., CONANP, US Fish and Wildlife Service, US State Department: Xalapa, México)

Moreno-Casasola P, Cejudo E, Capistrán A, Infante D, López H, Castillo G, Pale-Pale J, Campos A (2010) Composición florística, diversidad y ecología de humedales herbáceos emergentes en la planicie costera central de Veracruz, México. Boletín de la Sociedad Botánica de México 87, 29–50.

Neubauer SC (2008) Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78, 78–88.
Contributions of mineral and organic components to tidal freshwater marsh accretion.Crossref | GoogleScholarGoogle Scholar |

Olmsted I (1993) Wetlands of Mexico . In ‘Wetlands of the world’. (Eds DF Whigham et al.) (Kluwer Academic Publishers: New York)

Pierzynski GM (2000) Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Cooperative Series Bulletin No. 396: SERA-IEG 2000. Available at: https://secure.hosting.vt.edu/www.sera17.ext.vt.edu/Documents/Methods_of_P_Analysis_2000.pdf.

Reddy KR, DeLaune RD (2008) ‘Biogeochemistry of wetlands: science and applications.’ (CRC Press: Boca Raton. FL)

Richardson JL, Vepraskas MJ (2001) ‘Wetland soils. Genesis, hydrology, landscapes and classification.’ (Lewis Publisher: Boca Raton, FL)

Rokosch AE, Bouchard V, Fennessy S, Dick R (2009) The use of soil parameters as indicators of quality in forested depressional wetlands. Wetlands 29, 666–677.
The use of soil parameters as indicators of quality in forested depressional wetlands.Crossref | GoogleScholarGoogle Scholar |

Rzedowski J (1983) ‘Vegetación de México.’ (Limusa: México, DF)

Shiflet TN (1963) Major ecological factors controlling plant communities in Louisiana marshes. Journal of Range Management 16, 231–235.
Major ecological factors controlling plant communities in Louisiana marshes.Crossref | GoogleScholarGoogle Scholar |

Skerritt D (1992) La ganadería en el centro del estado de Veracruz. In ‘Desarrollo y Medio Ambiente en Veracruz’. (Eds E Boege, H Rodríguez) pp. 125–130. (CIESAS-Golfo, Instituto de Ecología, A.C., Fundación Friedrich Ebert: Xalapa, México)

Smith CW, Johnston MA, Lorentz S (1997) Assessing the compaction susceptibility of South African forestry soils. II. Soil properties affecting compactability and pressibility. Soil & Tillage Research 43, 335–354.
Assessing the compaction susceptibility of South African forestry soils. II. Soil properties affecting compactability and pressibility.Crossref | GoogleScholarGoogle Scholar |

Soracco CG (2005) Relación entre la conductividad hidráulica saturada y la densidad aparente en tres situaciones de manejo contrastantes. In ‘Evaluación de Parámetros y Procesos Hidrológicos en el Suelo’. (Eds D Lobo Luján, D Gabriels, G Soto) pp. 35–38. (UNESCO: Paris)

Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Sumner ME (1996) ‘Methods of soil analysis. Part 3-Chemical methods.’ (Soil Science Society of America Inc.: Madison, WI)

Tebrügge F, Düring RA (1999) Reducing tillage intensity: a review of results from a long-term study in Germany. Soil and Tillage Research 53, 15–28.
Reducing tillage intensity: a review of results from a long-term study in Germany.Crossref | GoogleScholarGoogle Scholar |

Thompson LM, Troeh FR (1988) ‘Los suelos y su fertilidad.’ (Editorial Reverté: Barcelona, Spain)

Travieso-Bello A, Moreno-Casasola P, Campos A (2005) Efecto de diferentes manejos pecuarios sobre el suelo y la vegetación en humedales transformados a pastizales. Interciencia 30, 12–18.

Trettin CC, Jurgensen MF, Gale MR, McLaughlin JW, McFee WW, Kelly JM (1995) Soil carbon in northern forested wetlands: impacts of silvicultural practices. In ‘Carbon forms and functions in forest soils’. pp. 437–461. (Soil Science Society of America Inc.: Madison, WI)

Walczak R, Witkowska-Walczak B, Slawinski C (2002) Comparison of correlation models for the estimation of the water retention characteristics of soil. International Agrophysics 16, 79–82.

Willatt ST, Pullar DM (1984) Changes in soil physical properties under grazed pastures. Australian Journal of Soil Research 22, 343–348.
Changes in soil physical properties under grazed pastures.Crossref | GoogleScholarGoogle Scholar |

Zar JH (1999) ‘Biostatistical analysis.’ (Prentice Hall: Upper Saddle River, NJ)

Zhang Y, Li C, Trettin CC, Li H, Sun G (2002) An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles 16, 1061
An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems.Crossref | GoogleScholarGoogle Scholar |