10.1071/SR21103

Soil Research

Supplementary Material

Does the carbon skeleton of biochar contribute to soil phosphate sorption? A case study from paddy soils with woody biochar amendment

Guobing Qin^A, Xiao Yan^A, Jinju Wei^A, Jianfu Wu^A, and Zongqiang Wei^{A,*}

^ASchool of Land Resource and Environment, Key Laboratory of Agricultural Resource and Ecology in the Poyang Lake Basin of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China.

*Correspondence to: Zongqiang Wei School of Land Resource and Environment, Key Laboratory of Agricultural Resource and Ecology in the Poyang Lake Basin of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China Email: zqwei85@mail.jxau.edu.cn

Table S1 Coefficients from the multiple linear regression with S_{max} as dependent variable and the total amount of Mehlich-3 extractable Ca and Mg (CaMg_{sum}, mmol kg⁻¹), total amount of ammonium oxalate extractable Fe and Al (FeAl_{sum}, mmol kg⁻¹), pH, and dissolved organic carbon (DOC) (mg kg⁻¹) as independent variables for original biochar addition treatments (n = 8).

Variables	Estimate	s.e.	<i>t</i> -value	<i>P</i> -value	Relative importance	
					LMG	PMVD
Intercept	-468.16	618.45	-0.76	0.50		
$CaMg_{\text{sum}} \\$	25.14	58.94	0.43	0.70	0.13	0.01
$FeAl_{\text{sum}} \\$	4.21	0.73	5.79	0.01	0.64	0.70
pН	44.93	18.84	2.38	0.10	0.07	0.09
DOC	-0.44	0.13	-3.42	0.04	0.10	0.14
Multiple r^2				0.94		